PostGIS 3.2.6 Manual

PostGIS 3.2.6 Manual ii

Contents

1 Introduction 1
1.1 Project Steering COMMILIEE o v vttt et e e e e e e e e e e e e e e e e e 1
1.2 Core Contributors Present 1
1.3 Core Contributors Past L 2
1.4 Other Contributors o o e e e e e e e 2

2 PostGIS Installation 5
2.1 Short Version e e e e 5
2.2 Compiling and Install from Source e 5

2.2.1 Gettingthe Source e 6

2.2.2 Install Requirements e e e e e e e e e e e e e 6

2.2.3 Build configuration L e 7

224 Building 9

2.2.5 Building PostGIS Extensions and Deployingthem 9

226 Testing e e e e e e e e e 11

227 Installation e e e e e e e 14

2.3 Installing and Using the address standardizer 14
2.3.1 Installing Regex::Assemble e e e e e 15

2.4 Installing, Upgrading Tiger Geocoder and loading data 15
2.4.1 Tiger Geocoder Enabling your PostGIS database: Using Extension 15
24.1.1 Converting a Tiger Geocoder Regular Install to Extension Model 18

2.4.2 Tiger Geocoder Enabling your PostGIS database: Not Using Extensions 18

2.4.3 Using Address Standardizer Extension with Tiger geocoder 19

244 Loading TigerData 19

2.4.5 Upgrading your Tiger Geocoder Install 19

2.5 Common Problems during installation e 20

PostGIS 3.2.6 Manual iii
3 PostGIS Administration 21
3.1 Performance Tuning L e e e e e e 21
311 Startup ..o e e e 21
3.1.2 Runtime oo e e e e 22

3.2 Configuring raster SUPPOTt v v v v v i e 22
3.3 Creating spatial databases e e e 23
3.3.1 Spatially enable database using EXTENSION 23

3.3.2 Spatially enable database without using EXTENSION (discouraged) 23

3.3.3 Create a spatially-enabled database from atemplate 24

3.4 Upgrading spatial databases L e e e e e e e 24
34.1 Softupgrade L 24
3.4.1.1 Soft Upgrade Pre 9.1+ or without extensions 24

34.1.2 Soft Upgrade 9.1+ using eXtensions v v v v v v v v i e e e 25

342 Hardupgrade oL 26

4 Data Management 28
4.1 Spatial DataModel L 28
411 OGC GEOMELIY . . . v v v v e e e e e e e e e e e e e e e e e e e 28
4111 Point 29

4.1.1.2 LineString e e 29

4.1.1.3 LinearRing e e 29

4.1.1.4 Polygon e 29

4.1.1.5 MultiPoint oL e e e 29

4.1.1.6 MultiLineString L e e 29

4.1.1.7 MultiPolygon e 30

4.1.1.8 GeometryCollection e e e e e e 30

4.1.1.9 PolyhedralSurface e 30

4.1.1.10 Triangle e e e e 30

41111 TIN Lo e 30

412 SQL/MMPart3-Curves o v ot e e e e 30
4.1.2.1 CircularString 31

4.1.2.2 CompoundCurve o vt e e e e e e e e e e e e 31

4123 CurvePolygon e 31

4.1.2.4 MultiCurve e 31

4.1.25 MultiSurface L. 31

413 WKTand WKB e 32

42 Geometry Data Type o e e e e e 33
42.1 PostGISEWKB and EWKT e 33

4.3 Geography DataType e 35

PostGIS 3.2.6 Manual iv
4.3.1 Creating Geography Tables 35

43.2 Using Geography Tables 36

4.3.3 When to use the Geography datatype i e e 37

43.4 Geography Advanced FAQ L 37

4.4 Spatial Tables oL 38
4.4.1 Creatinga Spatial Table e e e 38

442 GEOMETRY_COLUMNS View ettt e e s 39

443 Manually Registering Geometry Columns 39

4.5 Spatial Reference Systems L e 42
4.5.1 SPATIAL_REF_SYSTable e 42
4.5.2 User-Defined Spatial Reference Systems o 43

4.6 Geometry Validation 43
4.7 Loading Spatial Data e e 47
47.1 UsingSQLtoLoadData e 47

472 Using the Shapefile Loader e 48

4.8 Extracting Spatial Data e 49
4.8.1 Using SQLto ExtractData e e e e e 49

4.8.2 Using the Shapefile Dumper e 50

4.9 SpatialIndexes L 51
4.9.1 GISTIndexeso oot 51

49.2 BRINIndexes. 52

4.9.3 SP-GISTIndexes o o i i e e e 53

494 Tuning Index Usage e 54

5 Spatial Queries 55
5.1 Determining Spatial Relationships e 55
5.1.1 Dimensionally Extended 9-Intersection Model 55

5.1.2 Named Spatial Relationships 57

5.1.3 General Spatial Relationships L 58

5.2 Using Spatial Indexes L e e 60
5.3 Examples of Spatial SQL L e e 60
6 Performance Tips 64
6.1 Small tables of large geometries L e e e e e 64
6.1.1 Problemdescription L. e 64

6.1.2 Workarounds 64

6.2 CLUSTERing on geometry indiCes o v i v v i it et e e e e e e e e e e 65
6.3 Avoiding dimension CONVersion e e e e e e e 65

PostGIS 3.2.6 Manual v
7 Building Applications 66
7.1 Using MapServer o ot e e e e e e e e e e e 66
7.1.1 BasicUsage o oL e e 66

7.1.2 Frequently Asked Questions L e e e e 67

7.1.3 Advanced Usage e e e e 68

7.1.4 Exampleso e 69

7.2 JavaClients JDBC) e e e 70
7.3 CClients (libpq)« o o o 71
731 TextCursors o v o i i e e e e e e e e e e e 71

7.3.2 Binary CUISOTS o v o ot e e e e e e e e e e e e e e e e e e 71
PostGIS Reference 72
8.1 PostGIS Geometry/Geography/Box Data Types 0 i i i e 72
.11 box2d 72

8.1.2 box3d e 73

8.1.3 GEOMELIY o e e e e e 73

8.1.4 geometry_dump L e e e e 74

8.1.5 geography e e 74

8.2 Table Management Functions L e 74
8.2.1 AddGeometryColumn e 74

8.2.2 DropGeometryColumn L e e e e e e e 76

8.2.3 DropGeometryTable e 77

824 Find_SRID 78

8.2.5 Populate_Geometry_Columns e e e e e e e e 78

8.2.6 UpdateGeometrySRID L 80

8.3 Geometry CONSLIUCIOTS v v v v i i e 81
8.3.1 ST _Collect o e s 81

8.3.2 ST _LineFromMultiPoint e e 83

8.3.3 ST_MakeEnvelope e e e e 83

8.3.4 ST Makelline s 84

8.3.5 ST_MakePoint e 85

8.3.6 ST MakePoIintM e e s 86

8.3.7 ST_MakePolygon e 87

8.3.8 ST _Point e 89

8.3.9 ST PointZ e s 90
8.3.10 ST_PointM e 91
83.11 ST_PointZM o e e 91
8.3.12 ST_Polygon e 92
8.3.13 ST_TileEnvelope o o e e 93

PostGIS 3.2.6 Manual Vi

8.4

8.3.14 ST_HexagonGrid e e 93
8.3.15 ST_Hexagon 0t i e e e e e 96
8.3.16 ST_SquareGrid e e 97
8.3.17 ST_Square o o e e e e e 98
GEOMELTY ACCESSOTS « & v v v v v e i e 99
8.4.1 GeometryTYPe o o i e e e e e e 99
8.4.2 ST_Boundary e e e 100
8.4.3 ST_BoundingDiagonal e e 102
844 ST _CoordDim L . e 103
8.4.5 ST DIMENSION o o v o o e e e e s 104
84.6 ST Dump 104
8.4.7 ST_DumpPoints e e e e e e e e 106
8.4.8 ST_DumpSegments e e e e 110
8.4.9 ST_DumpRings e e e e 112
8.4.10 ST_EndPoint 113
8.4.11 ST_Envelope o e e e e e 114
8.4.12 ST_ExteriorRing 116
8.4.13 ST_GeometryN o e e e e e e e e e e 117
8.4.14 ST_GeometryType o o e e e e e e 119
8.4.15 ST _HasAIC e e s 120
8.4.16 ST_InteriorRingN e 120
8.4.17 ST_ISClosed o o e e s 121
8.4.18 ST ISCollection o o i s 123
8.4.19 ST_ISEMpPLy o o e e e e e 124
8.4.20 ST IsPolygonCCW e 125
8.4.21 ST _IsPolygonCW e e e e e 126
8.4.22 ST_ISRIng 127
8.4.23 ST_IsSimple e e e e e 127
8424 ST M . . . L 128
8.4.25 ST _MemSize o . o e 129
8426 ST_NDIMS o o e 130
8.4.27 ST_NPOINtS o o o e s 131
8428 ST_NRINGS o e 132
8.4.29 ST NumGEOMELIES v v v e e e e e e e e e e e 132
8.4.30 ST_NumlnteriorRings o e 133
8.4.31 ST_NumlnteriorRing o . e 134
8.4.32 ST _NumPatches e 134
8.4.33 ST NumPoints e e e e 135

8.4.34 ST PatchN e 135

PostGIS 3.2.6 Manual vii

8.5

8.4.35 ST _PointN e 136
8.4.36 ST_Points 138
8.4.37 ST_StartPoint e 138
8.4.38 ST_Summary e e e e e e e e 139
8.4.39 ST X . . 141
8.4.40 STLY . . . o o 141
8441 ST _Z . . o o 142
8.4.42 ST Zmflag 143
Geometry Editors L L e 144
8.5.1 ST_AddPoint 144
8.5.2 ST CollectionEXtract o s 145
8.5.3 ST_CollectionHOomogenize o v i it e e e e e e e e e e 146
8.5.4 ST CurveToline s 147
8.5.5 ST_Scroll 150
8.5.6 ST_FlipCoordinates o o i e e e e e 151
8.5.7 ST _Force2D e s 151
8.5.8 ST _Force3D 152
8.5.9 ST Force3DZ e s 153
8.5.10 ST _Force3DM e 154
8.5.11 ST ForcedD e s 154
8.5.12 ST _ForcePolygonCCW e 155
8.5.13 ST ForceCollection 0 v i i e e e e 156
8.5.14 ST ForcePolygonCW e 157
8.5.15 ST _ForceSES o e e 157
8.5.16 ST ForceRHR 158
8.5.17 ST _ForceCurve o o e e e s 158
8.5.18 ST_LineToCurve e e e e e 159
8.5.19 ST_Multi o 161
8.5.20 ST _Normalize e e 161
8.5.21 ST_QuantizeCoordinates 0 i e e e e e e e e e e e e e 162
8.5.22 ST_RemovePoint e e 164
8.5.23 ST_RemoveRepeatedPoints e e e 164
8.5.24 ST _REVEISE o o o e e 165
8.5.25 ST_Segmentize o e e e 165
8.526 ST_SetPoint e 166
8.5.27 ST_ShiftLongitude L 167
8.5.28 ST_WrapX o e 169
8.5.29 ST_SnapToGrid e e e e e e 169
8530 ST_Snap o 171

PostGIS 3.2.6 Manual viii

8.6

8.7

8.8

8.5.31 ST_SwapOrdinates o i it e e e e e 174
Geometry Validation L L e e e e e e e 175
8.6.1 ST_IsValid e 175
8.6.2 ST IsValidDetail e e 176
8.6.3 ST IsValidReason s 178
8.6.4 ST _MakeValid L 179
Spatial Reference System Functions L 184
8.7.1 ST_SetSRID e e 184
8.7.2 ST_SRID 185
8.7.3 ST Transform e e e e 186
Geometry Input L . e e 188
8.8.1 Well-Known Text (WKT) e e e e e e 188
8.8.1.1 ST_BdPolyFromText e 188
8.8.1.2 ST_BdMPolyFromText e e e e 189
8.8.1.3 ST_GeogFromText e 189
8.8.1.4 ST_GeographyFromText e 190
8.8.1.5 ST GeomCollFromText e 190
8.8.1.6 ST_GeomFromEWKT e 191
8.8.1.7 ST_GeometryFromText e 192
8.8.1.8° ST_GeomFromText e 192
8.8.1.9 ST_LineFromText e 194
8.8.1.10 ST_MLineFromText e e 195
8.8.1.11 ST MPointFromText s 195
8.8.1.12 ST_MPolyFromText e e e 196
8.8.1.13 ST_PointFromText e 197
8.8.1.14 ST_PolygonFromText e e e e 198
8.8.1.15 ST _WKTToSQL e e 199
8.8.2 Well-Known Binary (WKB) e 199
8.8.2.1 ST_GeogFromWKB e 199
8.8.2.2 ST _GeomFromEWKB e 200
8.8.2.3 ST_GeomFromWKB e 201
8.8.2.4 ST _LineFromWKB e 202
8.8.2.5 ST_LinestringFromWKB 203
8.8.2.6 ST PointFromWKB e 203
8.8.27 ST_WKBToSQL 204
8.8.3 Other Formats e 205
8.8.3.1 ST_Box2dFromGeoHash e 205
8.8.3.2 ST_GeomFromGeoHash e 205

8.8.3.3 ST_GeomFromGML e 206

PostGIS 3.2.6 Manual iX
8.8.3.4 ST GeomFromGeoJSON e 209

8.8.3.5 ST _GeomFromKML e 210

8.8.3.6 ST _GeomFromTWKB s 210

8.83.7 ST_GMLToSQL 211

8.8.3.8 ST_LineFromEncodedPolyline 211

8.8.3.9 ST _PointFromGeoHash e 212
8.8.3.10 ST _FromFlatGeobufToTable 213
8.8.3.11 ST_FromFlatGeobuf e 213

8.9 Geometry Output e 213
8.9.1 Well-Known Text (WKT) e e e e e 213
8.9.1.1 ST_ASEWKT 213

8.9.1.2 ST_AsText 215

8.9.2 Well-Known Binary (WKB) e 216
8.9.2.1 ST_AsBinary e e e 216

8922 ST _ASEWKB 217

89.23 ST_AsHEXEWKB 218

8.9.3 Other Formats e 219
8.9.3.1 ST_AsEncodedPolyline e 219

8.9.3.2 ST _AsFlatGeobuf e 220

8933 ST_AsGeobuf 221

8.9.3.4 ST _AsGeoJSON 221

8935 ST_AsGML 223

893.6 ST _AsKML 226

8.9.3.7 ST_AsLatLonText o e e 227

8.93.8 ST _ASMVTGeom ottt e e e 228

8.9.3.9 ST_AsMVT 229
8.9.3.10 ST_AsSVG 230
8.93.11 ST_ASTWKB 231
8.9.3.12 ST _AsX3D 232
8.9.3.13 ST_GeoHash e 235

.10 Operators 236
8.10.1 Bounding BoxX Operators v i e e e e e e e e e e e e 236
8I0.1.1T && . . . o o 236
8.10.1.2 &&(geometry,box2df) 237
8.10.1.3 &&(box2df,geometry) L e 238
8.10.1.4 &&(box2df,box2df) 238
8.10.1.5 &&& 239
8.10.1.6 &&&(geometry,gidX) e 240
8.10.1.7 &&&(gidx,geometry) L 241

PostGIS 3.2.6 Manual X

8.10.1.8 &&&(gidx,gidX) 242
8.10.1.9 &< . . . 243
8I0.1.10 &<l . . . o o 244
SI0.LIT &> . . . o o 244
0112 << o o 245
80113 <<l . . o 246
8A0.1.14 = . . 247
I0.LLIS >> . o o 248
810.1.16 @ e 249
8.10.1.17 @(geometry,box2df) e 249
8.10.1.18 @(box2df,geometry) 250
8.10.1.19 @(box2df,box2df) 251
810.1.20 1&> e 252
8I0.L21 I>> . o o o 252
8.10.1.22 ~ . o e 253
8.10.1.23 ~(geometry,box2df) e 254
8.10.1.24 ~(box2df,geometry) e 255
8.10.1.25 ~(box2df,box2df) 255
8.10.1.26 ~= 256
8.10.2 Distance Operators v v v v v i e 257
810.2.1 <> . o 257
81022 1=l . o o 259
81023 <> . . L 260
81024 <<>> L e 261
81025 <<H>> . L L L e 261
8.11 Spatial Relationships e e e e e e e 262
8.11.1 Topological Relationships e 262
8. 11.1.1 ST 3DINersects v v v v e e e e e e e e e e e e e 262
8.11.1.2 ST_Contains v v e e e e e e e e e 263
8.11.1.3 ST_ContainsProperly e 266
8.11.1.4 ST_CoveredBy e 267
8. I1.1.5 ST_COVELS o o o e e e e e e e e 268
8.11.1.6 ST_CroSSes o i e e e e e e e e e e e 270
8.11.1.7 ST_LineCrossingDirection ittt 272
8.11.1.8 ST_Disjoint e 274
8.11.1.9 ST_Equals e e e 275
8.11.1.10 ST_INtEersects v v i e e o e e e e e e 276
8.11.1.11 ST _OrderingEquals e 278

8.A1.1.12 ST_Overlaps o e e 279

PostGIS 3.2.6 Manual Xi

8.12

8.13

8.11.1.13 ST_Relate 281

8.11.1.14 ST_RelateMatch e e 283

8.11.1.15 ST_Touches 284

8.11.1.16 ST_Within e e 285
8.11.2 Distance Relationships e 287

8.11.2.1 ST 3DDWithin e 287

8.11.2.2 ST _3DDFullyWithin e 288

8.11.2.3 ST _DFullyWithin e 289

8.11.2.4 ST DWithin 290

8.11.2.5 ST PointlnsideCircle e 291
Measurement Functions oL e e 292
8.12.1 ST_Area e 292
8.12.2 ST_Azimuth 293
8.12.3 ST_Angle e 295
8.12.4 ST ClosestPoint s 296
8.12.5 ST 3DClosestPoint e e 297
8.12.6 ST DIStance o o o s 299
8.12.7 ST 3DDIStance o v o e e e e e e e e 300
8.12.8 ST_DistanceSphere e 301
8.12.9 ST_DistanceSpheroid e e e e e e 302
8.12.10 ST FrechetDistance o o o e s 303
8.12.11 ST _HausdorffDistance o e e e e e e 304
8.12.12ST_Length o 305
8.12.13ST _Length2D L e 307
8.12.14ST_3DLength e 307
8.12.15 ST_LengthSpheroid e e e e e 308
8.12.16 ST_LongestLine L e e e e e e 309
8.12.17ST_3DLongestline it e e e e e e e e e e e e e e e e 312
8. 12. 18 ST_MaxDistance e e e e e 314
8.12.19 ST 3DMaxDiStance v v v e e e e e e e e e e e s 314
8.12.20 ST_MinimumClearance o v v i e e e e e e 315
8.12.21 ST_MinimumClearancelLine e e e e 316
8.12.22 ST _Perimeter o o e e e e e e e 316
8.12.23 ST Perimeter2D e e e e 318
8.12.24 ST_3DPerimeter e e e e s 319
81225 ST_Project o e 319
8.12.26 ST_Shortestline e e e 320
8.12.27 ST_3DShortestline e e e e e 321

Overlay Functions e 323

PostGIS 3.2.6 Manual Xii

8.13.1 ST_ClipByBox2D e 323
8.13.2 ST _Difference e e e 323
8.13.3 ST INtersection o v v s 325
8.13.4 ST MemUnion o e e e e 327
8.13.5 ST_Node 327
8.13.6 ST_SpPIit e e 328
8.13.7 ST_Subdivide e e 331
8.13.8 ST_SymbDifference e e e e e 333
8.13.9 ST _UnaryUnion e e 335
A3 10ST_Union oo e e 335
8.14 Geometry Processing e e 338
8.14.1 ST_Buffer e 338
8.14.2 ST _BuildArea L . 342
8.14.3 ST Centroid o e e s 343
8.14.4 ST ConcaveHull e 345
8.145 ST ConvexHull. L. e 350
8.14.6 ST_DelaunayTriangles 351
8.14.7 ST_FilterByM o e e 356
8.14.8 ST GeneratePoInts e 357
8.14.9 ST GeometricMedian e e e oo 358
8.14.10ST_LineMerge o o o v e e e e e 359
8.14.11 ST _MaximumlInscribedCircle e300
8.14.12 ST_MinimumBoundingCircle 361
8.14.13 ST_MinimumBoundingRadius 363
8.14.14 ST_OrientedEnvelope o . . e e e 363
8.14. 15 ST_OffsetCurve o e e e e s s 3065
8.14.16 ST_PointOnSurface e 368
8.14.17ST_Polygonize e e e e e e e e e e e e 309
8.14.18 ST_ReducePrecision 0 0 i e e e e 370
8.14.19 ST _SharedPaths e 3T
8.14.20 ST_Simplify 373
8.14.21 ST_SimplifyPreserveTopology o 0 0 i e e e e e 374
8.14.22 ST_SimplifyVW . . . o e 375
8.14.23 ST_ChaikinSmoothing e e 376
8.14.24 ST_SetEffectiveArea e e 377
8.14.25 ST _VoronoilLines e e e e 378
8.14.26 ST _VoronoiPolygons e 379
8.15 Affine Transformations e e 382

8.15.1 ST_Affine o L e 382

PostGIS 3.2.6 Manual xiii

8.16

8.17

8.18

8.19

8.15.2 ST_Rotate 384
8.15.3 ST _RotateX o o e e s 385
8.15.4 ST_RotateY o 386
8.15.5 ST _RotateZ o e s 386
8.15.6 ST_Scale 388
8.15.7 ST _Translate o e e e 389
8.15.8 ST TransScale e 390
Clustering FUnctions o e e e e e e e 391
8.16.1 ST_ClusterDBSCAN 391
8.16.2 ST_ClusterIntersecting o vt i e e e e e e e e e e e e e 393
8.16.3 ST ClusterKMeans s 393
8.16.4 ST _ClusterWithin e 395
Bounding Box Functions L 396
8.17.1 Box2D . . . o 396
8.17.2 Box3D 397
8.17.3 ST EstimatedEXtent e e e e 398
8.17.4 ST_Expand o 398
8.17.5 ST_EXtent e e e 400
8.17.6 ST_3DEXIent o o it e e e e e e 401
8.17.7 ST _MakeBox2D e s 402
8.17.8 ST_3DMakeBoxX e 403
8179 ST _XMAX . . . v v v o ittt e e e e e e e 403
BATAOST_XMIN o o e e e e 404
BATALIST_YMAX . . . o v o e e e e e e 405
BATA2ST_YMIN 406
BATA3ST_ZMaX o o e e e e e e 407
8ATAAST_ZMIn e e 408
Linear Referencing e e e e 409
8.18.1 ST_LinelnterpolatePoint e 409
8.18.2 ST_3DLinelnterpolatePoint e e e e e 411
8.18.3 ST_LinelnterpolatePoints e 412
8.18.4 ST LineLocatePoint e e e 413
8.18.5 ST_LineSubstring o L e e e e e e 414
8.18.6 ST_LocateAlong e e 415
8.18.7 ST LocateBetween e e e 416
8.18.8 ST LocateBetweenElevations e e 417
8.18.9 ST_InterpolatePoint e e e 418
8810 ST _AdAMEASUre o o e e e e e e e e s 418

Trajectory Functions L e e e 419

PostGIS 3.2.6 Manual Xiv

8.19.1 ST _IsValidTrajectory o o ittt et e e e e e e e e e e 419
8.19.2 ST_ClosestPointOfApproach e 420
8.19.3 ST _DistanceCPA L . e 421
8.19.4 ST_CPAWIthin L e e 422
8.20 SFCGAL FuUNCtions o i ittt e e e e e e e e 422
8.20.1 postgis_sfcgal_version e e e e e e 422
8.20.2 ST_Extrude 423
8.20.3 ST_StraightSkeleton e e e e e e e e 424
8.20.4 ST_ApproximateMedial AXis 425
8.20.5 ST ISPlanar. e e s 426
8.20.6 ST Orientation o v i e s 427
8.20.7 ST ForceLHR s 427
8.20.8 ST MinkowskiSum s 428
8.20.9 ST_ConstrainedDelaunayTriangles e e 429
8.20.10 ST 3DINtersection v v v v e e e e e e e e 430
8.20.11 ST _3DDifference e e e e e 432
8.20.12ST_3DUNION o o ot e e e e e 433
82013 ST 3DATrEa o o e e e e 434
8.20.14 ST Tesselate e e e e 435
8.20.15ST_Volume o o e 437
8.20.16 ST_MakeSolid L e 438
8.20.17ST_IsSolid o o e e 438
8.21 Long Transaction SUPPOIt o . e e e e 439
8.21.1 AddAuth 439
8.21.2 CheckAuth 440
8.21.3 DisableLongTransactions o v v i i e e e e e e e e e e e e e e 440
8.21.4 EnableLongTransactions e 441
8.21.5 LockROW 441
8.21.6 UnlockRows e e e 442
8.22 Version Functions L 442
8.22.1 PostGIS_Extensions_Upgrade e 44?2
8.22.2 PostGIS_Full_Version 0 0 e e 443
8.22.3 PostGIS_GEOS_Version o 0 o e e e 444
8.22.4 PostGIS_Liblwgeom_Version 0 e e e e e e 444
8.22.5 PostGIS_LibXML_Version i e e e 445
8.22.6 PostGIS_Lib_Build_Date e 445
8.22.7 PostGIS_Lib_Version e e e e 446
8.22.8 PostGIS_PROJ_Version o 0 o i e e e e 446

8.22.9 PostGIS_Wagyu_Version e e e e 447

PostGIS 3.2.6 Manual Xv
8.22.10 PostGIS_Scripts_Build_Date e 447
8.22.11 PostGIS_Scripts_Installed e 448
8.22.12 PostGIS_Scripts_Released e 448
8.22. 13 PostGIS_Version e e 449

8.23 Grand Unified Custom Variables (GUCS) e e e e e e 449
8.23.1 postgis.backend L. L e e e e e 449
8.23.2 postgis.gdal_datapath Lo e 450
8.23.3 postgis.gdal_enabled_drivers L. 451
8.23.4 postgis.enable_outdb_rasters Lo e 452
8.23.5 postgis.gdal_config_options e e e e e 453

8.24 Troubleshooting Functions L 453
8.24.1 PostGIS_AddBBOX e 453
8.24.2 PostGIS_DropBBoxX e e e e e 454
8.24.3 PostGIS_HasBBoX e 455

9 PostGIS Frequently Asked Questions 456

10 Topology 461

10.1 Topology TYPES o v o o i e e e e e e e e e e e 461
10.1.1 getfaceedges_returntype o v v it e e e e e e e e e e 461
10.1.2 TopoGeometry o it e i e e e e e e e e e e e 462
10.1.3 validatetopology_returntype o o it e e e e e e e e e e 462

10.2 Topology Domains i e e e e e e e e e e e 463
10.2.1 TopoElement e e 463
10.2.2 TopoElementArray o o it e e e e e e 463

10.3 Topology and TopoGeometry Management v vt v vt i vttt et e e e 464
10.3.1 AddTopoGeometryColumn o e e e e 464
10.3.2 DropTopology o o e e e e 465
10.3.3 DropTopoGeometryColumn o it e 465
10.3.4 Populate_Topology_Layer e e e e 466
10.3.5 TopologySummary e e e e 467
10.3.6 ValidateTopology o o e 468
10.3.7 ValidateTopologyRelation e 469
10.3.8 FindTopology e 469

10.4 Topology Statistics Management e e e e 470

10.5 Topology CONStIrUCtOrS v v v v ettt e e e e e e e e e e e e e 470
10.5.1 CreateTopology o o o e e e e e e e 470
10.5.2 CopyTopology o o e e 471
10.5.3 ST_InitTopoGeo i e 471

PostGIS 3.2.6 Manual XVi

10.5.4 ST_CreateTopoGeo o i i it e e e e e e e 472
10.5.5 TopoGeo_AddPoint e e e e 473
10.5.6 TopoGeo_AddLineString e e 473
10.5.7 TopoGeo_AddPolygon e e 474
10.6 Topology Editors e e 474
10.6.1 ST_AddIsoNode 474
10.6.2 ST_AddISoEdge e 475
10.6.3 ST_AddEdgeNewFaces e e e e e 475
10.6.4 ST_AddEdgeModFace 476
10.6.5 ST_RemEdgeNewFace e e 477
10.6.6 ST_RemEdgeModFace e 477
10.6.7 ST_ChangeEdgeGeom 0 i i e e e e e e e 478
10.6.8 ST_ModEdgeSplit 479
10.6.9 ST_ModEdgeHeal e e e 479
10.6.10 ST_NewEdgeHeal e 480
10.6.11 ST _MovelsoNode e e e 480
10.6.12 ST_NewEdgesSplit 481
10.6.13 ST_RemovelsoNode o e e e 482
10.6.14 ST_RemovelsoEdge 482
10.7 TOpology ACCESSOTS . . v v v v v o v e 483
10.7.1 GetEdgeByPoint L 483
10.7.2 GetFaceByPoint e e e e e e 484
10.7.3 GetFaceContainingPoint L 485
10.7.4 GetNodeByPoint e e e 485
10.7.5 GetTopologyID e 486
10.7.6 GetTopologySRID e e e e e 486
10.7.7 GetTopologyName o e e e e e e 487
10.7.8 ST_GetFaceEdges e e e e e e 487
10.7.9 ST_GetFaceGeometry o i ittt et e e e e e e 488
10.7.10 GetRingEdges L e e e e e 489
10.7.11 GetNodeEdges e 489
10.8 Topology Processing o 0 i e e e e e e e e e 490
10.8.1 Polygonize e 490
10.8.2 AddNode 491
10.8.3 AddEdge e 491
10.8.4 AddFace 492
10.8.5 ST_Simplify oo e e 494
10.9 TopoGeometry CONSIIUCIOTS v v v v v v v e 494

10.9.1 CreateTopoGeomot tee 494

PostGIS 3.2.6 Manual XVii

10.9.2 toTopoGeom e 496
10.9.3 TopoElementArray_Agg o ot i e e e e 497
10.10TopoGeometry Editors o e e e e e e 498
10.10.1clearTopoGeom e e 498
10.10.2 TopoGeom_addElement e 498
10.10.3 TopoGeom_remElement e e e e e e e e e 499
10.10.4 TopoGeom_addTopoGeom o o o it e e e e e e e 499
10.10.5t0TopoGeom o o L e e e e e e e e 500
10.11TopoGEOMELIYy ACCESSOIS « « « . v v v v e e e i e e e e e e e e e e e e e e e e e e e 500
10.11.1 GetTopoGeomElementArray o v v i it e e e e e e e e e e e e e e 500
10.11.2 GetTopoGeomElements L 501
10.11.3ST_SRID e 501
10.12TopoGeometry OULPULS o v v v v o i e 502
10.12.1AsGML . . . Lo 502
10.12.2 AsTopoJSON o o e 504
10.13Topology Spatial Relationships e 506
10.13.1Equals oo 506
T0.13.2INterSECtS o o o e e e e e e e e e e e e e e e 506

11 Raster Data Management, Queries, and Applications 508
11.1 Loading and Creating Rasters e 508
11.1.1 Usingraster2pgsql to load rasters i 508
11.1.2 Creating rasters using PostGIS raster functions512
11.1.3 Using "outdb" cloud rasters o 0 i i e e e e e 512

11.2 Raster Catalogs o o o e e e e e 513
11.2.1 Raster Columns Catalog e 513
11.2.2 Raster OVEIVIEWS o v ot ittt e e e et e e e e e e e e 514

11.3 Building Custom Applications with PostGISRaster, 515
11.3.1 PHP Example Outputting using ST_AsPNG in concert with other raster functions 515
11.3.2 ASP.NET C# Example Outputting using ST_AsPNG in concert with other raster functions 516
11.3.3 Java console app that outputs raster query as Imagefile 517
11.3.4 Use PLPython to dump outimages viaSQL Lo L. 519
11.3.5 Outputting Rasters with PSQL509

12 Raster Reference 520
12.1 Raster Support Data types e e e e e 521
12.1.1 geomval e e e e e e e e e e 521
12.1.2 addbandarg L e e 521

12.1.3 rastbandarg e 521

PostGIS 3.2.6 Manual XViii

1214 1aSter o e e e e e e e 522
12.1.5 reclassarg oo e e e e 522
12.1.6 summarystats e e e e e e e e e e e e e e 523
12.1.7 unionarg oo e e e e e e e e e e e e e e e e e e 523
12.2 Raster Management oL e e e e e e e e e 524
12.2.1 AddRasterConstraints e e e e e e e e e 524
12.2.2 DropRasterConstraints i e e e e e e 525
12.2.3 AddOverviewConstraints oo e e e e e e e e e e 526
12.2.4 DropOverviewCOonStraints v vttt e e e e e e e e 527
12.2.5 PostGIS_GDAL_Version v v o o e e e e e e e e 528
12.2.6 PostGIS_Raster Lib_Build_Date e 528
12.2.7 PostGIS_Raster_Lib_Version e 529
12.2.8 ST_GDALDIIVEIS o o i it e e e e e e e e e e 529
12.2.9 ST _Contour o o o e e e e s 533
12.2.10 ST_InterpolateRaster o e e e e 534
12.2.11 UpdateRasterSRID e e e e e 535
12.2. 12 ST _CreateOVEIVIEW o v v o e e e e e e e e e s 536
12.3 Raster CONSIIUCIOIS v v v v vt e e e e it e e e e e e e e e e e e 536
12.3.1 ST_AddBand 536
12.3.2 ST _ASRASIEr o e e e e s 539
1233 ST_Band 541
12.3.4 ST_MakeEmptyCoverage v v i v v i it e e e e e e e e e e e e 542
12.3.5 ST_MakeEmptyRaster o e 543
12.3.6 ST _Tile o . e e 544
1237 ST_Retile o 547
12.3.8 ST_FromGDALRASIEr o o e e e e e e 547
12,4 RaAStEr ACCESSOTS . . . v v v i i e e e e et e e e e e e e e e e e 548
12.4.1 ST_GeoReference 0 e s 548
12.42 ST_Height 549
12.43 ST_ISEMPLYy o o e e e e e e e e 549
1244 ST MemSize 550
12.4.5 ST MetaData e e e e e 551
12.4.6 ST NumBands e e 551
12477 ST _PixelHeight L . e 552
12.4.8 ST_PixelWidth 553
1249 ST _ScaleX e e e 554
12410 ST_ScaleY o 554
12.4.11 ST_RasterToWorldCoord e e 555

12.4.12 ST_RasterToWorldCoordX e 556

PostGIS 3.2.6 Manual Xix

12.4.13 ST _RasterToWorldCoordY e 557
12.4. 14 ST_ROtation o o o o e e e e e 558
12415 ST_SkewX . . . o o o e 558
12416 ST_SKeWY . . . o o e e 559
12417 ST_SRID 560
12418 ST_Summary o o e e e e e e e e e e e e e e e 560
12.4.19 ST_UpperLeftX 561
12,420 ST_UpperLeftY o e e e e e 562
12421 ST_Width o e 562
12.4.22 ST WorldToRasterCoord e e 563
12.4.23 ST WorldToRasterCoordX e 563
12.4.24 ST _WorldToRasterCoordY o e e e 564
12.5 Raster Band ACCESSOTS o o ot i e e e e e e e 565
12.5.1 ST BandMetaData e e e e e 565
12.5.2 ST BandNoDataValue e 566
12.5.3 ST BandIsNoData e e e 567
1254 ST_BandPath 568
12.5.5 ST _BandFileSize e 569
12.5.6 ST_BandFileTimestamp o i 569
12.5.7 ST_BandPixelType o e e e e e e e 570
12.5.8 ST MinPossibleValue 571
12.5.9 ST HasNoBand e s 571
12.6 Raster Pixel Accessors and Setters e 572
12.6.1 ST_PixelAsPolygon e e e e 572
12.6.2 ST_PixelAsPolygons e 573
12.6.3 ST _PixelAsPoint e e e 574
12.6.4 ST _PixelAsPoints e e e 574
12.6.5 ST_PixelAsCentroid 0 e e e e e 575
12.6.6 ST _PixelAsCentroidsS o o e e e e e 576
12.6.77 ST_Value o 577
12.6.8 ST NearestValue e e e 580
12.6.9 ST_SetZ e 582
12.6.10ST_SetM e 583
12.6.11 ST_Neighborhood e 584
12.6.12ST_SetValue 586
12.6.13 ST_SetValues e e e e e s 58T
12.6.14 ST_DumpValues o e e e e 595
12.6.15ST_PixelOfValue e 596

12.7 Raster EAItOrs e e e 597

PostGIS 3.2.6 Manual XX

12.7.1 ST SetGeoReference s 597
12.7.2 ST _SetRotation e e s 599
12.7.3 ST_SetScale e 599
12.7.4 ST_SetSkew o e 600
12.7.5 ST_SetSRID 601
12.7.6 ST_SetUpperLeft e e e 601
1277 ST_Resample o o L e e e 602
12.7.8 ST _Rescale o o 603
1279 ST_ReskeW o o e 604
12.7.10 ST_SnapToGrid e e e e e 605
12711 ST_ReSIZE o o o o o e 606
12712 ST Transform o e e e e 608
12.8 Raster Band Editors 611
12.8.1 ST _SetBandNoDataValue e 611
12.8.2 ST SetBandIsNoData e e 611
12.8.3 ST SetBandPath e e 613
12.8.4 ST SetBandIndex e 614
12.9 Raster Band Statistics and Analytics L e e e e e 616
129.1 ST_Count o o e e 616
12.9.2 ST_CountAgg o o e e e e e e 616
12.9.3 ST_Histogram ittt e e e e e 617
1294 ST Quantile e e 619
12.9.5 ST_SummaryStats o o e e e e e e e 621
12.9.6 ST_SummaryStatSAZE o o e e e e e e e e e e e 623
12.9.7 ST _ValueCount e e 624
12.10Raster Inputs o e e e e e e e e e e e 626
12.10.1 ST_RastFromWKB e 626
12.10.2 ST_RastFromHexWKB e 627
12.11Raster Outputs o e e 628
12.11.1 ST_AsBinary/ST_AsWKB e e e 628
12.11.2ST_AsHexWKB 629
12.11.3 ST_ASGDALRAStEr e e e e e e 629
12114 ST_ASIPEG o o 630
12.115ST_ASPNG o 631
12.11.6 ST_ASTIFF e e 632
12.12Raster Processing: Map Algebra e 633
12120 ST_CHpP . . - o o o e e e e 633
12.122ST_ColorMap o e e e e e e e 636

12,123 ST_Grayscale o o e e e 639

PostGIS 3.2.6 Manual XXi

12.12.4 ST INtersection o o o o o s 641
12.12.5 ST_MapAlgebra (callback function version) e 642
12.12.6 ST_MapAlgebra (expression Version) v v v v v v i i it e e e e e 649
12.12.7 ST_MapAlgebraEXpr o e e e e e e e 651
12.12.8 ST_MapAlgebraEXpr o e e 653
12.12.9 ST_MapAlgebraFct e e e e e 658
12.12.166T_MapAlgebraFct e 662
12.12.1 8T_MapAlgebraFctNgb e 666
12.12. 18T Reclass o e e e 668
1212.0BT_UNion o o oo e e e e e 669
12.13Built-in Map Algebra Callback Functions e 671
12.13. 1 ST _Distinctdma o o e e e e e e e e e s 671
12.13.2ST_InvDistWeightdma e 672
12133 ST _Max4ma o o ottt e e e e e e 672
12.13.4 ST Meandma o e e 673
12135 ST _MiIndma o o o e e e e e 675
12.13.6 ST_MinDistdma o e e e 676
12.13.7ST_Rangedma ot e e e e e e e e e e e e e 676
12.13.8ST_StdDev4Ama e e e e 677
12139 ST _Sumédma o e e e 678
12.14Raster Processing: DEM (Elevation) e 679
12141 ST_ASPECt . . o o o o e e e e e e e e e e 679
12,142 ST_HillShade 681
12.14.3 ST_Roughness e e e e e e e e 683
12,144 ST_SIope o o o e 683
12145 ST_TPI .« . o o e 685
12.14.6 ST_TRI e 686
12.15Raster Processing: Raster to Geometry i e e e e e e 686
12.15.1Box3D . . . L 686
12.152ST_ConvexHull L e 687
12.15.3 ST_DumpAsPolygons e 688
12.15.4 ST_Envelope o o 0 o e e e e e e e e e e e e 689
12.15.5 ST _MinConvexHull e 690
12.15.6 ST_Polygon o e e e 691
12.16Raster Operators e e e e 692
1216.1 && . . . o e 692
12,162 &< . o o 693
12163 &> . . o o 693

PostGIS 3.2.6 Manual XXii
12,165 @ . . o L e 695
12.16.6 ~= L e 695
12.16.7 ~ o o e e e 696

12.17Raster and Raster Band Spatial Relationships oL o 696
12.17. 1 ST _Contains . . . o o v v v o o e e e e s 696
12.17.2 ST_ContainsProperly e e e e e 697
12173 ST_COVerS . . . o o o e e e e e e e e 698
12.17.4ST_CoveredBy e 699
12175 ST_DISjoInt . . . o o oottt o e e e e e e e e 700
12.17.6 ST_INErsectS o v o o o e e e e s 701
12,177 ST_Overlaps« o o o e e e e e 701
12.17.8 ST _Touches e e 702
12.17.9 ST_SameAlignment L e e e e e e e 703
12.17.16T_NotSameAlignmentReason i e e 704
12 17.18T_Within o o o e 705
12.17.18T_DWithin o Lo e 706
12.17.13T_DFullyWithin 0o e 707

12.18Raster TIPS . . . o o o o o e e e e e 708
12.18. 1 0Out-DB Rasters o e e e e 708

12.18.1.1 Directory containing many files L 708
12.18.1.2 Maximum Number of Open Files 708
12.18.1.2.1 Maximum number of open files for the entire system 709
12.18.1.2.2 Maximum number of open files per process 709

13 PostGIS Raster Frequently Asked Questions 711

14 PostGIS Extras 715

14.1 Address Standardizer e e 715
14.1.1 How the Parser Works e 715
14.1.2 Address Standardizer Types o o e e e e e 715

14.1.2.1 stdaddr e 715

14.1.3 Address Standardizer Tables 716
14.1.3.1 rulestable L 716

14132 lextable e 719

14.1.3.3 gaztable e 719

14.1.4 Address Standardizer Functions e 720
14.1.4.1 parse_address o e e e e e 720

14.1.4.2 standardize _address e e 721

14.2 Tiger Geocoder o i e e 723

PostGIS 3.2.6 Manual XXiii

14.2.1 Drop_Indexes_Generate_SCript v vt i e 723
14.2.2 Drop_Nation_Tables_Generate_Script i i it e e e 724
14.2.3 Drop_State_Tables_Generate_Script e 724
1424 Geocode e e e e e 725
14.2.5 Geocode INtersection v v v i e e e e e 727
14.2.6 Get_Geocode_Settingt e e e 728
14.2.7 Get_Tract e e e e 729
14.2.8 Install_Missing_Indexes e e e e e e 730
1429 Loader_Generate_Census_SCript. o ittt 731
14.2.10 Loader_Generate_Script i i e e e e e e e e e 733
14.2.11 Loader_Generate_Nation_Script e 735
14.2.12 Missing_Indexes_Generate_Script e 736
142,13 Normalize_ Address e e e 736
14.2.14 Pagc_Normalize_ Address o i e 738
14.2.15Pprint_Addy 739
14.2.16 Reverse_Geocode e e e s 740
14.2.17 Topology_Load_Tiger o i i i e e e e 742
14.2.18 Set_Geocode_Setting e e e e e e e 744

15 PostGIS Special Functions Index 746
15.1 PostGIS Aggregate Functions o i i e e e e e e e e 746
15.2 PostGIS Window Functions L 746
15.3 PostGIS SQL-MM Compliant Functions e 747
15.4 PostGIS Geography Support Functions e e e 751
15.5 PostGIS Raster Support Functions L 752
15.6 PostGIS Geometry / Geography / Raster Dump Functions 758
15.7 PostGIS Box Functions e 758
15.8 PostGIS Functions that support 3D L e 759
15.9 PostGIS Curved Geometry Support Functions e 764
15.10PostGIS Polyhedral Surface Support Functions 767
15.11PostGIS Function Support Matrix o e e e 769
15.12New, Enhanced or changed PostGIS Functions e 777
15.12.1 PostGIS Functions new or enhanced in3.2 777
15.12.2 PostGIS Functions new or enhanced in 3.1 o Lo oo 779
15.12.3 PostGIS Functions new or enhanced in 3.0 oL 780
15.12.4 PostGIS Functions new or enhanced in2.5 782
15.12.5 PostGIS Functions new or enhanced in2.4 L o o 783
15.12.6 PostGIS Functions new or enhanced in2.3 L oL 784

15.12.7 PostGIS Functions new or enhanced in 2.2 e e 786

PostGIS 3.2.6 Manual XXiv
15.12.8 PostGIS functions breaking changes in 2.2 788
15.12.9 PostGIS Functions new or enhanced in 2.1 oL 789
15.12.1PostGIS functions breaking changesin 2.1 e 793
15.12.1PostGIS Functions new, behavior changed, or enhancedin2.0 794
15.12.1PostGIS Functions changed behaviorin2.0 801
15.12.1PostGIS Functions new, behavior changed, or enhancedin 1.5 803
15.12.1@ostGIS Functions new, behavior changed, or enhancedin 1.4 804
15.12.1P0stGIS Functionsnew in 1.3 L 805

16 Reporting Problems 806

16.1 Reporting Software Bugs L 806
16.2 Reporting Documentation Issues L e 806
A Appendix 807
Al PostGIS 3.2.6 e 807
ALl BugFixes e e e e 807

A2 PostGIS 3.2.5 . . . L 807
A2.1 BugFixes o 808

A3 PostGIS 3.2.4 . . L L e 808
A3.1 Bugand Security Fixes e 808

A4 PostGIS 3.2.3 . . L L 808
A5 PostGIS 3.2.2 . . L L 809
AS.1 BugFixes e e e 809

A.6 PostGIS 3.2.2 809
A6.1 BugFixes o 809

AT PostGIS 3.2.1 . . . o e 810
AT.1 BugFixes o e e 810

A.8 PostGIS 3.2.0 (Olivier Courtin Edition) e 810
A.8.1 Breakingchanges L 810
A.82 Enhancements e 811
A.8.3 Newfeatures e e e e e 812

A9 PostGIS 3.2.0beta3 L e 812
A.9.1 Breakingchanges/fixes 812

A.10 Release 3.2.0beta2 L e e 813
A.10.1 Breaking changes/fiXes 813
A.10.2 Enhancements e 813

A.11 Release 3.2.0betal e e 813
A.11.1 Bug Fixes and Breaking Changes 813
A.11.2 Enhancements L e e e e e e 813

PostGIS 3.2.6 Manual XXV

A.12 Release 3.2.0alphal L e 813
A.12.1 Breakingchanges L e e e e 814
A.12.2 Enhancements L e e e e e e e e 814
A12.3 New features o . oo e e 815

A.13 Release 3.1.0betal L e e e 815
A.13.1 Breakingchanges e e e e e 815
A.13.2 Enhancements L e e e e e e 815

A.14 Release 3.1.0alpha3 e e e e e 815
A.14.1 Breakingchanges e 816
A14.2 New features o o oo e e 816
A.14.3 Enhancements L e e e e e e e 816
A 44 BugFixes o o e e e e e e e 816

A.15 Release 3.1.0alpha2 L e 817
A.15.1 New Features 0 e 817
A.15.2 Enhancements L e e e e e e 817
A D53 Bugfixes o e e e e e e e 817

A.16 Release 3.1.0alphal 817
A.16.1 Breaking Changes 0 e e e e e 818
A.16.2 New features e 818
A.16.3 Enhancements L e e 818

A.l7 Release 3.0.0 L L e e e 818
A.17.1 New Features 0 e 818
A.17.2 Breaking Changes 819
A.17.3 Enhancements e e e 819

A.18 Release 3.0.0rC2 L L L e e e 821
A.18.1 Major highlights e e e e 821

A.19 Release 3.0.0rcl L L L e e e 821
A.19.1 Major highlights e e e e e 821

A.20 Release 3.0.0betal L e e e 821
A.20.1 Major highlights e e e e 821

A21 Release 3.0.0alphad e 822
A.21.1 Major highlights e e e e 822

A22 Release 3.0.0alpha3 e 822
A.22.1 Major highlights o e 823

A23 Release 3.0.0alpha2 e 823
A.23.1 Major highlights e 823

A.24 Release 3.0.0alphal e 823
A24.1 New Features e 823

A25 Release 2.5.0 L s 824

PostGIS 3.2.6 Manual XXVi

A.25.1 New Features e e 824
A.25.2 Breaking Changes e e e e e 824
A26 Release 2.4.5 825
A26.1 BugFixes o o e e e e e e e 825
A2T7 Release 2.4.4 . . . L L e e 826
A27.1 BugFixes o e e e e e 826
A.27.2 Enhancementsl e e e e e 826
A28 Release 2.4.3 . . . L L e 826
A.28.1 Bug Fixes and Enhancements 826
A29 Release 2.4.2 . . . L. e e 827
A.29.1 Bug Fixesand Enhancements 827
A30Release 2.4.1 e 827
A.30.1 Bug Fixes and Enhancements 827
A3l Release 2.4.0 e 827
A31.1 New Features e e 828
A.31.2 Enhancements and Fixes e 828
A.31.3 Breaking Changes 829
A32 Release 2.3.3 . . L L e 829
A.32.1 Bug Fixes and Enhancements 829
A33 Release 2.3.2 . . . L 829
A.33.1 Bug Fixes and Enhancements 829
A34 Release 2.3.1 . . . L . e 830
A.34.1 Bug Fixes and Enhancements 830
A35Release 2.3.0 . . . L e 830
A.35.1 Important / Breaking Changes 830
A35.2 New Features e 830
A353 BugFixes e 831
A.35.4 Performance Enhancements L e 831
A36 Release 2.2.2 . . . L. 831
A36.1 New Features o e 832
A3T7 Release 2.2.1 L e 832
A37.1 New Features e 832
A38 Release 2.2.0 L e e 833
A38.1 New Features e 833
A.38.2 Enhancements L e e e e e e 834
A39 Release 2.1.8 L L e 835
A39.1 BugFixes e 835
A0 Release 2.1.7 . . . o L L e 835

A40.1 BugFixes o L e 835

PostGIS 3.2.6 Manual XXVii

Adl Release 2.1.6 L 835
A4l1.1 Enhancements e e e 835
AdL.2 BugFixes o e 836

Ad2 Release 2.1.5 e 836
A42.1 Enhancements L e e e e e e 836
Ad22 BugFixes o o e 836

AAd3 Release 2.1.4 L e 836
A.43.1 Enhancements e e 836
Ad32 BugFixes 837

Ad4 Release 2.1.3 . . . L L e 837
A44.1 Important changes L e e e e e e e 837
Ad42 BugFixes o o e 838

A4S Release 2.1.2 . . . oL e e 838
A4S 1 BugFixes o e e e e 838
A.45.2 Enhancementsl e e e e e e 838

Adb Release 2.1.1 o e 839
A.46.1 Important Changes o e e e e e 839
A46.2 BugFixes L e 839
A.46.3 Enhancements L e e e e e e 839

AdT Release 2.1.0 o e 839
A.47.1 Important / Breaking Changes 839
AA47.2 New Features 0 e 840
AA47.3 Enhancements e e e e e e 841
AATA FIXES . . o v o e 843
AATS Knownlssues o o e e e 844

A48 Release 2.0.5 L L L e 844
A48.1 BugFixes e 844
A48.2 Tmportant Changes i e e e e e e e e e 844

AA49 Release 2.0.4 . . . L L e e 844
A49.1 BugFixes o e e e e e e 844
A.49.2 Enhancements e e e e e e 845
A49.3 KnownIssues L L 845

AS0 Release 2.0.3 . . . L e e e e 845
AS0.1 BugFixes o o e 846
A.50.2 Enhancements e e e e e e e 846

AST Release 2.0.2 L L e 846
ASLT BugFixes o e 846
A51.2 Enhancements e 847

A.52 Release 2.0.1 L e e 847

PostGIS 3.2.6 Manual XXViii

AS52.1 BugFixes o e 848
A52.2 Enhancements 849
AS53 Release 2.0.0 849
A.53.1 Testers - Ourunsung heroes i i e e e e e e 849
A.53.2 Important / Breaking Changes 849
AS533 New Features o 850
A.53.4 Enhancements L e e 850
AS53.5 BugFixes o e e e e e 851
A.53.6 Release specificcredits e 851
AS54 Release 1.5.4 851
AS54.1 BugFixes o e 851
ASS5 Release 1.5.3 . . . 852
AS5.1 BugFixes o L e 852
AS6 Release 1.5.2 o 852
AS56.1 BugFixes oL e 852
AS5T Release 1.5.1 o 853
AS57.1 BugFixes o e e 853
A58 Release 1.5.0 853
AS8.1 APIStability e 854
AS58.2 Compatibility 854
AS583 New Features e 854
A.58.4 Enhancements 855
AS8.5 Bugfixes 855
AS9 Release 1.4.0 855
A59.1 APIStability o e e e 855
AS59.2 Compatibilityo 855
AS59.3 New Features e 855
A.59.4 Enhancements 856
AS595 Bugfixes 856
A60 Release 1.3.6 L L 856
A6l Release 1.3.5 o e 856
A.62 Release 1.3.4 L L 857
A63 Release 1.3.3 e 857
A.64 Release 1.3.2 L L 857
A.65 Release 1.3.1 o e 857
A.66 Release 1.3.0 L L L 857
A.66.1 Added Functionality e 857
A.66.2 Performance Enhancements o 857

A.66.3 Other Changes e e 858

PostGIS 3.2.6 Manual XXiX

A.67 Release 1.2.1 o 858
ABT7.1 Changes o o e e e e e e e e e 858
A.68 Release 1.2.0 L 858
AB8.1 Changes o o e e e e e e e e 858
A.69 Release 1.1.6 o L e 858
A69.1 Upgrading e e e e e 858
A.69.2 BUugfixes e 859
A.69.3 Otherchanges. e e e e e e 859
A0 Release 1.1.5 L L e e 859
AT70.1 Upgrading o o e e e e e e e e 859
AT0.2 BugfiXes o e 859
A70.3 New Features e 859
A1 Release 1.1.4 . . . o L L e e e 859
ATLL Upgrading o o e e e e e e e 860
ATL2 BugfiXes o oo e 860
AT71.3 Javachanges L e e e e 860
A2 Release 1.1.3 . . . o L L e e e 860
AT2.1 Upgrading o o e e e e e e e e 860
A.72.2 Bug fiXes / COITECtNESS o o v v i e e e e e e e e e e e e e e 860
A.72.3 New functionalities L L e 861
A72.4 JDBCchanges e e e 861
A72.5 Otherchanges. o o o e e e e e e e e 861
A3 Release 1.1.2 . . . o L L e e 861
AT3.1 Upgrading o e e e e e e e 861
AT32 Bugfixes e e 861
A.73.3 New functionalities L e 862
A73.4 Otherchanges. e 862
AT4 Release 1.1.1 . . . o o L e 862
AT4.1 Upgrading oL e 862
AT42 Bugfixes o o i e e e e e e e e 862
A.74.3 New functionalities e e e e 862
ATS Release 1.1.0 L L L e 863
AT5.1 Credits 863
AT75.2 Upgrading oL e 863
A75.3 New functions o L L e e e e e 863
AT54 BugfiXes o e 864
A.75.5 Function semantic changes L e 864
A.75.6 Performance improvements it e e e e e e e e e e e e e e 864

AT57 JDBC2WOrkso 864

PostGIS 3.2.6 Manual XXX

A.75.8 Othernew things e 864
A75.9 Otherchanges. e e e e e e 864
AT6 Release 1.0.6 e 865
AT6.1 Upgrading o e e e e e 865
AT6.2 BugfiXes e e 865
AT6.3 TMProveMeNtS v v v v e 865
ATT Release 1.0.5 oL 865
ATT7.1 Upgrading o o e e e e e 865
A.77.2 Library changes e 866
A77.3 Loaderchanges e e e e e e e 866
AT7.4 Otherchanges. e e 866
AT8 Release 1.0.4 866
A78.1 Upgrading L e 866
AT8.2 Bugfixes i e e e e e e e 866
AT83 ImMProvements e e e e e e e e e e e e e e 867
AT9 Release 1.0.3 867
A79.1 Upgrading oo e e 867
AT79.2 BUugfixes i e e e e e e e e 867
AT9.3 Improvements e e e e e e 867
AB0 Release 1.0.2 867
A.80.1 Upgrading e 868
AB0.2 Bugfixes 868
A.80.3 ITmpProvements e e e e e e e e e e e 868
A8l Release 1.0.1 868
A81.1 Upgrading o o e e 868
A.81.2 Library changes e e e e e e e 868
A.81.3 Other changes/additions L e 868
A82 Release 1.0.0 L 869
A82.1 Upgrading e 869
A.82.2 Library changes e e e e e e e 869
A.82.3 Other changes/additions L e 869
A83 Release 1.0.ORCO L 869
A83.1 Upgrading e e 869
A.83.2 Librarychanges e 869
A.83.3 Scriptschanges e 869
A.83.4 Otherchanges. e 870
A.84 Release 1.0.0RCS o L 870
A84.1 Upgrading L e 870

A84.2 Librarychanges L e 870

PostGIS 3.2.6 Manual XXXi

A.84.3 Otherchanges. L e 870
A85 Release 1.0.0RC4 870
A85.1 Upgrading e e e e 870
A85.2 Librarychanges L e 870
A.85.3 Scriptschanges e 871
A.85.4 Otherchanges. e e e e e e 871
AB6 Release 1.0.0RC3 871
A.86.1 Upgrading e 871
A.86.2 Librarychanges e e 871
A.86.3 Scriptschanges L e e e e e e 871
AB6.4 JDBCchanges e 872
A.86.5 Otherchanges. e 872
A87 Release 1.0.ORC2 L 872
A8T.1 Upgrading o e e e e 872
A.87.2 Librarychanges L 872
A.87.3 Scriptschanges e 872
A.87.4 Otherchanges. e e e e e e e 873
A88 Release 1.0.0RCL 873
A.88.1 Upgrading e e 873

AB8.2 Changes o i 873

Abstract

PostGIS is an extension to the PostgreSQL object-relational database system which allows GIS (Geographic Information Sys-
tems) objects to be stored in the database. PostGIS includes support for GiST-based R-Tree spatial indexes, and functions for
analysis and processing of GIS objects.

Spatial PostgreSQL */ 0SGeo

Project

This is the manual for version 3.2.6

This work is licensed under a Creative Commons Attribution-Share Alike 3.0 License. Feel free to use
this material any way you like, but we ask that you attribute credit to the PostGIS Project and wherever possible, a link back to
http://postgis.net.

https://www.postgresql.org/
http://creativecommons.org/licenses/by-sa/3.0/
http://postgis.net

PostGIS 3.2.6 Manual 1/873

Chapter 1

Introduction

PostGIS is a spatial extension for the PostgreSQL relational database that was created by Refractions Research Inc, as a spatial
database technology research project. Refractions is a GIS and database consulting company in Victoria, British Columbia,
Canada, specializing in data integration and custom software development.

PostGIS is now a project of the OSGeo Foundation and is developed and funded by many FOSS4G developers and organizations
all over the world that gain great benefit from its functionality and versatility.

The PostGIS project development group plans on supporting and enhancing PostGIS to better support a range of important
GIS functionality in the areas of OGC and SQL/MM spatial standards, advanced topological constructs (coverages, surfaces,
networks), data source for desktop user interface tools for viewing and editing GIS data, and web-based access tools.

1.1 Project Steering Committee

The PostGIS Project Steering Committee (PSC) coordinates the general direction, release cycles, documentation, and outreach
efforts for the PostGIS project. In addition the PSC provides general user support, accepts and approves patches from the general
PostGIS community and votes on miscellaneous issues involving PostGIS such as developer commit access, new PSC members
or significant API changes.

Raiil Marin Rodriguez MVT support, Bug fixing, Performance and stability improvements, GitHub curation, alignment of
PostGIS with PostgreSQL releases

Regina Obe Buildbot Maintenance, Windows production and experimental builds, documentation, alignment of PostGIS with
PostgreSQL releases, X3D support, TIGER geocoder support, management functions.

Darafei Praliaskouski Index improvements, bug fixing and geometry/geography function improvements, SFCGAL, raster,
GitHub curation, and Travis bot maintenance.

Paul Ramsey (Chair) Co-founder of PostGIS project. General bug fixing, geography support, geography and geometry index
support (2D, 3D, nD index and anything spatial index), underlying geometry internal structures, GEOS functionality inte-
gration and alignment with GEOS releases, alignment of PostGIS with PostgreSQL releases, loader/dumper, and Shapefile
GUI loader.

Sandro Santilli Bug fixes and maintenance, buildbot maintenance, git mirror management, management functions, integration
of new GEOS functionality and alignment with GEOS releases, topology support, and raster framework and low level API
functions.

1.2 Core Contributors Present

Nicklas Avén Distance function enhancements (including 3D distance and relationship functions) and additions, Tiny WKB
(TWKB) output format and general user support

PostGIS 3.2.6 Manual 2/873

Dan Baston Geometry clustering function additions, other geometry algorithm enhancements, GEOS enhancements and general
user support

Martin Davis GEOS enhancements and documentation
Bjorn Harrtell MapBox Vector Tile and GeoBuf functions. Gogs testing and GitLab experimentation.

Aliaksandr Kalenik Geometry Processing, PostgreSQL gist, general bug fixing

1.3 Core Contributors Past

Bborie Park Prior PSC Member. Raster development, integration with GDAL, raster loader, user support, general bug fixing,
testing on various OS (Slackware, Mac, Windows, and more)

Mark Cave-Ayland Prior PSC Member. Coordinated bug fixing and maintenance effort, spatial index selectivity and binding,
loader/dumper, and Shapefile GUI Loader, integration of new and new function enhancements.

Olivier Courtin (Emeritus) PostGIS SFCGAL creator, Input/output XML (KML,GML)/GeoJSON functions, 3D support and
bug fixes.

Chris Hodgson Prior PSC Member. General development, site and buildbot maintenance, OSGeo incubation management

Kevin Neufeld Prior PSC Member. Documentation and documentation support tools, buildbot maintenance, advanced user
support on PostGIS newsgroup, and PostGIS maintenance function enhancements.

Dave Blasby The original developer/Co-founder of PostGIS. Dave wrote the server side objects, index bindings, and many of
the server side analytical functions.

Pierre Racine Architect of PostGIS raster

Jorge Arévalo Raster development, GDAL driver support, loader

David Zwarg Raster development (mostly map algebra analytic functions)

Jeff Lounsbury Original development of the Shapefile loader/dumper.

Mark Leslie Ongoing maintenance and development of core functions. Enhanced curve support. Shapefile GUI loader.

Mateusz Loskot CMake support for PostGIS, built original raster loader in python and low level raster API functions

1.4 Other Contributors

PostGIS 3.2.6 Manual

3/873

Individual Contributors

Alex Bodnaru
Alex Mayrhofer
Andrea Peri
Andreas Forg Tollefsen
Andreas Neumann
Andrew Gierth
Anne Ghisla
Antoine Bajolet
Arthur Lesuisse
Artur Zakirov
Barbara Phillipot
Ben Jubb
Bernhard Reiter
Bjorn Esser

Brian Hamlin
Bruce Rindahl
Bruno Wolff II1
Bryce L. Nordgren
Carl Anderson
Charlie Savage
Christoph Berg
Christoph Moench-Tegeder
Dane Springmeyer
Dave Fuhry

David Garnier
David Skea

David Techer
Dmitry Vasilyev
Eduin Carrillo
Eugene Antimirov
Even Rouault
Frank Warmerdam
George Silva
Gerald Fenoy
Gino Lucrezi

Greg Troxel
Guillaume Lelarge
Giuseppe Broccolo
Han Wang
Haribabu Kommi
Havard Tveite
IIDA Tetsushi
Ingvild Nystuen
Jackie Leng

James Marca

Jan Katins

Jason Smith

Jeff Adams

Jim Jones

Joe Conway

Jonne Savolainen
Jose Carlos Martinez Llari
Jorg Habenicht
Julien Rouhaud
Kashif Rasul
Klaus Foerster
Kris Jurka
Laurenz Albe

Lars Roessiger
Leo Hsu

Loic Bartoletti
Loic Dachary
Luca S. Percich
Lucas C. Villa Real
Maria Arias de Reyna
Marc Ducobu
Mark Sondheim
Markus Schaber
Markus Wanner
Matt Amos

Matt Bretl

Matthias Bay
Maxime Guillaud
Maxime van Noppen
Michael Fuhr

Mike Toews

Nathan Wagner
Nathaniel Clay
Nikita Shulga
Norman Vine
Patricia Tozer

Rafal Magda

Ralph Mason

Rémi Cura

Richard Greenwood
Roger Crew

Ron Mayer
Sebastiaan Couwenberg
Sergei Shoulbakov
Sergey Fedoseev
Shinichi Sugiyama
Shoaib Burq

Silvio Grosso
Stefan Corneliu Petrea
Steffen Macke
Stepan Kuzmin
Stephen Frost
Steven Ottens

Talha Rizwan

Tom Glancy

Tom van Tilburg
Vincent Mora
Vincent Picavet
Volf Tomas

Corporate Sponsors These are corporate entities that have contributed developer time, hosting, or direct monetary funding to
the PostGIS project. In alphabetical order:

e Aiven
e Arrival 3D

* Associazione Italiana per I’'Informazione Geografica Libera (GFOSS.it)

* AusVet

* Avencia

* Azavea

* Boundless

* Cadcorp

e Camptocamp
* Carto

* Crunchy Data

* City of Boston (DND)

* City of Helsinki

* Clever Elephant Solutions

https://aiven.io
https://arrival3d.com
http://gfoss.it
https://www.ausvet.com.au
https://www.azavea.com
https://www.boundlessgeo.com
https://www.cadcorp.com
https://www.camptocamp.com
https://carto.com
https://www.crunchydata.com
https://www.boston.gov
https://www.hel.fi
https://blog.cleverelephant.ca

PostGIS 3.2.6 Manual 4/873

* Cooperativa Alveo
* Deimos Space
* Faunalia
* Geographic Data BC
* Hunter Systems Group
e [Sciences, LLC
» Kontur
* Lidwala Consulting Engineers
* LISAsoft
* Logical Tracking & Tracing International AG
* Maponics
* Michigan Tech Research Institute
* Natural Resources Canada
* Norwegian Forest and Landscape Institue
* Norwegian Institute of Bioeconomy Research (NIBIO)
* OSGeo
* Oslandia
* Palantir Technologies
 Paragon Corporation
* R3 GIS
* Refractions Research
* Regione Toscana - SITA
» Safe Software
* Sirius Corporation plc
 Stadt Uster
* UC Davis Center for Vectorborne Diseases
* Université Laval
e U.S. Department of State (HIU)
* Zonar Systems
Crowd Funding Campaigns Crowd funding campaigns are campaigns we run to get badly wanted features funded that can
service a large number of people. Each campaign is specifically focused on a particular feature or set of features. Each
sponsor chips in a small fraction of the needed funding and with enough people/organizations contributing, we have the

funds to pay for the work that will help many. If you have an idea for a feature you think many others would be willing to
co-fund, please post to the PostGIS newsgroup your thoughts and together we can make it happen.

PostGIS 2.0.0 was the first release we tried this strategy. We used PledgeBank and we got two successful campaigns out
of it.

postgistopology - 10 plus sponsors each contributed $250 USD to build toTopoGeometry function and beef up topology
support in 2.0.0. It happened.

postgis6dwindows - 20 someodd sponsors each contributed $100 USD to pay for the work needed to work out PostGIS
64-bit issues on windows. It happened.
Important Support Libraries The GEOS geometry operations library

The GDAL Geospatial Data Abstraction Library used to power much of the raster functionality introduced in PostGIS 2.
In kind, improvements needed in GDAL to support PostGIS are contributed back to the GDAL project.

The PROIJ cartographic projection library

Last but not least, PostgreSQL, the giant that PostGIS stands on. Much of the speed and flexibility of PostGIS would not be
possible without the extensibility, great query planner, GIST index, and plethora of SQL features provided by PostgreSQL.

https://www.alveo.coop
http://www.elecnor-deimos.com
https://www.faunalia.eu
https://gov.bc.ca
https://www.isciences.com
https://www.kontur.io
https://www.lidwala.com
https://www.jirotech.com
http://www.mtri.org
https://www.nrcan.gc.ca
https://www.nibio.no/
https://www.osgeo.org
https://oslandia.com
https://www.palantir.com
https://www.paragoncorporation.com
https://www.r3-gis.com
http://www.refractions.net
https://www.regione.toscana.it
https://www.safe.com
http://www.uster.ch
https://www.ucdavis.edu
https://www.ulaval.ca
https://hiu.state.gov
https://www.zonarsystems.com
https://lists.osgeo.org/mailman/listinfo/postgis-users
http://www.pledgebank.com
http://www.pledgebank.com/postgistopology
http://www.pledgebank.com/postgis64windows
https://geos.osgeo.org
https://www.gdal.org
https://www.proj4.org
http://www.postgresql.org

PostGIS 3.2.6 Manual 5/873

Chapter 2

PostGIS Installation

This chapter details the steps required to install PostGIS.

2.1 Short Version

To compile assuming you have all the dependencies in your search path:

tar -xvfz postgis-3.2.6.tar.gz
cd postgis-3.2.6

./configure

make

make install

Once PostGIS is installed, it needs to be enabled (Section 3.3) or upgraded (Section 3.4) in each individual database you want to
use it in.

2.2 Compiling and Install from Source

Note
Many OS systems now include pre-built packages for PostgreSQL/PostGIS. In many cases compilation is only neces-
sary if you want the most bleeding edge versions or you are a package maintainer.

Ncrld This section includes general compilation instructions, if you are compiling for Windows etc or another OS, you may
find additional more detailed help at PostGIS User contributed compile guides and PostGIS Dev Wiki.
Pre-Built Packages for various OS are listed in PostGIS Pre-built Packages
If you are a windows user, you can get stable builds via Stackbuilder or PostGIS Windows download site We also
have very bleeding-edge windows experimental builds that are built usually once or twice a week or whenever anything
exciting happens. You can use these to experiment with the in progress releases of PostGIS

The PostGIS module is an extension to the PostgreSQL backend server. As such, PostGIS 3.2.6 requires full PostgreSQL server
headers access in order to compile. It can be built against PostgreSQL versions 9.6 or higher. Earlier versions of PostgreSQL are
not supported.

Refer to the PostgreSQL installation guides if you haven’t already installed PostgreSQL. http://www.postgresql.org .

http://trac.osgeo.org/postgis/wiki/UsersWikiInstall
http://trac.osgeo.org/postgis/wiki/DevWikiMain
http://trac.osgeo.org/postgis/wiki/UsersWikiPackages
https://postgis.net/windows_downloads
https://postgis.net/windows_downloads
http://www.postgresql.org

PostGIS 3.2.6 Manual 6/873

Note
For GEOS functionality, when you install PostgresSQL you may need to explicitly link PostgreSQL against the standard

¢ C++ library:
Note

LDFLAGS=-1stdc++ ./configure [YOUR OPTIONS HERE]

This is a workaround for bogus C++ exceptions interaction with older development tools. If you experience weird
problems (backend unexpectedly closed or similar things) try this trick. This will require recompiling your PostgreSQL
from scratch, of course.

The following steps outline the configuration and compilation of the PostGIS source. They are written for Linux users and will
not work on Windows or Mac.

2.2.1 Getting the Source

Retrieve the PostGIS source archive from the downloads website http://download.osgeo.org/postgis/source/postgis-3.2.6.tar.gz

wget http://download.osgeo.org/postgis/source/postgis-3.2.6.tar.gz
tar -xvzf postgis-3.2.6.tar.gz

This will create a directory called postgis—3.2. 6 in the current working directory.
Alternatively, checkout the source from the git repository https://git.osgeo.org/gitea/postgis/postgis/ .

git clone https://git.osgeo.org/gitea/postgis/postgis.git postgis
cd postgis
sh autogen.sh

Change into the newly created postgis directory to continue the installation.

2.2.2 Install Requirements

PostGIS has the following requirements for building and usage:

Required

* PostgreSQL 9.6 - 15. A complete installation of PostgreSQL (including server headers) is required. PostgreSQL is available
from http://www.postgresql.org .

For a full PostgreSQL / PostGIS support matrix and PostGIS/GEOS support matrix refer to http://trac.osgeo.org/postgis/wiki/-
UsersWikiPostgreSQLPostGIS

* GNU C compiler (gcc). Some other ANSI C compilers can be used to compile PostGIS, but we find far fewer problems when
compiling with gcc.

* GNU Make (gmake or make). For many systems, GNU make is the default version of make. Check the version by invoking
make -—v. Other versions of make may not process the PostGIS Makefile properly.

* Proj reprojection library. Proj 4.9 or above is required. The Proj library is used to provide coordinate reprojection support
within PostGIS. Proj is available for download from https://proj.org/ .

* GEOS geometry library, version 3.6 or greater, but GEOS 3.9+ is required to take full advantage of all the new functions and
features. GEOS is available for download from http://trac.osgeo.org/geos/ .

e LibXML2, version 2.5.x or higher. LibXML2 is currently used in some imports functions (ST_GeomFromGML and ST_GeomFromKI
LibXML2 is available for download from http://xmlsoft.org/downloads.html.

* JSON-C, version 0.9 or higher. JSON-C is currently used to import GeoJSON via the function ST_GeomFromGeoJson.
JSON-C is available for download from https://github.com/json-c/json-c/releases/.

http://download.osgeo.org/postgis/source/postgis-3.2.6.tar.gz
https://git-scm.com/
https://git.osgeo.org/gitea/postgis/postgis/
http://www.postgresql.org
http://trac.osgeo.org/postgis/wiki/UsersWikiPostgreSQLPostGIS
http://trac.osgeo.org/postgis/wiki/UsersWikiPostgreSQLPostGIS
https://proj.org/
http://trac.osgeo.org/geos/
http://xmlsoft.org/downloads.html
https://github.com/json-c/json-c/releases

PostGIS 3.2.6 Manual 7 /873

* GDAL, version 2+ is required 3+ is preferred. This is required for raster support. http://trac.osgeo.org/gdal/wiki/DownloadSource.

¢ If compiling with PostgreSQL+JIT, LLVM version >=6 is required https://trac.osgeo.org/postgis/ticket/4125.
Optional

* GDAL (pseudo optional) only if you don’t want raster you can leave it out. Also make sure to enable the drivers you want to
use as described in Section 3.2.

* GTK (requires GTK+2.0, 2.8+) to compile the shp2pgsql-gui shape file loader. http://www.gtk.org/ .

* SFCGAL, version 1.3.1 (or higher) could be used to provide additional 2D and 3D advanced analysis functions to PostGIS
cf Section 8.20. And also allow to use SFCGAL rather than GEOS for some 2D functions provided by both backends (like
ST_Intersection or ST_Area, for instance). A PostgreSQL configuration variable postgis.backend allow end user to
control which backend he want to use if SFCGAL is installed (GEOS by default). Nota: SFCGAL 1.2 require at least CGAL
4.3 and Boost 1.54 (cf: https://oslandia.gitlab.io/SFCGAL/dev.html) https://gitlab.com/Oslandia/SFCGAL/.

* In order to build the Section 14.1 you will also need PCRE http://www.pcre.org (which generally is already installed on nix sys-
tems). Regex: : Assemble perl CPAN package is only needed if you want to rebuild the data encoded in parseaddress—stcit:
h. Section 14.1 will automatically be built if it detects a PCRE library, or you pass in a valid ——with-pcre—-dir=/path/to/pcre
during configure.

* To enable ST_AsMVT protobuf-c library 1.1.0 or higher (for usage) and the protoc-c compiler (for building) are required.
Also, pkg-config is required to verify the correct minimum version of protobuf-c. See protobuf-c. By default, Postgis will use
Wagyu to validate MVT polygons faster which requires a c++11 compiler. It will use CXXFLAGS and the same compiler as
the PostgreSQL installation. To disable this and use GEOS instead use the ——without-wagyu during the configure step.

e CUnit (CUnit). This is needed for regression testing. http://cunit.sourceforge.net/
* DocBook (xs1ltproc) is required for building the documentation. Docbook is available from http://www.docbook.org/ .

* DBLatex (dblatex)is required for building the documentation in PDF format. DBLatex is available from http://dblatex.sourceforge.1

* ImageMagick (convert) is required to generate the images used in the documentation. ImageMagick is available from
http://www.imagemagick.org/ .

2.2.3 Build configuration

As with most linux installations, the first step is to generate the Makefile that will be used to build the source code. This is done
by running the shell script

Jconfigure

With no additional parameters, this command will attempt to automatically locate the required components and libraries needed
to build the PostGIS source code on your system. Although this is the most common usage of ./configure, the script accepts
several parameters for those who have the required libraries and programs in non-standard locations.

The following list shows only the most commonly used parameters. For a complete list, use the --help or --help=short parame-
ters.

--with-library-minor-version Starting with PostGIS 3.0, the library files generated by default will no longer have the minor
version as part of the file name. This means all PostGIS 3 libs will end in postgis—3. This was done to make pg_upgrade
easier, with downside that you can only install one version PostGIS 3 series in your server. To get the old behavior of file
including the minor version: e.g. postgis—3.0 add this switch to your configure statement.

--prefix=PREFIX This is the location the PostGIS loader executables and shared libs will be installed. By default, this location
is the same as the detected PostgreSQL installation.

http://trac.osgeo.org/gdal/wiki/DownloadSource
https://trac.osgeo.org/postgis/ticket/4125
http://www.gtk.org/
https://oslandia.gitlab.io/SFCGAL/dev.html
https://gitlab.com/Oslandia/SFCGAL/
http://www.pcre.org
https://github.com/protobuf-c/protobuf-c
http://cunit.sourceforge.net/
http://www.docbook.org/
http://dblatex.sourceforge.net/
http://dblatex.sourceforge.net/
http://www.imagemagick.org/

PostGIS 3.2.6 Manual 8/873

< 1 Caution
This parameter is currently broken, as the package will only install into the PostgreSQL installation directory. Visit
http://trac.osgeo.org/postgis/ticket/635 to track this bug.

--with-pgconfig=FILE PostgreSQL provides a utility called pg_config to enable extensions like PostGIS to locate the Post-
greSQL installation directory. Use this parameter (--with-pgconfig=/path/to/pg_config) to manually specify a particular
PostgreSQL installation that PostGIS will build against.

--with-gdalconfig=FILE GDAL, a required library, provides functionality needed for raster support gdal-config to enable soft-
ware installations to locate the GDAL installation directory. Use this parameter (--with-gdalconfig=/path/to/gdal-config)
to manually specify a particular GDAL installation that PostGIS will build against.

--with-geosconfig=FILE GEOS, a required geometry library, provides a utility called geos-config to enable software installa-
tions to locate the GEOS installation directory. Use this parameter (--with-geosconfig=/path/to/geos-config) to manually
specify a particular GEOS installation that PostGIS will build against.

--with-xml2config=FILE LibXML is the library required for doing GeomFromKML/GML processes. It normally is found
if you have libxml installed, but if not or you want a specific version used, you’ll need to point PostGIS at a specific
xml2-config confi file to enable software installations to locate the LibXML installation directory. Use this parameter
(>--with-xml2config=/path/to/xml2-config) to manually specify a particular LibXML installation that PostGIS will build
against.

--with-projdir=DIR Proj is a reprojection library required by PostGIS. Use this parameter (--with-projdir=/path/to/projdir)
to manually specify a particular Proj installation directory that PostGIS will build against.

--with-libiconv=DIR Directory where iconv is installed.

--with-jsondir=DIR JSON-C is an MIT-licensed JSON library required by PostGIS ST_GeomFromJSON support. Use this
parameter (--with-jsondir=/path/to/jsondir) to manually specify a particular JSON-C installation directory that PostGIS
will build against.

--with-pcredir=DIR PCRE is an BSD-licensed Perl Compatible Regular Expression library required by address_standardizer
extension. Use this parameter (--with-pcredir=/path/to/pcredir) to manually specify a particular PCRE installation di-
rectory that PostGIS will build against.

--with-gui Compile the data import GUI (requires GTK+2.0). This will create shp2pgsql-gui graphical interface to shp2pgsql.
--without-raster Compile without raster support.

--without-topology Disable topology support. There is no corresponding library as all logic needed for topology is in postgis-
3.2.6 library.

--with-gettext=no By default PostGIS will try to detect gettext support and compile with it, however if you run into incompatibil-
ity issues that cause breakage of loader, you can disable it entirely with this command. Refer to ticket http://trac.osgeo.org/-
postgis/ticket/748 for an example issue solved by configuring with this. NOTE: that you aren’t missing much by turning
this off. This is used for international help/label support for the GUI loader which is not yet documented and still experi-
mental.

--with-sfcgal=PATH By default PostGIS will not install with sfcgal support without this switch. PATH is an optional argument
that allows to specify an alternate PATH to sfcgal-config.

--without-phony-revision Disable updating postgis_revision.h to match current HEAD of the git repository.

Note
. If you obtained PostGIS from the code repository , the first step is really to run the script
Note! Jautogen.sh
This script will generate the configure script that in turn is used to customize the installation of PostGIS.
If you instead obtained PostGIS as a tarball, running ./autogen.sh is not necessary as configure has already been
generated.

http://trac.osgeo.org/postgis/ticket/635
http://oss.metaparadigm.com/json-c/
http://www.pcre.org/
http://trac.osgeo.org/postgis/ticket/748
http://trac.osgeo.org/postgis/ticket/748
https://trac.osgeo.org/postgis/wiki/CodeRepository

PostGIS 3.2.6 Manual 9/873

2.2.4 Building

Once the Makefile has been generated, building PostGIS is as simple as running
make
The last line of the output should be "PostGIS was built successfully. Ready to install.”

As of PostGIS v1.4.0, all the functions have comments generated from the documentation. If you wish to install these comments
into your spatial databases later, run the command which requires docbook. The postgis_comments.sql and other package
comments files raster_comments.sql, topology_comments.sql are also packaged in the tar.gz distribution in the doc folder so no
need to make comments if installing from the tar ball. Comments are also included as part of the CREATE EXTENSION install.

make comments

Introduced in PostGIS 2.0. This generates html cheat sheets suitable for quick reference or for student handouts. This requires
xsltproc to build and will generate 4 files in doc folder topology_cheatsheet.html, tiger_geocoder_cheatsheet.
html, raster_cheatsheet.html, postgis_cheatsheet.html

You can download some pre-built ones available in html and pdf from PostGIS / PostgreSQL Study Guides

make cheatsheets

2.2.5 Building PostGIS Extensions and Deploying them

The PostGIS extensions are built and installed automatically if you are using PostgreSQL 9.1+.

If you are building from source repository, you need to build the function descriptions first. These get built if you have docbook
installed. You can also manually build with the statement:

make comments

Building the comments is not necessary if you are building from a release tar ball since these are packaged pre-built with the tar
ball already.

The extensions should automatically build as part of the make install process. You can if needed build from the extensions folders
or copy files if you need them on a different server.

cd extensions

cd postgis

make clean

make

export PGUSER=postgres #overwrite psqgl variables
make check #to test before install

make install

to test extensions

make check RUNTESTFLAGS=--extension

N:"""! Note

make check uses psqlto run tests and as such can use psql environment variables. Common ones useful to override
are PGUSER,PGPORT, and PGHOST. Refer to psql environment variables

The extension files will always be the same for the same version of PostGIS and PostgreSQL regardless of OS, so it is fine to
copy over the extension files from one OS to another as long as you have the PostGIS binaries already installed on your servers.

If you want to install the extensions manually on a separate server different from your development, You need to copy the
following files from the extensions folder into the PostgreSQL / share / extension folder of your PostgreSQL install
as well as the needed binaries for regular PostGIS if you don’t have them already on the server.

* These are the control files that denote information such as the version of the extension to install if not specified. postgis.
control, postgis_topology.control.

http://www.postgis.us/study_guides
https://www.postgresql.org/docs/current/libpq-envars.html

PostGIS 3.2.6 Manual 10/873

 All the files in the /sql folder of each extension. Note that these need to be copied to the root of the PostgreSQL share/extension
folder extensions/postgis/sql/*.sql, extensions/postgis_topology/sql/*.sql

Once you do that, you should see postgis, postgis_topology as available extensions in PgAdmin -> extensions.
If you are using psql, you can verify that the extensions are installed by running this query:

SELECT name, default_version,installed_version
FROM pg_available_extensions WHERE name LIKE 'postgis$%' or name LIKE 'address$%$';

installed_version

address_standardizer_data_us
postgis

postgis_raster
postgis_sfcgal
postgis_tiger_geocoder
postgis_topology

(6 rows)

|
+
address_standardizer |
|
|
|
|
|
|

If you have the extension installed in the database you are querying, you’ll see mention in the installed_version column.
If you get no records back, it means you don’t have postgis extensions installed on the server at all. PgAdmin III 1.14+ will also
provide this information in the extensions section of the database browser tree and will even allow upgrade or uninstall by
right-clicking.

If you have the extensions available, you can install postgis extension in your database of choice by either using pgAdmin
extension interface or running these sql commands:

CREATE EXTENSION postgis;

CREATE EXTENSION postgis_raster;

CREATE EXTENSION postgis_sfcgal;

CREATE EXTENSION fuzzystrmatch; —--needed for postgis_tiger_geocoder
—--optional used by postgis_tiger_geocoder, or can be used standalone
CREATE EXTENSION address_standardizer;

CREATE EXTENSION address_standardizer_data_us;

CREATE EXTENSION postgis_tiger_geocoder;

CREATE EXTENSION postgis_topology;

In psql you can use to see what versions you have installed and also what schema they are installed.

\connect mygisdb
\x
\dx postgis=

List of installed extensions

—[RECORD 1 Jomm—mmmmmm oo
Name | postgis
Version | 3.2.6
Schema | public
Description | PostGIS geometry, geography, and raster spat..
=[RECORD 2 [m————————————— e e
Name | postgis_raster
Version | 3.0.0dev
Schema | public
Description | PostGIS raster types and functions
=[RECORD 3]=————————cee——cooeeeeeeeeeseeseeeeseessee e
Name | postgis_tiger_geocoder
Version | 3.2.6
Schema | tiger
Description | PostGIS tiger geocoder and reverse geocoder
]

—[RECORD 4

PostGIS 3.2.6 Manual 11/873

Name | postgis_topology

Version | 3.2.6

Schema | topology

Description | PostGIS topology spatial types and functions
Warning

O

Extension tables spatial_ref_sys, layer, topology can not be explicitly backed up. They can only be backed
up when the respective postgis or postgis_topology extension is backed up, which only seems to happen
when you backup the whole database. As of PostGIS 2.0.1, only srid records not packaged with PostGIS are backed
up when the database is backed up so don’t go around changing srids we package and expect your changes to be
there. Put in a ticket if you find an issue. The structures of extension tables are never backed up since they are created
with CREATE EXTENSION and assumed to be the same for a given version of an extension. These behaviors are
built into the current PostgreSQL extension model, so nothing we can do about it.

If you installed 3.2.6, without using our wonderful extension system, you can change it to be extension based by running the
below commands to package the functions in their respective extension.

CREATE
CREATE
CREATE
CREATE

EXTENSION postgis FROM unpackaged;

EXTENSION postgis_raster FROM unpackaged;
EXTENSION postgis_topology FROM unpackaged;
EXTENSION postgis_tiger_geocoder FROM unpackaged;

2.2.6 Testing

If you wish to test the PostGIS build, run

make check

The abovi

e command will run through various checks and regression tests using the generated library against an actual Post-

greSQL database.

Note!

Note
If you configured PostGIS using non-standard PostgreSQL, GEOS, or Proj locations, you may need to add their library
locations to the LD_LIBRARY_PATH environment variable.

Caution

Currently, the make check relies on the PATH and PGPORT environment variables when performing the checks - it
does not use the PostgreSQL version that may have been specified using the configuration parameter --with-pgconfig.
So make sure to modify your PATH to match the detected PostgreSQL installation during configuration or be prepared
to deal with the impending headaches.

If successful, make check will produce the output of almost 500 tests. The results will look similar to the following (numerous
lines omitted below):

CUnit - A unit testing framework for C - Version 2.1-3
http://cunit.sourceforge.net/

PostGIS 3.2.6 Manual

12 /873

Type Total
suites 44
tests 300
asserts 4215
Elapsed time =

Run Summary:

Running tests

Run tests: 134
Failed: O

—— 1f you build with SFCGAL

Running tests

Run tests: 13
Failed: O

-— 1f you built with raster support

Run Summary: Type Total
suites 12
tests 65

asserts 45896

Running tests

Run tests: 101
Failed: 0

—-— topology regress

Ran Passed Failed Inactive

44
300
4215

0.229 seconds

n/a
300
4215

0
0
0

0
0
n/a

Ran Passed Failed Inactive

12
65
45896

n/a
65
45896

0
0
0

0
0
n/a

PostGIS 3.2.6 Manual 13/873

Running tests

Run tests: 51
Failed: O

-— if you built --with-gui, you should see this too

CUnit - A unit testing framework for C - Version 2.1-2
http://cunit.sourceforge.net/

Run Summary: Type Total Ran Passed Failed Inactive
suites 2 2 n/a 0 0

tests 4 4 4 0 0

asserts 4 4 4 0 n/a

The postgis_tiger_geocoder and address_standardizer extensions, currently only support the standard Post-
greSQL installcheck. To test these use the below. Note: the make install is not necessary if you already did make install at root
of PostGIS code folder.

For address_standardizer:

cd extensions/address_standardizer
make install
make installcheck

Output should look like:

dropping database "contrib_regression"
DROP DATABASE

=== creating database "contrib_regression" ==
CREATE DATABASE

ALTER DATABASE

running regression test queries ==

test test-init-extensions ... ok
test test-parseaddress ... ok
test test-standardize_address_1 ... ok
test test-standardize_address_2 ... ok

All 4 tests passed.

For tiger geocoder, make sure you have postgis and fuzzystrmatch extensions available in your PostgreSQL instance. The
address_standardizer tests will also kick in if you built postgis with address_standardizer support:

cd extensions/postgis_tiger_geocoder
make install
make installcheck

output should look like:

PostGIS 3.2.6 Manual 14 /873

dropping database "contrib_regression" ==
DROP DATABASE

creating database "contrib_regression"
CREATE DATABASE
ALTER DATABASE

installing fuzzystrmatch

CREATE EXTENSION

installing postgis

CREATE EXTENSION

installing postgis_tiger_geocoder
CREATE EXTENSION

installing address_standardizer
CREATE EXTENSION

running regression test queries ==
test test-normalize_address ... ok

test test-pagc_normalize_address ... ok

All 2 tests passed.

2.2.7 Installation

To install PostGIS, type
make install

This will copy the PostGIS installation files into their appropriate subdirectory specified by the --prefix configuration parameter.
In particular:

* The loader and dumper binaries are installed in [prefix] /bin.

e The SQL files, such as postgis.sql, are installed in [prefix]/share/contrib.

¢ The PostGIS libraries are installed in [prefix]/1lib.

If you previously ran the make comments command to generate the postgis_comments.sqgl, raster_comments.sql
file, install the sql file by running

make comments-install

N;ld Note

postgis_comments.sql, raster_comments.sql, topology_comments.sqgl was separated from the
typical build and installation targets since with it comes the extra dependency of xsltproc.

2.3 Installing and Using the address standardizer

The address_standardizer extension used to be a separate package that required separate download. From PostGIS 2.2
on, it is now bundled in. For more information about the address_standardize, what it does, and how to configure it for your
needs, refer to Section 14.1.

This standardizer can be used in conjunction with the PostGIS packaged tiger geocoder extension as a replacement for the
Normalize_Address discussed. To use as replacement refer to Section 2.4.3. You can also use it as a building block for your own
geocoder or use it to standardize your addresses for easier compare of addresses.

PostGIS 3.2.6 Manual 15/873

The address standardizer relies on PCRE which is usually already installed on many Nix systems, but you can download the
latest at: http://www.pcre.org. If during Section 2.2.3, PCRE is found, then the address standardizer extension will automatically
be built. If you have a custom pcre install you want to use instead, pass to configure ——with-pcredir=/path/to/pcre
where /path/to/pcre is the root folder for your pcre include and lib directories.

For Windows users, the PostGIS 2.1+ bundle is packaged with the address_standardizer already so no need to compile and can
move straight to CREATE EXTENSION step.

Once you have installed, you can connect to your database and run the SQL:

CREATE EXTENSION address_standardizer;

The following test requires no rules, gaz, or lex tables

SELECT num, street, city, state, zip
FROM parse_address ('l Devonshire Place PH301, Boston, MA 02109');

Output should be
num | street | city | state | zip
77777 Bt et S
1 | Devonshire Place PH301 | Boston | MA | 02109

2.3.1 Installing Regex::Assemble

Perl Regex:Assemble is no longer needed for compiling address_standardizer extension since the files it generates are part of the
source tree. However if you need to edit the usps—st-city-orig.txt orusps—st—-city-orig.txt usps-st-city-adc
tx, you need to rebuild parseaddress-stcities.h which does require Regex: Assemble.

cpan Regexp::Assemble

or if you are on Ubuntu / Debian you might need to do

sudo perl -MCPAN -e "install Regexp::Assemble"

2.4 Installing, Upgrading Tiger Geocoder and loading data

Extras like Tiger geocoder may not be packaged in your PostGIS distribution. If you are missing the tiger geocoder extension or
want a newer version than what your install comes with, then use the share/extension/postgis_tiger_geocoder.
files from the packages in Windows Unreleased Versions section for your version of PostgreSQL. Although these packages are for
windows, the postgis_tiger_geocoder extension files will work on any OS since the extension is an SQL/plpgsql only extension.

2.4.1 Tiger Geocoder Enabling your PostGIS database: Using Extension

If you are using PostgreSQL 9.1+ and PostGIS 2.1+, you can take advantage of the new extension model for installing tiger
geocoder. To do so:

1. First get binaries for PostGIS 2.1+ or compile and install as usual. This should install the necessary extension files as well
for tiger geocoder.

2. Connect to your database via psql or pgAdmin or some other tool and run the following SQL commands. Note that if you
are installing in a database that already has postgis, you don’t need to do the first step. If you have fuzzystrmatch
extension already installed, you don’t need to do the second step either.

http://www.pcre.org
http://postgis.net/windows_downloads/

PostGIS 3.2.6 Manual 16/873

CREATE EXTENSION postgis;

CREATE EXTENSION fuzzystrmatch;

CREATE EXTENSION postgis_tiger_geocoder;

—-—this one is optional if you want to use the rules based standardizer («
pagc_normalize_address)

CREATE EXTENSION address_standardizer;

If you already have postgis_tiger_geocoder extension installed, and just want to update to the latest run:
ALTER EXTENSION postgis UPDATE;

ALTER EXTENSION postgis_tiger_geocoder UPDATE;

If you made custom entries or changes to tiger.loader_platformand tiger.loader_variables you may
need to update these.

3. To confirm your install is working correctly, run this sql in your database:

SELECT na.address, na.streetname,na.streettypeabbrev, na.zip
FROM normalize_address ('l Devonshire Place, Boston, MA 02109') AS na;

Which should output
address | streetname | streettypeabbrev | zip
————————— e
1 | Devonshire | P1 | 02109

4. Create a new record in tiger.loader_platform table with the paths of your executables and server.

So for example to create a profile called debbie that follows sh convention. You would do:

INSERT INTO tiger.loader_platform(os, declare_sect, pgbin, wget, unzip_command, psqgl, <+
path_sep,
loader, environ_set_command, county_process_command)
SELECT 'debbie', declare_sect, pgbin, wget, unzip_command, psqgl, path_sep,
loader, environ_set_command, county_process_command
FROM tiger.loader_platform
WHERE os = 'sh';

And then edit the paths in the declare_sect column to those that fit Debbie’s pg, unzip,shp2pgsql, psql, etc path locations.

If you don’t edit this 1oader_plat form table, it will just contain common case locations of items and you’ll have to
edit the generated script after the script is generated.

5. As of PostGIS 2.4.1 the Zip code-5 digit tabulation area zcta5 load step was revised to load current zcta5 data and is part
of the Loader_Generate_Nation_Script when enabled. It is turned off by default because it takes quite a bit of time to load
(20 to 60 minutes), takes up quite a bit of disk space, and is not used that often.

To enable it, do the following:

UPDATE tiger.loader_lookuptables SET load = true WHERE table_name = 'zctab20';

If present the Geocode function can use it if a boundary filter is added to limit to just zips in that boundary. The Re-
verse_Geocode function uses it if the returned address is missing a zip, which often happens with highway reverse geocod-
ing.

6. Create a folder called gisdata on root of server or your local pc if you have a fast network connection to the server.
This folder is where the tiger files will be downloaded to and processed. If you are not happy with having the folder on
the root of the server, or simply want to change to a different folder for staging, then edit the field staging_fold in the
tiger.loader_variables table.

7. Create a folder called temp in the gisdata folder or wherever you designated the staging_fold to be. This will be
the folder where the loader extracts the downloaded tiger data.

PostGIS 3.2.6 Manual 17 /873

8.

10.

11.

12.

13.

14.

15.

Then run the Loader_Generate_Nation_Script SQL function make sure to use the name of your custom profile and copy
the script to a .sh or .bat file. So for example to build the nation load:

psgl —c "SELECT Loader_Generate_Nation_Script ('debbie')" -d geocoder -tA > /gisdata/ ¢
nation_script_load.sh

Run the generated nation load commandline scripts.

cd /gisdata
sh nation_script_load.sh

After you are done running the nation script, you should have three tables in your tiger_data schema and they should
be filled with data. Confirm you do by doing the following queries from psql or pgAdmin

SELECT count (x) FROM tiger_data.county_all;

By default the tables corresponding to bg, tract, tabblock are not loaded. These tables are not used by the geocoder
but are used by folks for population statistics. If you wish to load them as part of your state loads, run the following
statement to enable them.

UPDATE tiger.loader_lookuptables SET load = true WHERE load = false AND lookup_name IN ¢
("tract', 'bg', 'tabblock');

Alternatively you can load just these tables after loading state data using the Loader_Generate_Census_Script

For each state you want to load data for, generate a state script Loader_Generate_Script.

Warning
DO NOT Generate the state script until you have already loaded the nation data, because the state script utilizes
county list loaded by nation script.

psgl —-c "SELECT Loader_Generate_Script (ARRRAY['MA'], 'debbie')" -d geocoder -tA > / <
gisdata/ma_load.sh

Run the generated commandline scripts.

cd /gisdata
sh ma_load.sh

After you are done loading all data or at a stopping point, it’s a good idea to analyze all the tiger tables to update the stats
(include inherited stats)

PostGIS 3.2.6 Manual 18 /873

SELECT install_missing_indexes();

vacuum (analyze, verbose) tiger.addr;
vacuum (analyze, verbose) tiger.edges;
vacuum (analyze, verbose) tiger.faces;
vacuum (analyze, verbose) tiger.featnames;
vacuum (analyze, verbose) tiger.place;

(
(
(
(
(
vacuum (analyze, verbose) tiger.cousub;
(
(
(
(
(

vacuum (analyze, verbose) tiger.county;

vacuum (analyze, verbose) tiger.state;

vacuum (analyze, verbose) tiger.zip_lookup_base;
vacuum (analyze, verbose) tiger.zip_state;
vacuum (analyze, verbose) tiger.zip_state_loc;

2.4.1.1 Converting a Tiger Geocoder Regular Install to Extension Model

If you installed the tiger geocoder without using the extension model, you can convert to the extension model as follows:

1. Follow instructions in Section 2.4.5 for the non-extension model upgrade.

2. Connect to your database with psql or pgAdmin and run the following command:

CREATE EXTENSION postgis_tiger_geocoder FROM unpackaged;

2.4.2 Tiger Geocoder Enabling your PostGIS database: Not Using Extensions

First install PostGIS using the prior instructions.

If you don’t have an extras folder, download http://download.osgeo.org/postgis/source/postgis-3.2.6.tar.gz
tar xvfz postgis-3.2.6.tar.gz

cd postgis-3.2.6/extras/tiger_geocoder

Editthe tiger_loader_2015. sqgl (or latest loader file you find, unless you want to load different year) to the paths of your
executables server etc or alternatively you can update the 1loader_plat form table once installed. If you don’t edit this file or
the loader_platform table, it will just contain common case locations of items and you’ll have to edit the generated script
after the fact when you run the Loader_Generate_Nation_Script and Loader_Generate_Script SQL functions.

If you are installing Tiger geocoder for the first time edit either the create_geocode . bat script If you are on windows or the
create_geocode. sh if you are on Linux/Unix/Mac OSX with your PostgreSQL specific settings and run the corresponding
script from the commandline.

Verify that you now have a t iger schema in your database and that it is part of your database search_path. If it is not, add it
with a command something along the line of:

ALTER DATABASE geocoder SET search_path=public, tiger;

The normalizing address functionality works more or less without any data except for tricky addresses. Run this test and verify
things look like this:

SELECT pprint_addy (normalize_address ('202 East Fremont Street, Las Vegas, Nevada 89101'")) —
As pretty_address;
pretty_address

202 E Fremont St, Las Vegas, NV 89101

http://download.osgeo.org/postgis/source/postgis-3.2.6.tar.gz

PostGIS 3.2.6 Manual 19/873

2.4.3 Using Address Standardizer Extension with Tiger geocoder

One of the many complaints of folks is the address normalizer function Normalize_Address function that normalizes an address
for prepping before geocoding. The normalizer is far from perfect and trying to patch its imperfectness takes a vast amount of
resources. As such we have integrated with another project that has a much better address standardizer engine. To use this new
address_standardizer, you compile the extension as described in Section 2.3 and install as an extension in your database.

Once you install this extension in the same database as you have installed postgis_tiger_geocoder, then the Pagc_Normalize Ac
can be used instead of Normalize_Address. This extension is tiger agnostic, so can be used with other data sources such

as international addresses. The tiger geocoder extension does come packaged with its own custom versions of rules table (
tiger.pagc_rules), gaztable (tiger.pagc_gaz), and lex table (tiger.pagc_lex). These you can add and update

to improve your standardizing experience for your own needs.

2.4.4 Loading Tiger Data
The instructions for loading data are available in a more detailed form in the extras/tiger_geocoder/tiger_2011/
README. This just includes the general steps.

The load process downloads data from the census website for the respective nation files, states requested, extracts the files,
and then loads each state into its own separate set of state tables. Each state table inherits from the tables defined in tiger
schema so that its sufficient to just query those tables to access all the data and drop a set of state tables at any time using the
Drop_State_Tables_Generate_Script if you need to reload a state or just don’t need a state anymore.

In order to be able to load data you’ll need the following tools:

* A tool to unzip the zip files from census website.
For Unix like systems: unzip executable which is usually already installed on most Unix like platforms.

For Windows, 7-zip which is a free compress/uncompress tool you can download from http://www.7-zip.org/
* shp2pgsqgl commandline which is installed by default when you install PostGIS.

* wget which is a web grabber tool usually installed on most Unix/Linux systems.

If you are on windows, you can get pre-compiled binaries from http://gnuwin32.sourceforge.net/packages/wget.htm

If you are upgrading from tiger_2010, you’ll need to first generate and run Drop_Nation_Tables_Generate_Script. Before you
load any state data, you need to load the nation wide data which you do with Loader_Generate_Nation_Script. Which will
generate a loader script for you. Loader_Generate_Nation_Script is a one-time step that should be done for upgrading (from
2010) and for new installs.

To load state data refer to Loader_Generate_Script to generate a data load script for your platform for the states you desire. Note
that you can install these piecemeal. You don’t have to load all the states you want all at once. You can load them as you need
them.

After the states you desire have been loaded, make sure to run the:

SELECT install missing_indexes () ;

as described in Install_Missing_Indexes.

To test that things are working as they should, try to run a geocode on an address in your state using Geocode

2.4.5 Upgrading your Tiger Geocoder Install

If you have Tiger Geocoder packaged with 2.0+ already installed, you can upgrade the functions at any time even from an interim
tar ball if there are fixes you badly need. This will only work for Tiger geocoder not installed with extensions.

If you don’t have an extras folder, download http://download.osgeo.org/postgis/source/postgis-3.2.6.tar.gz

tar xvfz postgis-3.2.6.tar.gz

http://www.7-zip.org/
http://gnuwin32.sourceforge.net/packages/wget.htm
http://download.osgeo.org/postgis/source/postgis-3.2.6.tar.gz

PostGIS 3.2.6 Manual 20/873

cd postgis-3.2.6/extras/tiger_geocoder/tiger_2011

Locate the upgrade_geocoder .bat script If you are on windows or the upgrade_geocoder. sh if you are on Linux/U-
nix/Mac OSX. Edit the file to have your postgis database credentials.

If you are upgrading from 2010 or 2011, make sure to unremark out the loader script line so you get the latest script for loading
2012 data.

Then run th corresponding script from the commandline.
Next drop all nation tables and load up the new ones. Generate a drop script with this SQL statement as detailed in Drop_Nation_Tables_(

SELECT drop_nation_tables_generate_script();

Run the generated drop SQL statements.
Generate a nation load script with this SELECT statement as detailed in Loader_Generate_Nation_Script
For windows

SELECT loader_generate_nation_script ('windows"');

For unix/linux

SELECT loader_generate_nation_script ('sh');

Refer to Section 2.4.4 for instructions on how to run the generate script. This only needs to be done once.

N;‘t"! Note

You can have a mix of 2010/2011 state tables and can upgrade each state separately. Before you upgrade a state to
2011, you first need to drop the 2010 tables for that state using Drop_State_Tables_Generate_Script.

2.5 Common Problems during installation

There are several things to check when your installation or upgrade doesn’t go as you expected.

1. Check that you have installed PostgreSQL 9.6 or newer, and that you are compiling against the same version of the
PostgreSQL source as the version of PostgreSQL that is running. Mix-ups can occur when your (Linux) distribution has
already installed PostgreSQL, or you have otherwise installed PostgreSQL before and forgotten about it. PostGIS will only
work with PostgreSQL 9.6 or newer, and strange, unexpected error messages will result if you use an older version. To
check the version of PostgreSQL which is running, connect to the database using psql and run this query:

SELECT version();

If you are running an RPM based distribution, you can check for the existence of pre-installed packages using the rpm
command as follows: rpm -qa | grep postgresql

2. If your upgrade fails, make sure you are restoring into a database that already has PostGIS installed.
SELECT postgis_full_version();
Also check that configure has correctly detected the location and version of PostgreSQL, the Proj library and the GEOS library.

1. The output from configure is used to generate the postgis_config.h file. Check that the POSTGIS_PGSQL_VERSION,
POSTGIS_PROJ_VERSION and POSTGIS_GEOS_VERSION variables have been set correctly.

PostGIS 3.2.6 Manual 21/873

Chapter 3

PostGIS Administration

3.1 Performance Tuning

Tuning for PostGIS performance is much like tuning for any PostgreSQL workload. The only additional consideration is that
geometries and rasters are usually large, so memory-related optimizations generally have more of an impact on PostGIS than
other types of PostgreSQL queries.

For general details about optimizing PostgreSQL, refer to Tuning your PostgreSQL Server.

For PostgreSQL 9.4+ configuration can be set at the server level without touching postgresgl.conf orpostgresgl.auto.con?
by using the ALTER SYSTEM command.

ALTER SYSTEM SET work_mem = '256MB';

—-— this forces non-startup configs to take effect for new connections
SELECT pg_reload_conf ();

—-— show current setting value

—— use SHOW ALL to see all settings

SHOW work_mem;

In addition to the Postgres settings, PostGIS has some custom settings which are listed in Section 8.23.

3.1.1 Startup
These settings are configured in postgresqgl.conf:
constraint_exclusion

* Default: partition

* This is generally used for table partitioning. The default for this is set to "partition" which is ideal for PostgreSQL 8.4 and
above since it will force the planner to only analyze tables for constraint consideration if they are in an inherited hierarchy and
not pay the planner penalty otherwise.

shared_buffers

* Default: ~128MB in PostgreSQL 9.6

* Set to about 25% to 40% of available RAM. On windows you may not be able to set as high.

max_worker_processes This setting is only available for PostgreSQL 9.4+. For PostgreSQL 9.6+ this setting has additional
importance in that it controls the max number of processes you can have for parallel queries.

e Default: 8

* Sets the maximum number of background processes that the system can support. This parameter can only be set at server start.

https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://www.postgresql.org/docs/current/static/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
http://www.postgresql.org/docs/current/static/runtime-config-resource.html#GUC-SHARED-BUFFERS
https://www.postgresql.org/docs/current/static/runtime-config-resource.html#GUC-MAX-WORKER-PROCESSES

PostGIS 3.2.6 Manual 22 /873

3.1.2 Runtime

work_mem - sets the size of memory used for sort operations and complex queries

Default: 1-4MB
* Adjust up for large dbs, complex queries, lots of RAM
* Adjust down for many concurrent users or low RAM.

* If you have lots of RAM and few developers:

SET work_mem TO '256MB';

maintenance_work_mem - the memory size used for VACUUM, CREATE INDEX, etc.

* Default: 16-64MB
* Generally too low - ties up I/O, locks objects while swapping memory

* Recommend 32MB to 1GB on production servers w/lots of RAM, but depends on the # of concurrent users. If you have lots
of RAM and few developers:

SET maintenance_work_mem TO '1GB';

max_parallel_workers_per_gather

This setting is only available for PostgreSQL 9.6+ and will only affect PostGIS 2.3+, since only PostGIS 2.3+ supports parallel
queries. If set to higher than 0, then some queries such as those involving relation functions like ST_Intersects can use
multiple processes and can run more than twice as fast when doing so. If you have a lot of processors to spare, you should change
the value of this to as many processors as you have. Also make sure to bump up max_worker_processes to at least as high
as this number.

e Default: 0

* Sets the maximum number of workers that can be started by a single Gat her node. Parallel workers are taken from the pool
of processes established by max_worker_processes. Note that the requested number of workers may not actually be
available at run time. If this occurs, the plan will run with fewer workers than expected, which may be inefficient. Setting this
value to 0, which is the default, disables parallel query execution.

3.2 Configuring raster support

If you enabled raster support you may want to read below how to properly configure it.

As of PostGIS 2.1.3, out-of-db rasters and all raster drivers are disabled by default. In order to re-enable these, you need to set the
following environment variables POSTGIS_GDAL_ENABLED_DRIVERS and POSTGIS_ENABLE_OUTDB_RASTERS in the
server environment. For PostGIS 2.2, you can use the more cross-platform approach of setting the corresponding Section 8.23.

If you want to enable offline raster:

POSTGIS_ENABLE_OUTDB_RASTERS=1

Any other setting or no setting at all will disable out of db rasters.
In order to enable all GDAL drivers available in your GDAL install, set this environment variable as follows

POSTGIS_GDAL_ENABLED_DRIVERS=ENABLE_ALL

http://www.postgresql.org/docs/current/static/runtime-config-resource.html#GUC-WORK-MEM
http://www.postgresql.org/docs/current/static/runtime-config-resource.html#GUC-MAINTENANCE-WORK-MEM
https://www.postgresql.org/docs/current/static/runtime-config-resource.html#GUC-MAX-PARALLEL-WORKERS-PER-GATHER

PostGIS 3.2.6 Manual 23 /873

If you want to only enable specific drivers, set your environment variable as follows:

POSTGIS_GDAL_ENABLED_DRIVERS="GTiff PNG JPEG GIF XYZ"

N;’l"! Note

If you are on windows, do not quote the driver list

Setting environment variables varies depending on OS. For PostgreSQL installed on Ubuntu or Debian via apt-postgresql, the
preferred way is to edit /etc/postgresql/10/main/environment where 10 refers to version of PostgreSQL and main
refers to the cluster.

On windows, if you are running as a service, you can set via System variables which for Windows 7 you can get to by right-
clicking on Computer->Properties Advanced System Settings or in explorer navigating to Control Panel\All Control
Panel Items\System. Then clicking Advanced System Settings ->Advanced->Environment Variables and adding new sys-
tem variables.

After you set the environment variables, you’ll need to restart your PostgreSQL service for the changes to take effect.

3.3 Creating spatial databases

3.3.1 Spatially enable database using EXTENSION

If you are using PostgreSQL 9.1+ and have compiled and installed the extensions/postgis modules, you can turn a database into
a spatial one using the EXTENSION mechanism.

Core postgis extension includes geometry, geography, spatial_ref sys and all the functions and comments. Raster and topology
are packaged as a separate extension.

Run the following SQL snippet in the database you want to enable spatially:

CREATE EXTENSION IF NOT EXISTS plpgsqgl;

CREATE EXTENSION postgis;

CREATE EXTENSION postgis_raster; —-—- OPTIONAL
CREATE EXTENSION postgis_topology; —-— OPTIONAL

3.3.2 Spatially enable database without using EXTENSION (discouraged)

ste} Note
N This is generally only needed if you cannot or don’t want to get PostGIS installed in the PostgreSQL extension directory
(for example during testing, development or in a restricted environment).

Adding PostGIS objects and function definitions into your database is done by loading the various sql files located in [prefix]
/share/contrib as specified during the build phase.

The core PostGIS objects (geometry and geography types, and their support functions) are in the postgis. sqgl script. Raster
objects are in the rtpostgis. sqgl script. Topology objects are in the topology . sgl script.

For a complete set of EPSG coordinate system definition identifiers, you can also load the spatial_ref_sys.sqgl definitions
file and populate the spatial_ref_sys table. This will permit you to perform ST_Transform() operations on geometries.

If you wish to add comments to the PostGIS functions, you can find them in the postgis_comments. sql script. Comments
can be viewed by simply typing \dd [function_name] from a psql terminal window.

Run the following Shell commands in your terminal:

PostGIS 3.2.6 Manual 24 /873

DB=[yourdatabase]
SCRIPTSDIR="pg_config —--sharedir” /contrib/postgis-3.1/

Core objects

psgl -d ${DB} -f ${SCRIPTSDIR}/postgis.sqgl

psgl -d ${DB} -f ${SCRIPTSDIR}/spatial_ref_sys.sql

psgl -d ${DB} -f ${SCRIPTSDIR}/postgis_comments.sql # OPTIONAL

Raster support (OPTIONAL)
psgl -d ${DB} -f ${SCRIPTSDIR}/rtpostgis.sqgl
psgl -d ${DB} —-f ${SCRIPTSDIR}/raster_comments.sqgl # OPTIONAL

Topology support (OPTIONAL)
psgl -d ${DB} —-f ${SCRIPTSDIR}/topology.sql
psgl -d ${DB} —-f ${SCRIPTSDIR}/topology_comments.sqgl # OPTIONAL

3.3.3 Create a spatially-enabled database from a template

Some packaged distributions of PostGIS (in particular the Win32 installers for PostGIS >= 1.1.5) load the PostGIS functions
into a template database called template_postgis. If the template_postgis database exists in your PostgreSQL
installation then it is possible for users and/or applications to create spatially-enabled databases using a single command. Note
that in both cases, the database user must have been granted the privilege to create new databases.

From the shell:

createdb -T template_postgis my_spatial_db

From SQL:

postgres=# CREATE DATABASE my_spatial_db TEMPLATE=template_postgis

3.4 Upgrading spatial databases

Upgrading existing spatial databases can be tricky as it requires replacement or introduction of new PostGIS object definitions.
Unfortunately not all definitions can be easily replaced in a live database, so sometimes your best bet is a dump/reload process.

PostGIS provides a SOFT UPGRADE procedure for minor or bugfix releases, and a HARD UPGRADE procedure for major
releases.

Before attempting to upgrade PostGIS, it is always worth to backup your data. If you use the -Fc flag to pg_dump you will
always be able to restore the dump with a HARD UPGRADE.

3.4.1 Soft upgrade

If you installed your database using extensions, you’ll need to upgrade using the extension model as well. If you installed using
the old sql script way, then you should upgrade using the sql script way. Please refer to the appropriate.

3.4.1.1 Soft Upgrade Pre 9.1+ or without extensions

This section applies only to those who installed PostGIS not using extensions. If you have extensions and try to upgrade with
this approach you’ll get messages like:

can't drop ... because postgis extension depends on it

PostGIS 3.2.6 Manual 25/873

NOTE: if you are moving from PostGIS 1.* to PostGIS 2.* or from PostGIS 2.* prior to r7409, you cannot use this procedure
but would rather need to do a HARD UPGRADE.

After compiling and installing (make install) you should find a set of x_upgrade. sql files in the installation folders. You can
list them all with:

ls “pg_config --sharedir™/contrib/postgis—-3.2.6/x_upgrade.sql

Load them all in turn, starting from postgis_upgrade.sql.

psql —-f postgis_upgrade.sgl -d your_spatial_database

The same procedure applies to raster, topology and sfcgal extensions, with upgrade files named rtpostgis_upgrade.sql,
topology_upgrade.sqgl and sfcgal_upgrade. sql respectively. If you need them:

psgl —-f rtpostgis_upgrade.sqgl —-d your_spatial_database
psgl —-f topology_upgrade.sgl -d your_spatial_database

psgl -f sfcgal_upgrade.sgl -d your_spatial_database

=

Ncrld Note

If you can’t find the postgis_upgrade. sqgl specific for upgrading your version you are using a version too early
for a soft upgrade and need to do a HARD UPGRADE.

The PostGIS_Full_Version function should inform you about the need to run this kind of upgrade using a "procs need upgrade"
message.

3.4.1.2 Soft Upgrade 9.1+ using extensions
If you originally installed PostGIS with extensions, then you need to upgrade using extensions as well. Doing a minor upgrade
with extensions, is fairly painless.

ALTER EXTENSION postgis UPDATE TO "3.2.6";
ALTER EXTENSION postgis_topology UPDATE TO "3.2.6";

If you get an error notice something like:

No migration path defined for ... to 3.2.6

Then you’ll need to backup your database, create a fresh one as described in Section 3.3.1 and then restore your backup on top
of this new database.

If you get a notice message like:

Version "3.2.6" of extension "postgis" is already installed

Then everything is already up to date and you can safely ignore it. UNLESS you’re attempting to upgrade from an development
version to the next (which doesn’t get a new version number); in that case you can append "next" to the version string, and next
time you’ll need to drop the "next" suffix again:

ALTER EXTENSION postgis UPDATE TO "3.2.6next";
ALTER EXTENSION postgis_topology UPDATE TO "3.2.6next";

PostGIS 3.2.6 Manual 26 /873

s Note
Nf"""! If you installed PostGIS originally without a version specified, you can often skip the reinstallation of postgis extension
before restoring since the backup just has CREATE EXTENSION postgis and thus picks up the newest latest
version during restore.

Note
If you are upgrading PostGIS extension from a version prior to 3.0.0 you'll end up with an unpackaged PostGIS Raster
support. You can repackage the raster support using:

Note

CREATE EXTENSION postgis_raster FROM unpackaged;

And then, if you don’t need it, drop it with:

DROP EXTENSION postgis_raster;

3.4.2 Hard upgrade

By HARD UPGRADE we mean full dump/reload of postgis-enabled databases. You need a HARD UPGRADE when PostGIS
objects’ internal storage changes or when SOFT UPGRADE is not possible. The Release Notes appendix reports for each version
whether you need a dump/reload (HARD UPGRADE) to upgrade.

The dump/reload process is assisted by the postgis_restore.pl script which takes care of skipping from the dump all definitions
which belong to PostGIS (including old ones), allowing you to restore your schemas and data into a database with PostGIS
installed without getting duplicate symbol errors or bringing forward deprecated objects.

Supplementary instructions for windows users are available at Windows Hard upgrade.

The Procedure is as follows:

1. Create a "custom-format" dump of the database you want to upgrade (let’s call it o1ddb) include binary blobs (-b) and
verbose (-v) output. The user can be the owner of the db, need not be postgres super account.

pg_dump -h localhost -p 5432 -U postgres -Fc -b -v —-f "/somepath/olddb.backup" olddb

2. Do a fresh install of PostGIS in a new database -- we’ll refer to this database as newdb. Please refer to Section 3.3.2 and
Section 3.3.1 for instructions on how to do this.

The spatial_ref_sys entries found in your dump will be restored, but they will not override existing ones in spatial_ref_sys.
This is to ensure that fixes in the official set will be properly propagated to restored databases. If for any reason you really
want your own overrides of standard entries just don’t load the spatial_ref_sys.sql file when creating the new db.

If your database is really old or you know you’ve been using long deprecated functions in your views and functions, you
might need to load legacy. sql for all your functions and views etc. to properly come back. Only do this if _really_
needed. Consider upgrading your views and functions before dumping instead, if possible. The deprecated functions can
be later removed by loading uninstall_legacy.sql.

3. Restore your backup into your fresh newdb database using postgis_restore.pl. Unexpected errors, if any, will be printed
to the standard error stream by psql. Keep a log of those.

perl utils/postgis_restore.pl "/somepath/olddb.backup" | psgl -h localhost -p 5432 -U <>
postgres newdb 2> errors.txt

Errors may arise in the following cases:

1. Some of your views or functions make use of deprecated PostGIS objects. In order to fix this you may try loading
legacy.sqgl script prior to restore or you’ll have to restore to a version of PostGIS which still contains those objects
and try a migration again after porting your code. If the 1legacy . sqgl way works for you, don’t forget to fix your code to
stop using deprecated functions and drop them loading uninstall_legacy.sql.

http://trac.osgeo.org/postgis/wiki/UsersWikiWinUpgrade

PostGIS 3.2.6 Manual 27 /873

2. Some custom records of spatial_ref_sys in dump file have an invalid SRID value. Valid SRID values are bigger than 0 and
smaller than 999000. Values in the 999000.999999 range are reserved for internal use while values > 999999 can’t be used
at all. All your custom records with invalid SRIDs will be retained, with those > 999999 moved into the reserved range,
but the spatial_ref_sys table would lose a check constraint guarding for that invariant to hold and possibly also its primary
key (when multiple invalid SRIDS get converted to the same reserved SRID value).

In order to fix this you should copy your custom SRS to a SRID with a valid value (maybe in the 910000..910999 range),
convert all your tables to the new srid (see UpdateGeometrySRID), delete the invalid entry from spatial_ref _sys and re-
construct the check(s) with:

ALTER TABLE spatial_ref_ sys ADD CONSTRAINT spatial_ref sys_srid_check check (srid > 0 <«
AND srid < 999000);

ALTER TABLE spatial_ref_ sys ADD PRIMARY KEY (srid));
If you are upgrading an old database containing french IGN cartography, you will have probably SRIDs out of range and
you will see, when importing your database, issues like this :

WARNING: SRID 310642222 converted to 999175 (in reserved zone)
In this case, you can try following steps : first throw out completely the IGN from the sql which is resulting from post-
gis_restore.pl. So, after having run :

perl utils/postgis_restore.pl "/somepath/olddb.backup" > olddb.sqgl

run this command :

grep -v IGNF olddb.sgl > olddb-without-IGN.sqgl

Create then your newdb, activate the required Postgis extensions, and insert properly the french system IGN with : this
script After these operations, import your data :

psgl -h localhost -p 5432 -U postgres -d newdb -f olddb-without-IGN.sgl 2> errors.txt

https://en.wikipedia.org/wiki/Institut_g%C3%A9ographique_national
https://raw.githubusercontent.com/Remi-C/IGN_spatial_ref_for_PostGIS/master/Put_IGN_SRS_into_Postgis.sql
https://raw.githubusercontent.com/Remi-C/IGN_spatial_ref_for_PostGIS/master/Put_IGN_SRS_into_Postgis.sql

PostGIS 3.2.6 Manual 28 /873

Chapter 4

Data Management

4.1 Spatial Data Model

4.1.1 OGC Geometry

The Open Geospatial Consortium (OGC) developed the Simple Features Access standard (SFA) to provide a model for geospatial
data. It defines the fundamental spatial type of Geometry, along with operations which manipulate and transform geometry
values to perform spatial analysis tasks. PostGIS implements the OGC Geometry model as the PostgreSQL data types geometry
and geography.

Geometry is an abstract type. Geometry values belong to one of its concrete subtypes which represent various kinds and
dimensions of geometric shapes. These include the atomic types Point, LineString, LinearRing and Polygon, and the collection
types MultiPoint, MultiLineString, MultiPolygon and GeometryCollection. The Simple Features Access - Part 1: Common
architecture v1.2.1 adds subtypes for the structures PolyhedralSurface, Triangle and TIN.

Geometry models shapes in the 2-dimensional Cartesian plane. The PolyhedralSurface, Triangle, and TIN types can also repre-
sent shapes in 3-dimensional space. The size and location of shapes are specified by their coordinates. Each coordinate has a
X and Y ordinate value determining its location in the plane. Shapes are constructed from points or line segments, with points
specified by a single coordinate, and line segments by two coordinates.

Coordinates may contain optional Z and M ordinate values. The Z ordinate is often used to represent elevation. The M ordinate
contains a measure value, which may represent time or distance. If Z or M values are present in a geometry value, they must be
defined for each point in the geometry. If a geometry has Z or M ordinates the coordinate dimension is 3D; if it has both Z and
M the coordinate dimension is 4D.

Geometry values are associated with a spatial reference system indicating the coordinate system in which it is embedded. The
spatial reference system is identified by the geometry SRID number. The units of the X and Y axes are determined by the
spatial reference system. In planar reference systems the X and Y coordinates typically represent easting and northing, while in
geodetic systems they represent longitude and latitude. SRID O represents an infinite Cartesian plane with no units assigned to
its axes. See Section 4.5.

The geometry dimension is a property of geometry types. Point types have dimension 0O, linear types have dimension 1, and
polygonal types have dimension 2. Collections have the dimension of the maximum element dimension.

A geometry value may be empty. Empty values contain no vertices (for atomic geometry types) or no elements (for collections).

An important property of geometry values is their spatial extent or bounding box, which the OGC model calls envelope. This is
the 2 or 3-dimensional box which encloses the coordinates of a geometry. It is an efficient way to represent a geometry’s extent
in coordinate space and to check whether two geometries interact.

The geometry model allows evaluating topological spatial relationships as described in Section 5.1.1. To support this the concepts
of interior, boundary and exterior are defined for each geometry type. Geometries are topologically closed, so they always
contain their boundary. The boundary is a geometry of dimension one less than that of the geometry itself.

https://www.ogc.org/standards/sfa
https://portal.ogc.org/files/?artifact_id=25355
https://portal.ogc.org/files/?artifact_id=25355

PostGIS 3.2.6 Manual 29/873

The OGC geometry model defines validity rules for each geometry type. These rules ensure that geometry values represents
realistic situations (e.g. it is possible to specify a polygon with a hole lying outside the shell, but this makes no sense geometrically
and is thus invalid). PostGIS also allows storing and manipulating invalid geometry values. This allows detecting and fixing them
if needed. See Section 4.6

4.1.1.1 Point

A Point is a 0-dimensional geometry that represents a single location in coordinate space.

POINT (1 2)
POINT Z (1 2 3)
POINT ZM (1 2 3 4)

4.1.1.2 LineString

A LineString is a 1-dimensional line formed by a contiguous sequence of line segments. Each line segment is defined by two
points, with the end point of one segment forming the start point of the next segment. An OGC-valid LineString has either zero
or two or more points, but PostGIS also allows single-point LineStrings. LineStrings may cross themselves (self-intersect). A
LineString is closed if the start and end points are the same. A LineString is simple if it does not self-intersect.

LINESTRING (1 2, 3 4, 5 6)

4.1.1.3 LinearRing

A LinearRing is a LineString which is both closed and simple. The first and last points must be equal, and the line must not
self-intersect.

LINEARRING (0 0 0, 4 0 0, 4 40, 040, 00 0)

4.1.1.4 Polygon

A Polygon is a 2-dimensional planar region, delimited by an exterior boundary (the shell) and zero or more interior boundaries
(holes). Each boundary is a LinearRing.

POLYGON ((O O 0,4 0 0,4 4 0,0 4 0,00 0),(1160,210,220,1220,110))

4.1.1.5 MultiPoint

A MultiPoint is a collection of Points.

MULTIPOINT ((0 0), (1 2))

4.1.1.6 MultiLineString

A MultiLineString is a collection of LineStrings. A MultiLineString is closed if each of its elements is closed.

MULTILINESTRING ((0 0,1 1,1 2), (2 3,3 2,5 4))

PostGIS 3.2.6 Manual 30/873

4.1.1.7 MultiPolygon
A MultiPolygon is a collection of non-overlapping, non-adjacent Polygons. Polygons in the collection may touch only at a finite
number of points.

MULTIPOLYGON (((1 5, 55, 51, 1 1, 1 5)), ((6 5, 91, 61, 6 5)))

4.1.1.8 GeometryCollection

A GeometryCollection is a heterogeneous (mixed) collection of geometries.

GEOMETRYCOLLECTION (POINT (2 3), LINESTRING(2 3, 3 4))

4.1.1.9 PolyhedralSurface

A PolyhedralSurface is a contiguous collection of patches or facets which share some edges. Each patch is a planar Polygon. If
the Polygon coordinates have Z ordinates then the surface is 3-dimensional.

POLYHEDRALSURFACE
((0 00, 001,
(0 0 0,

~
~
~

14

~
~
~

’

~ 0~

14

~

14

~
~

B R PR PO N
B RO O R P~
oOr P OoORr o
e ==
o or oo
<~
oOor o oo
oOr PP o oo
oo o oo

~

o K o
= o o o

< <~

o RFk O
O P O

B R RO o
I N = e BN
~ ~ ~

’

4.1.1.10 Triangle

A Triangle is a polygon defined by three distinct non-collinear vertices. Because a Triangle is a polygon it is specified by four
coordinates, with the first and fourth being equal.

TRIANGLE ((O 0, 0 9, 9 0, 0 0))

4.1.1.11 TIN

A TIN is a collection of non-overlapping Triangles representing a Triangulated Irregular Network.

TIN Z ((¢O OO, 001, 010, O0OO)), ((OOOCG 010, 2160, 0O00O0)))

4.1.2 SQL/MM Part 3 - Curves

The ISO/IEC 13249-3 SOL Multimedia - Spatial standard (SQL/MM) extends the OGC SFA to define Geometry subtypes con-
taining curves with circular arcs. The SQL/MM types support 3DM, 3DZ and 4D coordinates.

N;l-g/! Note

All floating point comparisons within the SQL-MM implementation are performed to a specified tolerance, currently 1E-
8.

https://en.wikipedia.org/wiki/Triangulated_irregular_network
https://www.iso.org/obp/ui/#iso:std:iso-iec:13249:-3:ed-5:v1:en

PostGIS 3.2.6 Manual 31/873

4.1.2.1 CircularString

CircularString is the basic curve type, similar to a LineString in the linear world. A single arc segment is specified by three
points: the start and end points (first and third) and some other point on the arc. To specify a closed circle the start and end points
are the same and the middle point is the opposite point on the circle diameter (which is the center of the arc). In a sequence of
arcs the end point of the previous arc is the start point of the next arc, just like the segments of a LineString. This means that a
CircularString must have an odd number of points greater than 1.

CIRCULARSTRING (0O 0, 1 1, 1 0)

CIRCULARSTRING(0 0, 4 0, 4 4, 0 4, 0 0)

4.1.2.2 CompoundCurve

A CompoundCurve is a single continuous curve that may contain both circular arc segments and linear segments. That means
that in addition to having well-formed components, the end point of every component (except the last) must be coincident with
the start point of the following component.

COMPOUNDCURVE (CIRCULARSTRING(O O, 1 1, 1 0), (1 0, 0 1))

4.1.2.3 CurvePolygon

A CurvePolygon is like a polygon, with an outer ring and zero or more inner rings. The difference is that a ring can be a
CircularString or CompoundCurve as well as a LineString.

As of PostGIS 1.4 PostGIS supports compound curves in a curve polygon.

CURVEPOLYGON (
CIRCULARSTRING(0 O, 4 0, 4 4, 0 4, 0 0),
(r1, 33 31, 11))

Example: A CurvePolygon with the shell defined by a CompoundCurve containing a CircularString and a LineString, and a hole
defined by a CircularString

CURVEPOLYGON (

COMPOUNDCURVE (CIRCULARSTRING(O 0,2 0, 2 1, 2 3, 4 3),
(4 3, 45, 1 4, 00)

CIRCULARSTRING (1.7 1, 1.4 0.4, 1.6

I4

)
0.4, 1.6 0.5, 1.7 1))

4.1.2.4 MultiCurve

A MultiCurve is a collection of curves which can include LineStrings, CircularStrings or CompoundCurves.

MULTICURVE((0 O, 5 5), CIRCULARSTRING(4 0, 4 4, 8 4))

4.1.2.5 MultiSurface

A MultiSurface is a collection of surfaces, which can be (linear) Polygons or CurvePolygons.

MULTISURFACE (
CURVEPOLYGON (
CIRCULARSTRING(O 0, 4 0, 4 4, 0 4, 0 0),
(11, 33, 31, 1 1)),
((10 10, 14 12, 11 10, 10 10), (11 11, 11.5 11, 11 11.5, 11 11)))

PostGIS 3.2.6 Manual 32/873

4.1.3 WKT and WKB

The OGC SFA specification defines two formats for representing geometry values for external use: Well-Known Text (WKT) and
Well-Known Binary (WKB). Both WKT and WKB include information about the type of the object and the coordinates which
define it.

Well-Known Text (WKT) provides a standard textual representation of spatial data. Examples of WKT representations of spatial
objects are:

« POINT(0 0)

« POINT Z (0 0 0)

« POINT ZM (00 0 0)

« POINT EMPTY

« LINESTRING(0 0,1 1,1 2)

« LINESTRING EMPTY

« POLYGON((0 0,4 0,44,04,00),(11,21,22,12,1 1))

« MULTIPOINT((0 0),(1 2))

« MULTIPOINT Z ((0 0 0),(1 2 3))

« MULTIPOINT EMPTY

« MULTILINESTRING((0 0,1 1,1 2),(2 3,3 2,5 4))

« MULTIPOLYGON(((0 0,4 0,4 4,0 4,0 0),(1 1,2 1,22,1 2,1 1)), ((-1 -1,-1 -2,-2 -2,-2 -1 ,-1 -1)))
« GEOMETRYCOLLECTION(POINT(2 3),LINESTRING(2 3,3 4))
« GEOMETRYCOLLECTION EMPTY

Input and output of WKT is provided by the functions ST_AsText and ST_GeomFromText:

text WKT = ST_AsText (geometry);
geometry = ST_GeomFromText (text WKT, SRID);

For example, a statement to create and insert a spatial object from WKT and a SRID is:

INSERT INTO geotable (geom, name)
VALUES (ST_GeomFromText ('POINT (-126.4 45.32)"', 312), 'A Place');

Well-Known Binary (WKB) provides a portable, full-precision representation of spatial data as binary data (arrays of bytes).
Examples of the WKB representations of spatial objects are:
* WKT: POINT(1 1)

WKB: 0101000000000000000000F03F000000000000F03

* WKT: LINESTRING (22, 99)
WKB: 0102000000020000000000000000000040000000000000004000000000000022400000000000002240

Input and output of WKB is provided by the functions ST_AsBinary and ST_GeomFromWKB:

bytea WKB = ST_AsBinary (geometry) ;
geometry = ST_GeomFromWKB (bytea WKB, SRID) ;

For example, a statement to create and insert a spatial object from WKB is:

INSERT INTO geotable (geom, name)
VALUES (ST_GeomFromWKB ('\x0101000000000000000000£03f000000000000£f03f"', 312), 'A Place');

PostGIS 3.2.6 Manual 33/873

4.2 Geometry Data Type

PostGIS implements the OGC Simple Features model by defining a PostgreSQL data type called geomet ry. It represents all of
the geometry subtypes by using an internal type code (see GeometryType and ST_GeometryType). This allows modelling spatial
features as rows of tables defined with a column of type geometry.

The geomet ry data type is opaque, which means that all access is done via invoking functions on geometry values. Functions
allow creating geometry objects, accessing or updating all internal fields, and compute new geometry values. PostGIS supports
all the functions specified in the OGC Simple feature access - Part 2: SOL option (SFS) specification, as well many others. See
Chapter 8 for the full list of functions.

Note
PostGIS follows the SFA standard by prefixing spatial functions with "ST_". This was intended to stand for "Spatial and
Temporal”, but the temporal part of the standard was never developed. Instead it can be interpreted as "Spatial Type".

The SFA standard specifies that spatial objects include a Spatial Reference System identifier (SRID). The SRID is required when
creating spatial objects for insertion into the database (it may be defaulted to 0). See ST_SRID and Section 4.5

To make querying geometry efficient PostGIS defines various kinds of spatial indexes, and spatial operators to use them. See
Section 4.9 and Section 5.2 for details.

4.2.1 PostGIS EWKB and EWKT

OGC SFA specifications initially supported only 2D geometries, and the geometry SRID is not included in the input/output
representations. The OGC SFA specification 1.2.1 (which aligns with the ISO 19125 standard) adds support for 3D (ZYZ) and
measured (XYM and XYZM) coordinates, but still does not include the SRID value.

Because of these limitations PostGIS defined extended EWKB and EWKT formats. They provide 3D (XYZ and XYM) and 4D
(XYZM) coordinate support and include SRID information. Including all geometry information allows PostGIS to use EWKB
as the format of record (e.g. in DUMP files).

EWKB and EWKT are used for the "canonical forms" of PostGIS data objects. For input, the canonical form for binary data is
EWKB, and for text data either EWKB or EWKT is accepted. This allows geometry values to be created by casting a text value
in either HEXEWKB or EWKT to a geometry value using : : geometry. For output, the canonical form for binary is EWKB,
and for text it is HEXEWKB (hex-encoded EWKB).

For example this statement creates a geometry by casting from an EWKT text value, and outputs it using the canonical form of
HEXEWKB:

SELECT 'SRID=4;POINT (0 0)'::geometry;
geometry

01010000200400000000000000000000000000000000000000
PostGIS EWKT output has a few differences to OGC WKT:

» For 3DZ geometries the Z qualifier is omitted:
OGC: POINT Z (12 3)
EWKT: POINT (1 2 3)

» For 3DM geometries the M qualifier is included:
OGC: POINTM (12 3)
EWKT: POINTM (1 2 3)

https://portal.ogc.org/files/?artifact_id=25354

PostGIS 3.2.6 Manual 34 /873

* For 4D geometries the ZM qualifier is omitted:
OGC: POINTZM (123 4)
EWKT: POINT (123 4)

EWKT avoids over-specifying dimensionality and the inconsistencies that can occur with the OGC/ISO format, such as:

« POINT ZM (1 1)
« POINTZM (11 1)
« POINT(1111)

g% Caution

! 1 PostGIS extended formats are currently a superset of the OGC ones, so that every valid OGC WKB/WKT is also valid
EWKB/EWKT. However, this might vary in the future, if the OGC extends a format in a way that conflicts with the PosGIS
definition. Thus you SHOULD NOT rely on this compatibility!

Examples of the EWKT text representation of spatial objects are:

« POINT(0 0 0) -- XYZ

« SRID=32632;POINT(0 0) -- XY with SRID

« POINTM(0 0 0) -- XYM

« POINT(0 0 0 0) -- XYZM

« SRID=4326;MULTIPOINTM(0 0 0,1 2 1) -- XYM with SRID

« MULTILINESTRING((000,1 10,12 1),23 1,32 1,54 1))

« POLYGON((0 0 0,400,440,040,000),(110,210,220,120,110))

« MULTIPOLYGON(((0 00,4 00,44 0,04 0,0 00),(110,210,220,120,1 1 0)),((-1 -1 0,-1-20,-2-20,-2 -1 0,-1 -1 0)))
« GEOMETRYCOLLECTIONM(POINTM(2 3 9), LINESTRINGM(2 3 4,3 4 5))

« MULTICURVE((0 0, 5 5), CIRCULARSTRING(4 0, 4 4, 8 4))

« POLYHEDRALSURFACE(((000,001,011,010,000)),((000,010,110,100,000)),((000,100,101,001,0
00),((110,111,101,100,110)),((010,011,111,110,010)),(©01,101,111,011,001)))

« TRIANGLE ((00,09, 9 0, 0 0))
« TIN(((000,001,010,000)),((000,010,110,000)))

Input and output using these formats is available using the following functions:

bytea EWKB = ST_AsSEWKB (geometry);
text EWKT = ST_ASEWKT (geometry) ;
geometry = ST_GeomFromEWKB (bytea EWKB) ;
geometry = ST_GeomFromEWKT (text EWKT) ;

For example, a statement to create and insert a PostGIS spatial object using EWKT is:

INSERT INTO geotable (geom, name)
VALUES (ST_GeomFromEWKT ('SRID=312;POINTM(-126.4 45.32 15)'"), 'A Place')

PostGIS 3.2.6 Manual 35/873

4.3 Geography Data Type

The PostGIS geography data type provides native support for spatial features represented on "geographic" coordinates (some-
times called "geodetic" coordinates, or "lat/lon", or "lon/lat"). Geographic coordinates are spherical coordinates expressed in
angular units (degrees).

The basis for the PostGIS geometry data type is a plane. The shortest path between two points on the plane is a straight line.
That means functions on geometries (areas, distances, lengths, intersections, etc) are calculated using straight line vectors and
cartesian mathematics. This makes them simpler to implement and faster to execute, but also makes them inaccurate for data on
the spheroidal surface of the earth.

The PostGIS geography data type is based on a spherical model. The shortest path between two points on the sphere is a great
circle arc. Functions on geographies (areas, distances, lengths, intersections, etc) are calculated using arcs on the sphere. By
taking the spheroidal shape of the world into account, the functions provide more accurate results.

Because the underlying mathematics is more complicated, there are fewer functions defined for the geography type than for the
geometry type. Over time, as new algorithms are added the capabilities of the geography type will expand. As a workaround one
can convert back and forth between geometry and geography types.

Like the geometry data type, geography data is associated with a spatial reference system via a spatial reference system identifier
(SRID). Any geodetic (long/lat based) spatial reference system defined in the spatial_ref_sys table can be used. (Prior to
PostGIS 2.2, the geography type supported only WGS 84 geodetic (SRID:4326)). You can add your own custom geodetic spatial
reference system as described in Section 4.5.2.

For all spatial reference systems the units returned by measurement functions (e.g. ST_Distance, ST_Length, ST_Perimeter,
ST_Area) and for the distance argument of ST_DWithin are in meters.

4.3.1 Creating Geography Tables

You can create a table to store geography data using the CREATE TABLE SQL statement with a column of type geography.
The following example creates a table with a geography column storing 2D LineStrings in the WGS84 geodetic coordinate
system (SRID 4326):

CREATE TABLE global_points (
id SERIAL PRIMARY KEY,
name VARCHAR (64),
location geography (POINT, 4326)
)i

The geography type supports two optional type modifiers:

* the spatial type modifier restricts the kind of shapes and dimensions allowed in the column. Values allowed for the spatial type
are: POINT, LINESTRING, POLY GON, MULTIPOINT, MULTILINESTRING, MULTIPOLY GON, GEOMETRYCOLLEC-
TION. The geography type does not support curves, TINS, or POLYHEDRALSURFACEs. The modifier supports coordinate
dimensionality restrictions by adding suffixes: Z, M and ZM. For example, a modifier of 'LINESTRINGM’ only allows
linestrings with three dimensions, and treats the third dimension as a measure. Similarly, 'POINTZM’ requires four dimen-
sional (XYZM) data.

 the SRID modifier restricts the spatial reference system SRID to a particular number. If omitted, the SRID defaults to 4326
(WGS84 geodetic), and all calculations are performed using WGS84.

Examples of creating tables with geography columns:

¢ Create a table with 2D POINT geography with the default SRID 4326 (WGS84 long/lat):

CREATE TABLE ptgeogwgs (gid serial PRIMARY KEY, geog geography (POINT));

* Create a table with 2D POINT geography in NAD83 longlat:

https://www.postgresql.org/docs/current/sql-createtable.html

PostGIS 3.2.6 Manual 36/873

CREATE TABLE ptgeognad83(gid serial PRIMARY KEY, geog geography (POINT,4269));

* Create a table with 3D (XYZ) POINTSs and an explicit SRID of 4326:

CREATE TABLE ptzgeogwgs84 (gid serial PRIMARY KEY, geog geography (POINTZ,4326));

* Create a table with 2D LINESTRING geography with the default SRID 4326:

CREATE TABLE lgeog(gid serial PRIMARY KEY, geog geography (LINESTRING));

* Create a table with 2D POLYGON geography with the SRID 4267 (NAD 1927 long lat):

CREATE TABLE lgeognad27(gid serial PRIMARY KEY, geog geography (POLYGON, 4267));

Geography fields are registered in the geography_columns system view. You can query the geography_columns view
and see that the table is listed:

SELECT x FROM geography_columns;

Creating a spatial index works the same as for geometry columns. PostGIS will note that the column type is GEOGRAPHY and
create an appropriate sphere-based index instead of the usual planar index used for GEOMETRY.

—— Index the test table with a spherical index
CREATE INDEX global_points_gix ON global_ points USING GIST (location);

4.3.2 Using Geography Tables

You can insert data into geography tables in the same way as geometry. Geometry data will autocast to the geography type if it
has SRID 4326. The EWKT and EWKB formats can also be used to specify geography values.

—-— Add some data into the test table

INSERT INTO global_points (name, location) VALUES ('Town', 'SRID=4326;POINT(-110 30)"'");
INSERT INTO global_points (name, location) VALUES ('Forest', 'SRID=4326;POINT(-109 29)");
INSERT INTO global_points (name, location) VALUES ('London', 'SRID=4326;POINT (0 49)"');

Any geodetic (long/lat) spatial reference system listed in spatial_ref_sys table may be specified as a geography SRID.
Non-geodetic coordinate systems raise an error if used.

-— NAD 83 lon/lat
SELECT 'SRID=4269;POINT (-123 34)'::geography;
geography

0101000020AD1000000000000000CO5ECO0000000000004140

-— NAD27 lon/lat
SELECT 'SRID=4267;POINT (=123 34)'::geography;
geography

0101000020AB1000000000000000C0O5EC0O0000000000004140

—— NAD83 UTM zone meters — gives an error since it is a meter-based planar projection
SELECT 'SRID=26910;POINT (-123 34) '::geography;

ERROR: Only lon/lat coordinate systems are supported in geography.

Query and measurement functions use units of meters. So distance parameters should be expressed in meters, and return values
should be expected in meters (or square meters for areas).

PostGIS 3.2.6 Manual 37 /873

—— A distance query using a 1000km tolerance
SELECT name FROM global_points WHERE ST_DWithin (location, 'SRID=4326;POINT (=110 29)"':: «
geography, 1000000) ;

You can see the power of geography in action by calculating how close a plane flying a great circle route from Seattle to London
(LINESTRING(-122.33 47.606, 0.0 51.5)) comes to Reykjavik (POINT(-21.96 64.15)) (map the route).

The geography type calculates the true shortest distance of 122.235 km over the sphere between Reykjavik and the great circle
flight path between Seattle and London.

—-— Distance calculation using GEOGRAPHY

SELECT ST_Distance ('LINESTRING (-122.33 47.606, 0.0 51.5)'::geography, 'POINT(-21.96 64.15) <«
'::geography) ;
st_distance

122235.23815667

The geometry type calculates a meaningless cartesian distance between Reykjavik and the straight line path from Seattle to
London plotted on a flat map of the world. The nominal units of the result is "degrees", but the result doesn’t correspond to any
true angular difference between the points, so even calling them "degrees" is inaccurate.

—— Distance calculation using GEOMETRY
SELECT ST_Distance ('LINESTRING(-122.33 47.606, 0.0 51.5)"'::geometry, 'POINT(-21.96 64.15) <>
'::geometry) ;
st_distance

13.342271221453624

4.3.3 When to use the Geography data type

The geography data type allows you to store data in longitude/latitude coordinates, but at a cost: there are fewer functions defined
on GEOGRAPHY than there are on GEOMETRY; those functions that are defined take more CPU time to execute.

The data type you choose should be determined by the expected working area of the application you are building. Will your data
span the globe or a large continental area, or is it local to a state, county or municipality?

* If your data is contained in a small area, you might find that choosing an appropriate projection and using GEOMETRY is the
best solution, in terms of performance and functionality available.

* If your data is global or covers a continental region, you may find that GEOGRAPHY allows you to build a system without
having to worry about projection details. You store your data in longitude/latitude, and use the functions that have been defined
on GEOGRAPHY.

* If you don’t understand projections, and you don’t want to learn about them, and you’re prepared to accept the limitations in
functionality available in GEOGRAPHY, then it might be easier for you to use GEOGRAPHY than GEOMETRY. Simply load
your data up as longitude/latitude and go from there.

Refer to Section 15.11 for compare between what is supported for Geography vs. Geometry. For a brief listing and description
of Geography functions, refer to Section 15.4

4.3.4 Geography Advanced FAQ

1. Do you calculate on the sphere or the spheroid?

By default, all distance and area calculations are done on the spheroid. You should find that the results of calculations in
local areas match up will with local planar results in good local projections. Over larger areas, the spheroidal calculations
will be more accurate than any calculation done on a projected plane. All the geography functions have the option of
using a sphere calculation, by setting a final boolean parameter to 'FALSE’. This will somewhat speed up calculations,
particularly for cases where the geometries are very simple.

http://gc.kls2.com/cgi-bin/gc?PATH=SEA-LHR

PostGIS 3.2.6 Manual 38/873

2.

4.4

441

What about the date-line and the poles?

All the calculations have no conception of date-line or poles, the coordinates are spherical (longitude/latitude) so a shape
that crosses the dateline is, from a calculation point of view, no different from any other shape.

What is the longest arc you can process?

We use great circle arcs as the "interpolation line" between two points. That means any two points are actually joined up
two ways, depending on which direction you travel along the great circle. All our code assumes that the points are joined
by the *shorter* of the two paths along the great circle. As a consequence, shapes that have arcs of more than 180 degrees
will not be correctly modelled.

Why is it so slow to calculate the area of Europe / Russia / insert big geographic region here ?

Because the polygon is so darned huge! Big areas are bad for two reasons: their bounds are huge, so the index tends to pull
the feature no matter what query you run; the number of vertices is huge, and tests (distance, containment) have to traverse
the vertex list at least once and sometimes N times (with N being the number of vertices in the other candidate feature).
As with GEOMETRY, we recommend that when you have very large polygons, but are doing queries in small areas, you
"denormalize" your geometric data into smaller chunks so that the index can effectively subquery parts of the object and
so queries don’t have to pull out the whole object every time. Please consult ST_Subdivide function documentation. Just
because you *can* store all of Europe in one polygon doesn’t mean you *should*.

Spatial Tables

Creating a Spatial Table

You can create a table to store geometry data using the CREATE TABLE SQL statement with a column of type geometry.
The following example creates a table with a geometry column storing 2D (XY) LineStrings in the BC-Albers coordinate system
(SRID 3005):

CREATE TABLE roads (
id SERIAL PRIMARY KEY,
name VARCHAR (64),

)i

geom geometry (LINESTRING, 3005)

The geomet ry type supports two optional type modifiers:

* the spatial type modifier restricts the kind of shapes and dimensions allowed in the column. The value can be any of the
supported geometry subtypes (e.g. POINT, LINESTRING, POLYGON, MULTIPOINT, MULTILINESTRING, MULTIPOLY-
GON, GEOMETRYCOLLECTION, etc). The modifier supports coordinate dimensionality restrictions by adding suffixes: Z,
M and ZM. For example, a modifier of 'LINESTRINGM’ allows only linestrings with three dimensions, and treats the third
dimension as a measure. Similarly, "POINTZM’ requires four dimensional (XYZM) data.

+ the SRID modifier restricts the spatial reference system SRID to a particular number. If omitted, the SRID defaults to 0.

Examples of creating tables with geometry columns:

* Create a table holding any kind of geometry with the default SRID:

CREATE TABLE geoms (gid serial PRIMARY KEY, geom geometry);

* Create a table with 2D POINT geometry with the default SRID:

CREATE TABLE pts(gid serial PRIMARY KEY, geom geometry (POINT));

* Create a table with 3D (XYZ) POINTs and an explicit SRID of 3005:

CREATE TABLE pts(gid serial PRIMARY KEY, geom geometry (POINTZ,3005));

https://www.postgresql.org/docs/current/sql-createtable.html

PostGIS 3.2.6 Manual 39/873

* Create a table with 4D (XYZM) LINESTRING geometry with the default SRID:

CREATE TABLE lines(gid serial PRIMARY KEY, geom geometry (LINESTRINGZM));

* Create a table with 2D POLYGON geometry with the SRID 4267 (NAD 1927 long lat):

CREATE TABLE polys(gid serial PRIMARY KEY, geom geometry (POLYGON, 4267));

It is possible to have more than one geometry column in a table. This can be specified when the table is created, or a column can
be added using the ALTER TABLE SQL statement. This example adds a column that can hold 3D LineStrings:

ALTER TABLE roads ADD COLUMN geom2 geometry (LINESTRINGZ, 4326) ;

4.4.2 GEOMETRY_COLUMNS View

The OGC Simple Features Specification for SQL defines the GEOMETRY_ COLUMNS metadata table to describe geometry table
structure. In PostGIS geometry_columns is a view reading from database system catalog tables. This ensures that the spatial
metadata information is always consistent with the currently defined tables and views. The view structure is:

\d geometry_columns

View "public.geometry_columns"
Column | Type
f_table_catalog
f table_schema
f _table_name

256
256
256

character varying
character varying
character varying

- — — — — — 4

f_geometry_column character varying (256
coord_dimension integer
srid integer
type character varying(30)

The columns are:

f table_catalog, f table_schema, f_table_ name The fully qualified name of the feature table containing the geometry column.
There is no PostgreSQL analogue of "catalog" so that column is left blank. For "schema" the PostgreSQL schema name is
used (public is the default).

f geometry_column The name of the geometry column in the feature table.
coord_dimension The coordinate dimension (2, 3 or 4) of the column.

srid The ID of the spatial reference system used for the coordinate geometry in this table. It is a foreign key reference to the
spatial_ref_sys table (see Section 4.5.1).

type The type of the spatial object. To restrict the spatial column to a single type, use one of: POINT, LINESTRING, POLY-
GON, MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, GEOMETRYCOLLECTION or corresponding XYM
versions POINTM, LINESTRINGM, POLYGONM, MULTIPOINTM, MULTILINESTRINGM, MULTIPOLYGONM,
GEOMETRYCOLLECTIONM. For heterogeneous (mixed-type) collections, you can use "GEOMETRY" as the type.

4.4.3 Manually Registering Geometry Columns

Two of the cases where you may need this are the case of SQL Views and bulk inserts. For bulk insert case, you can correct
the registration in the geometry_columns table by constraining the column or doing an alter table. For views, you could expose
using a CAST operation. Note, if your column is typmod based, the creation process would register it correctly, so no need to do
anything. Also views that have no spatial function applied to the geometry will register the same as the underlying table geometry
column.

https://www.postgresql.org/docs/current/sql-altertable.html

PostGIS 3.2.6 Manual 40/ 873

—— Lets say you have a view created like this

CREATE VIEW public.vwmytablemercator AS
SELECT gid, ST_Transform(geom, 3395) As geom, f_name
FROM public.mytable;

-— For it to register correctly

—-— You need to cast the geometry

DROP VIEW public.vwmytablemercator;

CREATE VIEW public.vwmytablemercator AS
SELECT gid, ST_Transform(geom, 3395) ::geometry (Geometry, 3395) As geom, f_name
FROM public.mytable;

—-— If you know the geometry type for sure is a 2D POLYGON then you could do
DROP VIEW public.vwmytablemercator;
CREATE VIEW public.vwmytablemercator AS
SELECT gid, ST_Transform(geom,3395) ::geometry (Polygon, 3395) As geom, f_name
FROM public.mytable;

—-—-Lets say you created a derivative table by doing a bulk insert

SELECT poi.gid, poi.geom, citybounds.city_name

INTO myschema.my_special_pois

FROM poi INNER JOIN citybounds ON ST_Intersects (citybounds.geom, poi.geom);

—— Create 2D index on new table
CREATE INDEX idx_myschema_myspecialpois_geom_gist
ON myschema.my_special_pois USING gist (geom) ;

-— If your points are 3D points or 3M points,
—— then you might want to create an nd index instead of a 2D index
CREATE INDEX my_special_pois_geom_gist_nd

ON my_special_pois USING gist (geom gist_geometry_ops_nd);

—-— To manually register this new table's geometry column in geometry_columns.
—-— Note it will also change the underlying structure of the table to

—-— to make the column typmod based.

SELECT populate_geometry_columns ('myschema.my_special_pois'::regclass);

—— If you are using PostGIS 2.0 and for whatever reason, you

—— you need the constraint based definition behavior

—— (such as case of inherited tables where all children do not have the same type and srid)
—-— set optional use_typmod argument to false

SELECT populate_geometry_columns ('myschema.my_special_pois'::regclass, false);

Although the old-constraint based method is still supported, a constraint-based geometry column used directly in a view, will not
register correctly in geometry_columns, as will a typmod one. In this example we define a column using typmod and another
using constraints.

CREATE TABLE pois_ny(gid SERIAL PRIMARY KEY, poi_name text, cat text, geom geometry (POINT <
,4326));
SELECT AddGeometryColumn ('pois_ny', 'geom_2160', 2160, 'POINT', 2, false);

If we run in psql

\d pois_ny;

We observe they are defined differently -- one is typmod, one is constraint

Table "public.pois_ny"
Column | Type | Modifiers

PostGIS 3.2.6 Manual

41/873

——————————— o

gid | integer | not null default nextval ('pois_ny_gid_seq'::regclass)
poi_name | text |

cat | character varying(20) |

geom | geometry (Point,4326) |

geom_2160 | geometry |

Indexes:

"pois_ny_pkey" PRIMARY KEY, btree (gid)
Check constraints:

"enforce_dims_geom_2160" CHECK (st_ndims (geom_2160) = 2)

"enforce_geotype_geom_2160" CHECK (geometrytype (geom_2160) = 'POINT'::text
OR geom_2160 IS NULL)

"enforce_srid_geom_2160" CHECK (st_srid(geom_2160) = 2160)

In geometry_columns, they both register correctly

SELECT f_table_name, f_geometry_column, srid, type
FROM geometry_columns

WHERE f_table_name = 'pois_ny';
f_table_name | f_geometry_column | srid | type
7777777777777 Bt e e
pois_ny | geom | 4326 | POINT
pois_ny | geom_2160 | 2160 | POINT

However -- if we were to create a view like this

CREATE VIEW vw_pois_ny_parks AS
SELECT x

FROM pois_ny

WHERE cat='park';

SELECT f_table_name, f_geometry_column, srid, type

FROM geometry_columns
WHERE f_table_name = 'vw_pois_ny_parks';

The typmod based geom view column registers correctly, but the constraint based one does not.

f_table_name | f_geometry_column | srid | type
777777777777777777 e
vw_pois_ny_parks | geom | 4326 | POINT
vw_pois_ny_parks | geom_ 2160 | 0 | GEOMETRY

This may change in future versions of PostGIS, but for now to force the constraint-based view column to register correctly, you

need to do this:

DROP VIEW vw_pois_ny_parks;

CREATE VIEW vw_pois_ny_parks AS

SELECT gid, poi_name, cat,
geom,
geom_2160: :geometry (POINT,2160) As geom_2160
FROM pois_ny
WHERE cat = 'park';

SELECT f_table_name, f_geometry_column, srid, type
FROM geometry_columns

WHERE f_table_name = 'vw_pois_ny_parks';
f_table_name | f_geometry_column | srid | type
777777777777777777 e
vw_pois_ny_parks | geom | 4326 | POINT
vw_pois_ny_parks | geom_ 2160 | 2160 | POINT

PostGIS 3.2.6 Manual 42 /873

4.5 Spatial Reference Systems

Spatial Reference Systems (SRS) define how geometry is referenced to locations on the Earth’s surface.

4.5.1 SPATIAL_REF_SYS Table

The SPATIAL_REF_SYS table used by PostGIS is an OGC-compliant database table that defines the available spatial reference
systems. It holds the numeric IDs and textual descriptions of the coordinate systems. The main use is to support transformation
(reprojection) between them using ST_Transform.

The spatial_ref_sys table definition is:

CREATE TABLE spatial_ref_ sys (
srid INTEGER NOT NULL PRIMARY KEY,
auth_name VARCHAR(256),
auth_srid INTEGER,
srtext VARCHAR (2048) ,
proj4text VARCHAR (2048)

The columns are:

srid An integer code that uniquely identifies the Spatial Reference System (SRS) within the database.

auth_name The name of the standard or standards body that is being cited for this reference system. For example, "EPSG" is a
valid auth_name.

auth_srid The ID of the Spatial Reference System as defined by the Authority cited in the auth_name. In the case of EPSG,
this is where the EPSG projection code would go.

srtext The Well-Known Text representation of the Spatial Reference System. An example of a WKT SRS representation is:

PROJCS ["NAD83 / UTM Zone 10N",
GEOGCS["NAD83",
DATUM["North_American_Datum_1983",

SPHEROID["GRS 1980",6378137,298.257222101]
]I
PRIMEM["Greenwich", 0],
UNIT["degree",0.0174532925199433]
1,
PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin", 0],
PARAMETER["central_meridian",-123],
PARAMETER["scale_factor",0.9996],
PARAMETER["false_easting", 5000007,
PARAMETER["false_northing",0],
UNIT["metre", 1]

For a listing of EPSG projection codes and their corresponding WKT representations, see http://www.opengeospatial.org/.
For a discussion of SRS WKT in general, see the OpenGIS "Coordinate Transformation Services Implementation Speci-
fication" at http://www.opengeospatial.org/standards. For information on the European Petroleum Survey Group (EPSG)
and their database of spatial reference systems, see http://www.epsg.org.

projdtext PostGIS uses the PROJ library to provide coordinate transformation capabilities. The proj4text column contains
the PROJ coordinate definition string for a particular SRID. For example:

+proj=utm +zone=10 +ellps=clrk66 +datum=NAD27 +units=m

For more information see the PROJ web site. The spatial_ref_sys.sql file contains both srtext andprojdtext
definitions for all EPSG projections.

https://en.wikipedia.org/wiki/Spatial_reference_system
http://en.wikipedia.org/wiki/SRID
http://www.opengeospatial.org/
http://www.opengeospatial.org/standards
http://www.epsg.org/
https://proj.org/

PostGIS 3.2.6 Manual 43 /873

When retrieving spatial reference system definitions for use in transformations, PostGIS uses the following strategy:

e If auth_name and auth_srid are present (non-NULL) use the PROJ SRS based on those entries (if one exists).
» If srtext is present create a SRS using it, if possible.

* If proj4text is present create a SRS using it, if possible.

4.5.2 User-Defined Spatial Reference Systems

The PostGIS spatial_ref_sys table contains over 3000 of the most common spatial reference system definitions that are
handled by the PROJ projection library. But there are many coordinate systems that it does not contain. You can add SRS
definitions to the table if you have the required information about the spatial reference system. Or, you can define your own
custom spatial reference system if you are familiar with PROJ constructs. Keep in mind that most spatial reference systems are
regional and have no meaning when used outside of the bounds they were intended for.

A resource for finding spatial reference systems not defined in the core set is http://spatialreference.org/

Some commonly used spatial reference systems are: 4326 - WGS 84 Long Lat, 4269 - NAD 83 Long Lat, 3395 - WGS 84 World
Mercator, 2163 - US National Atlas Equal Area, and the 60 WGS84 UTM zones. UTM zones are one of the most ideal for
measurement, but only cover 6-degree regions. (To determine which UTM zone to use for your area of interest, see the utmzone
PostGIS plpgsql helper function.)

US states use State Plane spatial reference systems (meter or feet based) - usually one or 2 exists per state. Most of the meter-based
ones are in the core set, but many of the feet-based ones or ESRI-created ones will need to be copied from spatialreference.org.

You can even define non-Earth-based coordinate systems, such as Mars 2000 This Mars coordinate system is non-planar (it’s in
degrees spheroidal), but you can use it with the geography type to obtain length and proximity measurements in meters instead
of degrees.

Here is an example of loading a custom coordinate system using an unassigned SRID and the PROJ definition for a US-centric
Lambert Conformal projection:

INSERT INTO spatial_ref sys (srid, projdtext)
VALUES (990000,
't+proj=lcc +lon_0=-95 +lat_0=25 +lat_1=25 +lat_2=25 +x_0=0 +y_0=0 +datum=WGS84 +units=m <>
+no_defs'

)i

4.6 Geometry Validation

PostGIS is compliant with the Open Geospatial Consortium’s (OGC) OpenGIS Specifications. As such, many PostGIS methods
require, or more accurately, assume that geometries that are operated on are both simple and valid. For example, it does not
make sense to calculate the area of a polygon that has a hole defined outside of the polygon, or to construct a polygon from a
non-simple boundary line.

According to the OGC Specifications, a simple geometry is one that has no anomalous geometric points, such as self intersection
or self tangency and primarily refers to 0 or 1-dimensional geometries (i.e. [MULTI]POINT, [MULTI]LINESTRING).
Geometry validity, on the other hand, primarily refers to 2-dimensional geometries (i.e. [MULTI]POLYGON) and defines the
set of assertions that characterizes a valid polygon. The description of each geometric class includes specific conditions that
further detail geometric simplicity and validity.

A POINT is inherently simple as a O-dimensional geometry object.
MULTIPOINTSs are simple if no two coordinates (POINTSs) are equal (have identical coordinate values).

A LINESTRING is simple if it does not pass through the same POINT twice (except for the endpoints, in which case it is referred
to as a linear ring and additionally considered closed).

https://proj.org
http://spatialreference.org/
http://spatialreference.org/ref/epsg/4326/
http://spatialreference.org/ref/epsg/4269/
http://spatialreference.org/ref/epsg/3395/
http://spatialreference.org/ref/epsg/3395/
http://spatialreference.org/ref/epsg/2163/
http://trac.osgeo.org/postgis/wiki/UsersWikiplpgsqlfunctionsDistance
http://trac.osgeo.org/postgis/wiki/UsersWikiplpgsqlfunctionsDistance
http://spatialreference.org
http://spatialreference.org/ref/iau2000/mars-2000/

PostGIS 3.2.6 Manual 44 /873

(a) (b)

(c) (d)

(a) and (c) are simple LINESTRINGS, (b) and (d) are not.

A MULTILINESTRING is simple only if all of its elements are simple and the only intersection between any two elements
occurs at POINTs that are on the boundaries of both elements.

PostGIS 3.2.6 Manual 45/873

(e ® ®

(e) and (f) are simple MULTILINESTRINGS, (g) is not.

By definition, a POLYGON is always simple. It is valid if no two rings in the boundary (made up of an exterior ring and interior
rings) cross. The boundary of a POLYGON may intersect at a POINT but only as a tangent (i.e. not on a line). A POLYGON may
not have cut lines or spikes and the interior rings must be contained entirely within the exterior ring.

(h) () G)

PostGIS 3.2.6 Manual 46 /873

(k) U] (m)

(h) and (i) are valid POLYGONS, (j-m) cannot be represented as single POLYGONS, but (j) and (m) could be represented as
a valid MULTIPOLYGON.

A MULTIPOLYGON is valid if and only if all of its elements are valid and the interiors of no two elements intersect. The
boundaries of any two elements may touch, but only at a finite number of POINTS.

(m) (0)

(n) and (o) are not valid MULTIPOLYGONS. (p), however, is valid.

Most of the functions implemented by the GEOS library rely on the assumption that your geometries are valid as specified by
the OpenGIS Simple Feature Specification. To check simplicity or validity of geometries you can use the ST_IsSimple() and
ST_IsValid()

—-— Typically, it doesn't make sense to check

—— for validity on linear features since it will always return TRUE.
—— But in this example, PostGIS extends the definition of the OGC IsValid

PostGIS 3.2.6 Manual 47 /873

—— by returning false if a LineString has less than 2 xdistinct* vertices.
gisdb=# SELECT

ST_IsValid ('LINESTRING(0 0, 1 1)'),

ST_IsValid ('LINESTRING(0O 0, 0 0, 0 0)"');

st_isvalid | st_isvalid
777777777777 +77777777777
t | f

By default, PostGIS does not apply this validity check on geometry input, because testing for validity needs lots of CPU time for
complex geometries, especially polygons. If you do not trust your data sources, you can manually enforce such a check to your
tables by adding a check constraint:

ALTER TABLE mytable
ADD CONSTRAINT geometry_valid_check
CHECK (ST_IsValid(geom)) ;

If you encounter any strange error messages such as "GEOS Intersection() threw an error!" when calling PostGIS functions with
valid input geometries, you likely found an error in either PostGIS or one of the libraries it uses, and you should contact the
PostGIS developers. The same is true if a PostGIS function returns an invalid geometry for valid input.

N;"R’! Note

The ST_IsValid() function does not check the Z and M dimensions.

4.7 Loading Spatial Data

Once you have created a spatial table, you are ready to upload spatial data to the database. There are two built-in ways to get
spatial data into a PostGIS/PostgreSQL database: using formatted SQL statements or using the Shapefile loader.

4.7.1 Using SQL to Load Data

If spatial data can be converted to a text representation (as either WKT or WKB), then using SQL might be the easiest way to get
data into PostGIS. Data can be bulk-loaded into PostGIS/PostgreSQL by loading a text file of SQL INSERT statements using
the psgl SQL utility.

A SQL load file (roads. sgl for example) might look like this:

BEGIN;
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (1, 'LINESTRING (191232 243118,191108 243242)"','Jeff Rd'");
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (2, 'LINESTRING (189141 244158,189265 244817)"', 'Geordie Rd'");
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (3, 'LINESTRING (192783 228138,192612 229814)"', 'Paul St');
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (4, 'LINESTRING (189412 252431,189631 259122)"', 'Graeme Ave');
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (5, '"LINESTRING (190131 224148,190871 228134)"','Phil Tce');
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (6, '"LINESTRING (198231 263418,198213 268322) "', 'Dave Cres');
COMMIT;

The SQL file can be loaded into PostgreSQL using psql:

psgl -d [database] —-f roads.sqgl

PostGIS 3.2.6 Manual 48 /873

4.7.2 Using the Shapefile Loader

The shp2pgsqgl data loader converts Shapefiles into SQL suitable for insertion into a PostGIS/PostgreSQL database either in
geometry or geography format. The loader has several operating modes selected by command line flags.

There is also a shp2pgsgl—-gui graphical interface with most of the options as the command-line loader. This may be easier
to use for one-off non-scripted loading or if you are new to PostGIS. It can also be configured as a plugin to PgAdminlIII.

(claldlp) These are mutually exclusive options:

-c Creates a new table and populates it from the Shapefile. This is the default mode.

-a Appends data from the Shapefile into the database table. Note that to use this option to load multiple files, the files
must have the same attributes and same data types.

-d Drops the database table before creating a new table with the data in the Shapefile.
-p Only produces the table creation SQL code, without adding any actual data. This can be used if you need to completely
separate the table creation and data loading steps.

-? Display help screen.

-D Use the PostgreSQL "dump" format for the output data. This can be combined with -a, -c and -d. It is much faster to load
than the default "insert" SQL format. Use this for very large data sets.

-s [<KFROM_SRID>:]<SRID> Creates and populates the geometry tables with the specified SRID. Optionally specifies that the
input shapefile uses the given FROM_SRID, in which case the geometries will be reprojected to the target SRID.

-k Keep identifiers’ case (column, schema and attributes). Note that attributes in Shapefile are all UPPERCASE.

-i Coerce all integers to standard 32-bit integers, do not create 64-bit bigints, even if the DBF header signature appears to warrant
it.

-I Create a GiST index on the geometry column.

-m -m a_file_name Specify a file containing a set of mappings of (long) column names to 10 character DBF column names.

The content of the file is one or more lines of two names separated by white space and no trailing or leading space. For
example:

COLUMNNAME DBFFIELD1
AVERYLONGCOLUMNNAME DBFFIELD2

-S Generate simple geometries instead of MULTT geometries. Will only succeed if all the geometries are actually single (I.E. a
MULTIPOLYGON with a single shell, or or a MULTIPOINT with a single vertex).

-t <dimensionality> Force the output geometry to have the specified dimensionality. Use the following strings to indicate the
dimensionality: 2D, 3DZ, 3DM, 4D.

If the input has fewer dimensions that specified, the output will have those dimensions filled in with zeroes. If the input
has more dimensions that specified, the unwanted dimensions will be stripped.

-w Output WKT format, instead of WKB. Note that this can introduce coordinate drifts due to loss of precision.

-e Execute each statement on its own, without using a transaction. This allows loading of the majority of good data when there
are some bad geometries that generate errors. Note that this cannot be used with the -D flag as the "dump" format always
uses a transaction.

-W <encoding> Specify encoding of the input data (dbf file). When used, all attributes of the dbf are converted from the
specified encoding to UTFS8. The resulting SQL output will contain a SET CLIENT_ENCODING to UTF8 command,
so that the backend will be able to reconvert from UTFS§ to whatever encoding the database is configured to use internally.

-N <policy> NULL geometries handling policy (insert*,skip,abort)

-n -n Only import DBF file. If your data has no corresponding shapefile, it will automatically switch to this mode and load just
the dbf. So setting this flag is only needed if you have a full shapefile set, and you only want the attribute data and no
geometry.

PostGIS 3.2.6 Manual 49 /873

-G Use geography type instead of geometry (requires lon/lat data) in WGS84 long lat (SRID=4326)

-T <tablespace> Specify the tablespace for the new table. Indexes will still use the default tablespace unless the -X parameter
is also used. The PostgreSQL documentation has a good description on when to use custom tablespaces.

-X <tablespace> Specify the tablespace for the new table’s indexes. This applies to the primary key index, and the GIST spatial
index if -I is also used.

-Z When used, this flag will prevent the generation of ANALYZE statements. Without the -Z flag (default behavior), the
ANALYZE statements will be generated.

An example session using the loader to create an input file and loading it might look like this:

shp2pgsgl -c -D -s 4269 -i -I shaperoads.shp myschema.roadstable > roads.sqgl
psgl -d roadsdb -f roads.sql

A conversion and load can be done in one step using UNIX pipes:

shp2pgsgl shaperoads.shp myschema.roadstable | psgl -d roadsdb

4.8 Extracting Spatial Data

Spatial data can be extracted from the database using either SQL or the Shapefile dumper. The section on SQL presents some of
the functions available to do comparisons and queries on spatial tables.

4.8.1 Using SQL to Extract Data

The most straightforward way of extracting spatial data out of the database is to use a SQL SELECT query to define the data set
to be extracted and dump the resulting columns into a parsable text file:

db=# SELECT road_id, ST_AsText (road_geom) AS geom, road_name FROM roads;

road_id | geom | road_name
________ e S
1 | LINESTRING (191232 243118,191108 243242) | Jeff Rd
2 | LINESTRING (189141 244158,189265 244817) | Geordie Rd
3 | LINESTRING (192783 228138,192612 229814) | Paul St
4 | LINESTRING (189412 252431,189631 259122) | Graeme Ave
5 | LINESTRING(190131 224148,190871 228134) | Phil Tce
6 | LINESTRING (198231 263418,198213 268322) | Dave Cres
7 | LINESTRING (218421 284121,224123 241231) | Chris Way
(6 rows)

There will be times when some kind of restriction is necessary to cut down the number of records returned. In the case of
attribute-based restrictions, use the same SQL syntax as used with a non-spatial table. In the case of spatial restrictions, the
following functions are useful:

ST_Intersects This function tells whether two geometries share any space.

= This tests whether two geometries are geometrically identical. For example, if "'POLYGON((0 0,1 1,1 0,0 0))’ is the same as
"POLYGON((0 0,1 1,1 0,0 0))’ (itis).

Next, you can use these operators in queries. Note that when specifying geometries and boxes on the SQL command line, you
must explicitly turn the string representations into geometries function. The 312 is a fictitious spatial reference system that
matches our data. So, for example:

PostGIS 3.2.6 Manual 50/873

SELECT road_id, road_name
FROM roads
WHERE roads_geom="'SRID=312; LINESTRING (191232 243118,191108 243242) '::geometry;

The above query would return the single record from the "ROADS_GEOM" table in which the geometry was equal to that value.
To check whether some of the roads passes in the area defined by a polygon:

SELECT road_id, road_name
FROM roads
WHERE ST_Intersects (roads_geom, 'SRID=312;POLYGON((...))");

The most common spatial query will probably be a "frame-based" query, used by client software, like data browsers and web
mappers, to grab a "map frame" worth of data for display.

When using the "&&" operator, you can specify either a BOX3D as the comparison feature or a GEOMETRY. When you specify
a GEOMETRY, however, its bounding box will be used for the comparison.

Using a "BOX3D" object for the frame, such a query looks like this:

SELECT ST_AsText (roads_geom) AS geom
FROM roads
WHERE
roads_geom && ST_MakeEnvelope (191232, 243117,191232, 243119,312);

Note the use of the SRID 312, to specify the projection of the envelope.

4.8.2 Using the Shapefile Dumper

The pgsgl2shp table dumper connects to the database and converts a table (possibly defined by a query) into a shape file. The
basic syntax is:

pgsqgl2shp [<options>] <database> [<schema>.]<table>
pgsgl2shp [<options>] <database> <query>
The commandline options are:

-f <filename> Write the output to a particular filename.

-h <host> The database host to connect to.

-p <port> The port to connect to on the database host.

-P <password> The password to use when connecting to the database.
-u <user> The username to use when connecting to the database.

-g <geometry column> In the case of tables with multiple geometry columns, the geometry column to use when writing the
shape file.

-b Use a binary cursor. This will make the operation faster, but will not work if any NON-geometry attribute in the table lacks a
cast to text.

-r Raw mode. Do not drop the gid field, or escape column names.

-m filename Remap identifiers to ten character names. The content of the file is lines of two symbols separated by a single
white space and no trailing or leading space: VERYLONGSYMBOL SHORTONE ANOTHERVERYLONGSYMBOL
SHORTER etc.

PostGIS 3.2.6 Manual 51/873

4.9 Spatial Indexes

Spatial indexes make using a spatial database for large data sets possible. Without indexing, a search for features requires a
sequential scan of every record in the database. Indexing speeds up searching by organizing the data into a structure which can
be quickly traversed to find matching records.

The B-tree index method commonly used for attribute data is not very useful for spatial data, since it only supports storing and

querying data in a single dimension. Data such as geometry (which has 2 or more dimensions) requires an index method that

supports range query across all the data dimensions. One of the key advantages of PostgreSQL for spatial data handling is that it
offers several kinds of index methods which work well for multi-dimensional data: GiST, BRIN and SP-GiST indexes.

* GiST (Generalized Search Tree) indexes break up data into "things to one side", "things which overlap", "things which are
inside" and can be used on a wide range of data-types, including GIS data. PostGIS uses an R-Tree index implemented on top
of GiST to index spatial data. GiST is the most commonly-used and versatile spatial index method, and offers very good query
performance.

* BRIN (Block Range Index) indexes operate by summarizing the spatial extent of ranges of table records. Search is done via
a scan of the ranges. BRIN is only appropriate for use for some kinds of data (spatially sorted, with infrequent or no update).
But it provides much faster index create time, and much smaller index size.

* SP-GiST (Space-Partitioned Generalized Search Tree) is a generic index method that supports partitioned search trees such
as quad-trees, k-d trees, and radix trees (tries).

Spatial indexes store only the bounding box of geometries. Spatial queries use the index as a primary filter to quickly deter-
mine a set of geometries potentially matching the query condition. Most spatial queries require a secondary filter that uses a
spatial predicate function to test a more specific spatial condition. For more information on queying with spatial predicates see
Section 5.2.

See also the PostGIS Workshop section on spatial indexes, and the PostgreSQL manual.

4.9.1 GiST Indexes

GiST stands for "Generalized Search Tree" and is a generic form of indexing for multi-dimensional data. PostGIS uses an R-Tree
index implemented on top of GiST to index spatial data. GiST is the most commonly-used and versatile spatial index method,
and offers very good query performance. Other implementations of GiST are used to speed up searches on all kinds of irregular
data structures (integer arrays, spectral data, etc) which are not amenable to normal B-Tree indexing. For more information see
the PostgreSQL manual.

Once a spatial data table exceeds a few thousand rows, you will want to build an index to speed up spatial searches of the data
(unless all your searches are based on attributes, in which case you’ll want to build a normal index on the attribute fields).

The syntax for building a GiST index on a "geometry" column is as follows:

CREATE INDEX [indexname] ON [tablename] USING GIST ([geometryfield]);

The above syntax will always build a 2D-index. To get the an n-dimensional index for the geometry type, you can create one
using this syntax:

CREATE INDEX [indexname] ON [tablename] USING GIST ([geometryfield] gist_geometry_ops_nd);

Building a spatial index is a computationally intensive exercise. It also blocks write access to your table for the time it creates,
so on a production system you may want to do in in a slower CONCURRENTLY-aware way:

CREATE INDEX CONCURRENTLY [indexname] ON [tablename] USING GIST ([geometryfield]);

After building an index, it is sometimes helpful to force PostgreSQL to collect table statistics, which are used to optimize query
plans:

VACUUM ANALYZE [table_name] [(column_name)];

https://postgis.net/workshops/postgis-intro/indexing.html
https://www.postgresql.org/docs/current/indexes.html
https://www.postgresql.org/docs/current/gist.html

PostGIS 3.2.6 Manual 52 /873

4.9.2 BRIN Indexes

BRIN stands for "Block Range Index". It is a general-purpose index method introduced in PostgreSQL 9.5. BRIN is a lossy
index method, meaning that a secondary check is required to confirm that a record matches a given search condition (which is
the case for all provided spatial indexes). It provides much faster index creation and much smaller index size, with reasonable
read performance. Its primary purpose is to support indexing very large tables on columns which have a correlation with their
physical location within the table. In addition to spatial indexing, BRIN can speed up searches on various kinds of attribute data
structures (integer, arrays etc). For more information see the PostgreSQL manual.

Once a spatial table exceeds a few thousand rows, you will want to build an index to speed up spatial searches of the data. GiST
indexes are very performant as long as their size doesn’t exceed the amount of RAM available for the database, and as long as
you can afford the index storage size, and the cost of index update on write. Otherwise, for very large tables BRIN index can be
considered as an alternative.

A BRIN index stores the bounding box enclosing all the geometries contained in the rows in a contiguous set of table blocks,
called a block range. When executing a query using the index the block ranges are scanned to find the ones that intersect the
query extent. This is efficient only if the data is physically ordered so that the bounding boxes for block ranges have minimal
overlap (and ideally are mutually exclusive). The resulting index is very small in size, but is typically less performant for read
than a GiST index over the same data.

Building a BRIN index is much less CPU-intensive than building a GiST index. It’s common to find that a BRIN index is ten
times faster to build than a GiST index over the same data. And because a BRIN index stores only one bounding box for each
range of table blocks, it’s common to use up to a thousand times less disk space than a GiST index.

You can choose the number of blocks to summarize in a range. If you decrease this number, the index will be bigger but will
probably provide better performance.

For BRIN to be effective, the table data should be stored in a physical order which minimizes the amount of block extent overlap.
It may be that the data is already sorted appropriately (for instance, if it is loaded from another dataset that is already sorted in
spatial order). Otherwise, this can be accomplished by sorting the data by a one-dimensional spatial key. One way to do this is
to create a new table sorted by the geometry values (which in recent PostGIS versions uses an efficient Hilbert curve ordering):

CREATE TABLE table_sorted AS
SELECT x FROM table ORDER BY geom;

Alternatively, data can be sorted in-place by using a GeoHash as a (temporary) index, and clustering on that index:

CREATE INDEX idx_temp_geohash ON table
USING btree (ST_GeoHash(ST_Transform(geom, 4326), 20));
CLUSTER table USING idx_temp_geohash;

The syntax for building a BRIN index on a geomet ry column is:

CREATE INDEX [indexname] ON [tablename] USING BRIN ([geome_col]);

The above syntax builds a 2D index. To build a 3D-dimensional index, use this syntax:

CREATE INDEX [indexname] ON [tablename]
USING BRIN ([geome_col] brin_geometry_inclusion_ops_3d);

You can also get a 4D-dimensional index using the 4D operator class:

CREATE INDEX [indexname] ON [tablename]
USING BRIN ([geome_col] brin_geometry_inclusion_ops_4d);

The above commands use the default number of blocks in a range, which is 128. To specify the number of blocks to summarise
in a range, use this syntax

CREATE INDEX [indexname] ON [tablename]
USING BRIN ([geome_col]) WITH (pages_per_range = [number]);

https://www.postgresql.org/docs/current/brin.html

PostGIS 3.2.6 Manual 53 /873

Keep in mind that a BRIN index only stores one index entry for a large number of rows. If your table stores geometries with
a mixed number of dimensions, it’s likely that the resulting index will have poor performance. You can avoid this performance
penalty by choosing the operator class with the least number of dimensions of the stored geometries

The geography datatype is supported for BRIN indexing. The syntax for building a BRIN index on a geography column is:

CREATE INDEX [indexname] ON [tablename] USING BRIN ([geog_col]);

The above syntax builds a 2D-index for geospatial objects on the spheroid.

Currently, only "inclusion support" is provided, meaning that just the & &, ~ and @ operators can be used for the 2D cases (for both
geometry and geography), and just the & & & operator for 3D geometries. There is currently no support for KNN searches.

An important difference between BRIN and other index types is that the database does not maintain the index dynamically.
Changes to spatial data in the table are simply appended to the end of the index. This will cause index search performance to de-

grade over time. The index can be updated by performing a VACUUM, or by using a special functionbrin_summarize_new_values
For this reason BRIN may be most appropriate for use with data that is read-only, or only rarely changing. For more information

refer to the manual.

To summarize using BRIN for spatial data:

* Index build time is very fast, and index size is very small.

¢ Index query time is slower than GiST, but can still be very acceptable.

* Requires table data to be sorted in a spatial ordering.

* Requires manual index maintenance.

* Most appropriate for very large tables, with low or no overlap (e.g. points), which are static or change infrequently.

* More effective for queries which return relatively large numbers of data records.

4.9.3 SP-GiST Indexes

SP-GiST stands for "Space-Partitioned Generalized Search Tree" and is a generic form of indexing for multi-dimensional data
types that supports partitioned search trees, such as quad-trees, k-d trees, and radix trees (tries). The common feature of these
data structures is that they repeatedly divide the search space into partitions that need not be of equal size. In addition to spatial
indexing, SP-GiST is used to speed up searches on many kinds of data, such as phone routing, ip routing, substring search, etc.
For more information see the PostgreSQL manual.

As it is the case for GiST indexes, SP-GiST indexes are lossy, in the sense that they store the bounding box enclosing spatial
objects. SP-GiST indexes can be considered as an alternative to GiST indexes.

Once a GIS data table exceeds a few thousand rows, an SP-GiST index may be used to speed up spatial searches of the data. The
syntax for building an SP-GiST index on a "geometry" column is as follows:

CREATE INDEX [indexname] ON [tablename] USING SPGIST ([geometryfield]);

The above syntax will build a 2-dimensional index. A 3-dimensional index for the geometry type can be created using the 3D
operator class:

CREATE INDEX [indexname] ON [tablename] USING SPGIST ([geometryfield] —
spgist_geometry_ops_3d);

Building a spatial index is a computationally intensive operation. It also blocks write access to your table for the time it creates,
so on a production system you may want to do in in a slower CONCURRENTLY-aware way:

CREATE INDEX CONCURRENTLY [indexname] ON [tablename] USING SPGIST ([geometryfield]);

After building an index, it is sometimes helpful to force PostgreSQL to collect table statistics, which are used to optimize query
plans:

https://www.postgresql.org/docs/current/brin-intro.html#BRIN-OPERATION
https://www.postgresql.org/docs/current/spgist.html

PostGIS 3.2.6 Manual 54 /873

VACUUM ANALYZE [table_name] [(column_name)];

An SP-GiST index can accelerate queries involving the following operators:

o <<, &<, &>, >>, <<, &<, 1&>, I>>, &&, @>, <@, and ~=, for 2-dimensional indexes,

e &/&, ~==, @>>, and <<@, for 3-dimensional indexes.

There is no support for kNN searches at the moment.

4.9.4 Tuning Index Usage

Ordinarily, indexes invisibly speed up data access: once an index is built, the PostgreSQL query planner automatically decides
when to use it to improve query performance. But there are some situations where the planner does not choose to use existing
indexes, so queries end up using slow sequential scans instead of a spatial index.

If you find your spatial indexes are not being used, there are a few things you can do:

» Examine the query plan and check your query actually computes the thing you need. An erroneous JOIN, either forgotten or
to the wrong table, can unexpectedly retrieve table records multiple times. To get the query plan, execute with EXPLAIN in
front of the query.

* Make sure statistics are gathered about the number and distributions of values in a table, to provide the query planner with
better information to make decisions around index usage. VACUUM ANALYZE will compute both.

You should regularly vacuum your databases anyways. Many PostgreSQL DBAs run VACUUM as an off-peak cron job on a
regular basis.

¢ If vacuuming does not help, you can temporarily force the planner to use the index information by using the command SET
ENABLE_SEQSCAN TO OFF;. This way you can check whether the planner is at all able to generate an index-accelerated
query plan for your query. You should only use this command for debugging; generally speaking, the planner knows better
than you do about when to use indexes. Once you have run your query, do not forget to run SET ENABLE_SEQSCAN TO
ON; so that the planner will operate normally for other queries.

» If SET ENABLE_SEQSCAN TO OFF; helps your query to run faster, your Postgres is likely not tuned for your hardware. If
you find the planner wrong about the cost of sequential versus index scans try reducing the value of RANDOM_PAGE_COST in
postgresqgl.conf, or use SET RANDOM_PAGE_COST TO 1.1;. The default value for RANDOM_PAGE_ COST is 4.0.
Try setting it to 1.1 (for SSD) or 2.0 (for fast magnetic disks). Decreasing the value makes the planner more likely to use index
scans.

« If SET ENABLE_SEQSCAN TO OFF; does not help your query, the query may be using a SQL construct that the Postgres
planner is not yet able to optimize. It may be possible to rewrite the query in a way that the planner is able to handle.

For example, a subquery with an inline SELECT may not produce an efficient plan, but could possibly be rewritten using a
LATERAL JOIN.

For more information see the Postgres manual section on Query Planning.

https://www.postgresql.org/docs/current/runtime-config-query.html

PostGIS 3.2.6 Manual 55/873

Chapter 5

Spatial Queries

The raison d’etre of spatial databases is to perform queries inside the database which would ordinarily require desktop GIS
functionality. Using PostGIS effectively requires knowing what spatial functions are available, how to use them in queries, and
ensuring that appropriate indexes are in place to provide good performance.

5.1 Determining Spatial Relationships

Spatial relationships indicate how two geometries interact with one another. They are a fundamental capability for querying
geometry.

5.1.1 Dimensionally Extended 9-Intersection Model

According to the OpenGIS Simple Features Implementation Specification for SQL, "the basic approach to comparing two ge-
ometries is to make pair-wise tests of the intersections between the Interiors, Boundaries and Exteriors of the two geometries and
to classify the relationship between the two geometries based on the entries in the resulting “intersection’ matrix."

In the theory of point-set topology, the points in a geometry embedded in 2-dimensional space are categorized into three sets:

Boundary

The boundary of a geometry is the set of geometries of the next lower dimension. For POINTs, which have a dimension
of 0, the boundary is the empty set. The boundary of a LINESTRING is the two endpoints. For POLYGONSs, the boundary
is the linework of the exterior and interior rings.

Interior

The interior of a geometry are those points of a geometry that are not in the boundary. For POINTS, the interior is the point
itself. The interior of a LINESTRING is the set of points between the endpoints. For POLYGONs, the interior is the areal
surface inside the polygon.

Exterior

The exterior of a geometry is the rest of the space in which the geometry is embedded; in other words, all points not in the
interior or on the boundary of the geometry. It is a 2-dimensional non-closed surface.

The Dimensionally Extended 9-Intersection Model (DE-9IM) describes the spatial relationship between two geometries by spec-
ifying the dimensions of the 9 intersections between the above sets for each geometry. The intersection dimensions can be
formally represented in a 3x3 intersection matrix.

For a geometry g the Interior, Boundary, and Exterior are denoted using the notation I(g), B(g), and E(g). Also, dim(s) denotes
the dimension of a set s with the domain of {0,1,2,F}:

http://www.opengeospatial.org/standards/sfs
http://en.wikipedia.org/wiki/DE-9IM

PostGIS 3.2.6 Manual 56 /873
e 0 => point
e 1 =>line
e 2 =>area
* F' =>empty set
Using this notation, the intersection matrix for two geometries a and b is:
Interior Boundary Exterior
Interior dim(I(a) N I(b)) dim(I(a) N B(b)) dim(I(a) N E(b))
Boundary dim(B(a) N I(b)) dim(B(a) N B(b)) dim(B(a) N E(b))
Exterior dim(E(a) N I(b)) dim(E(a) N B(b)) dim(E(a) N E(b))

Visually, for two overlapping polygonal geometries, this looks like:

PostGIS 3.2.6 Manual 57 /873

Interior Boundary Exterior
Interior
dim(I(a) N I(b))=2 | dim(I(a) NB(b)=1 | dim(I(a) NEDb))=2
Boundary
dim(B(a)N1I(b))=1 dim(B(a) Om B(b))= | dim(B(a) lm Eb)) =
Exterior
dim(E(a)n1(b)) =2 | 4 E(“)lm BO)) =\ i E(a) A Eb) =2

Reading from left to right and top to bottom, the intersection matrix is represented as the text string *212101212’.

For more information, refer to:

* OpenGIS Simple Features Implementation Specification for SQL (version 1.1, section 2.1.13.2)
» Wikipedia: Dimensionally Extended Nine-Intersection Model (DE-91IM)
* GeoTools: Point Set Theory and the DE-9IM Matrix

5.1.2 Named Spatial Relationships
To make it easy to determine common spatial relationships, the OGC SFS defines a set of named spatial relationship predi-

cates. PostGIS provides these as the functions ST_Contains, ST_Crosses, ST_Disjoint, ST_Equals, ST_Intersects, ST_Overlaps,
ST_Touches, ST_Within. It also defines the non-standard relationship predicates ST_Covers, ST_CoveredBy, and ST_ContainsProperly.

http://www.opengeospatial.org/standards/sfs
https://en.wikipedia.org/wiki/DE-9IM
http://docs.geotools.org/latest/userguide/library/jts/dim9.html

PostGIS 3.2.6 Manual 58 /873

Spatial predicates are usually used as conditions in SQL WHERE or JOIN clauses. The named spatial predicates automatically
use a spatial index if one is available, so there is no need to use the bounding box operator & & as well. For example:

SELECT city.name, state.name, city.geom
FROM city JOIN state ON ST _Intersects(city.geom, state.geom);

For more details and illustrations, see the PostGIS Workshop.

5.1.3 General Spatial Relationships

In some cases the named spatial relationships are insufficient to provide a desired spatial filter condition.

For example, consider a linear dataset representing a road network. It may be required to identify all road segments that
cross each other, not at a point, but in a line (perhaps to validate some business rule). In this case ST_Crosses does not
provide the necessary spatial filter, since for linear features it returns t rue only where they cross at a point.

A two-step solution would be to first compute the actual intersection (ST_Intersection) of pairs of road lines that spatially
intersect (ST_Intersects), and then check if the intersection’s ST_GeometryType is 'LINESTRING’ (properly dealing
with cases that return GEOMETRYCOLLECTIONs of [MULTI]POINTS, [MULTI]LINESTRINGS, etc.).

Clearly, a simpler and faster solution is desirable.

https://postgis.net/workshops/postgis-intro/spatial_relationships.html

PostGIS 3.2.6 Manual 59/873

A second example is locating wharves that intersect a lake’s boundary on a line and where one end of the wharf is up on
shore. In other words, where a wharf is within but not completely contained by a lake, intersects the boundary of a lake on
a line, and where exactly one of the wharf’s endpoints is within or on the boundary of the lake. It is possible to use a
combination of spatial predicates to find the required features:

¢ ST_Contains(lake, wharf) = TRUE
» ST_ContainsProperly(lake, wharf) = FALSE
e ST_GeometryType(ST_Intersection(wharf, lake)) = "LINESTRING’

ST_NumGeometries(ST_Multi(ST_Intersection(ST_Boundary(wharf), ST_Boundary(lake)))) = 1

... but needless to say, this is quite complicated.

These requirements can be met by computing the full DE-9IM intersection matrix. PostGIS provides the ST_Relate function to
do this:

SELECT ST_Relate('LINESTRING (1 1, 5 5)',
'"POLYGON ((3 3, 3 7, 7 7, 7 3, 33))");
st_relate

1010F0212

To test a particular spatial relationship, an intersection matrix pattern is used. This is the matrix representation augmented with
the additional symbols {T, *}:

e T => intersection dimension is non-empty; i.e. isin {0, 1, 2}

e x =>don’t care

Using intersection matrix patterns, specific spatial relationships can be evaluated in a more succinct way. The ST_Relate and the
ST_RelateMatch functions can be used to test intersection matrix patterns. For the first example above, the intersection matrix
pattern specifying two lines intersecting in a line is *1#1#%%]1 %%

—-— Find road segments that intersect in a line
SELECT a.id
FROM roads a, roads b
WHERE a.id != b.id
AND a.geom && b.geom
AND ST_Relate(a.geom, b.geom, '"lxlxx*xlxx");

PostGIS 3.2.6 Manual 60/873

For the second example, the intersection matrix pattern specifying a line partly inside and partly outside a polygon is "102101FF2’:

—-— Find wharves partly on a lake's shoreline
SELECT a.lake_id, b.wharf_id
FROM lakes a, wharfs b
WHERE a.geom && b.geom
AND ST_Relate(a.geom, b.geom, '102101FF2");

5.2 Using Spatial Indexes

When constructing queries using spatial conditions, for best performance it is important to ensure that a spatial index is used, if
one exists (see Section 4.9). To do this, a spatial operator or index-aware function must be used in a WHERE or ON clause of the

query.

Spatial operators include the bounding box operators (of which the most commonly used is &&; see Section 8.10.1 for the full
list) and the distance operators used in nearest-neighbor queries (the most common being <->; see Section 8.10.2 for the full list.)

Index-aware functions automatically add a bounding box operator to the spatial condition. Index-aware functions include the
named spatial relationship predicates ST_Contains, ST_ContainsProperly, ST_CoveredBy, ST_Covers, ST_Crosses, ST_Intersects,
ST_Overlaps, ST_Touches, ST_Within, ST_Within, and ST_3DIntersects, and the distance predicates ST_DWithin, ST_DFullyWithin,
ST_3DDFullyWithin, and ST_3DDWithin .)

Functions such as ST_Distance do not use indexes to optimize their operation. For example, the following query would be quite
slow on a large table:

SELECT geom
FROM geom_table
WHERE ST_Distance(geom, 'SRID=312;POINT (100000 200000)") < 100

This query selects all the geometries in geom_table which are within 100 units of the point (100000, 200000). It will be
slow because it is calculating the distance between each point in the table and the specified point, ie. one ST_Distance ()
calculation is computed for every row in the table.

The number of rows processed can be reduced substantially by using the index-aware function ST_DWithin:

SELECT geom
FROM geom_table
WHERE ST_DWithin(geom, 'SRID=312;POINT (100000 200000)"', 100)

This query selects the same geometries, but it does it in a more efficient way. This is enabled by ST_DWithin () using the &&
operator internally on an expanded bounding box of the query geometry. If there is a spatial index on the_geom, the query
planner will recognize that it can use the index to reduce the number of rows scanned before calculating the distance. The spatial
index allows retrieving only records with geometries whose bounding boxes overlap the expanded extent and hence which might
be within the required distance. The actual distance is then computed to confirm whether to include the record in the result set.

For more information and examples see the PostGIS Workshop.

5.3 Examples of Spatial SQL

The examples in this section will make use of two tables, a table of linear roads, and a table of polygonal municipality boundaries.
The table definitions for the bc__roads table is:

Column | Type | Description

____________ o

gid | integer | Unique ID

name | character varying | Road Name

the_geom | geometry | Location Geometry (Linestring)

https://postgis.net/workshops/postgis-intro/indexing.html

PostGIS 3.2.6 Manual 61/873

The table definition for the bc_municipality table is:

Column | Type | Description

,,,,,,,,,,, T

gid | integer | Unique ID

code | integer | Unique ID

name | character varying | City / Town Name

the_geom | geometry | Location Geometry (Polygon)

1. What is the total length of all roads, expressed in kilometers?

You can answer this question with a very simple piece of SQL:

SELECT sum(ST_Length (the_geom)) /1000 AS km_roads FROM bc_roads;

km_roads

70842.1243039643
(1 row)

2. How large is the city of Prince George, in hectares?

This query combines an attribute condition (on the municipality name) with a spatial calculation (of the area):

SELECT

ST_Area (the_geom) /10000 AS hectares
FROM bc_municipality
WHERE name = 'PRINCE GEORGE';

hectares

32657.9103824927
(1 row)

3. What is the largest municipality in the province, by area?

This query brings a spatial measurement into the query condition. There are several ways of approaching this problem, but
the most efficient is below:

SELECT

name,

ST_Area (the_geom) /10000 AS hectares
FROM

bc_municipality
ORDER BY hectares DESC

LIMIT 1;

name | hectares
_______________ +_________________
TUMBLER RIDGE | 155020.02556131
(1 row)

Note that in order to answer this query we have to calculate the area of every polygon. If we were doing this a lot it would
make sense to add an area column to the table that we could separately index for performance. By ordering the results in a
descending direction, and them using the PostgreSQL "LIMIT" command we can easily pick off the largest value without
using an aggregate function like max().

4. What is the length of roads fully contained within each municipality?

This is an example of a "spatial join", because we are bringing together data from two tables (doing a join) but using a
spatial interaction condition ("contained") as the join condition rather than the usual relational approach of joining on a
common key:

PostGIS 3.2.6 Manual 62 /873

SELECT
m.name,
sum (ST_Length (r.the_geom)) /1000 as roads_km
FROM
bc_roads AS r,
bc_municipality AS m
WHERE
ST_Contains (m.the_geom, r.the_geom)
GROUP BY m.name
ORDER BY roads_km;

name | roads_km

____________________________ e

SURREY | 1539.47553551242

VANCOUVER | 1450.33093486576

LANGLEY DISTRICT | 833.793392535662

BURNABY | 773.769091404338
|

PRINCE GEORGE 694.37554369147

This query takes a while, because every road in the table is summarized into the final result (about 250K roads for our
particular example table). For smaller overlays (several thousand records on several hundred) the response can be very
fast.

5. Create a new table with all the roads within the city of Prince George.

This is an example of an "overlay", which takes in two tables and outputs a new table that consists of spatially clipped or
cut resultants. Unlike the "spatial join" demonstrated above, this query actually creates new geometries. An overlay is like
a turbo-charged spatial join, and is useful for more exact analysis work:

CREATE TABLE pg_roads as
SELECT
ST_Intersection(r.the_geom, m.the_geom) AS intersection_geom,
ST_Length(r.the_geom) AS rd_orig_length,
r.x*
FROM
bc_roads AS r,
bc_municipality AS m
WHERE
m.name = 'PRINCE GEORGE'
AND ST_Intersects(r.the_geom, m.the_geom);

6. What is the length in kilometers of "Douglas St" in Victoria?

SELECT

sum (ST_Length (r.the_geom)) /1000 AS kilometers
FROM

bc_roads r,

bc_municipality m

WHERE
r.name = 'Douglas St'
AND m.name = 'VICTORIA'

AND ST_Intersects (m.the_geom, r.the_geom);

kilometers

4.89151904172838
(1 row)

7. What is the largest municipality polygon that has a hole?

PostGIS 3.2.6 Manual 63 /873

SELECT gid, name, ST_Area(the_geom) AS area
FROM bc_municipality

WHERE ST_NRings (the_geom) > 1

ORDER BY area DESC LIMIT 1;

gid | name | area

_____ e
12 | SPALLUMCHEEN | 257374619.430216
(1 row)

PostGIS 3.2.6 Manual 64 /873

Chapter 6

Performance Tips

6.1 Small tables of large geometries

6.1.1 Problem description

Current PostgreSQL versions (including 9.6) suffer from a query optimizer weakness regarding TOAST tables. TOAST tables
are a kind of "extension room" used to store large (in the sense of data size) values that do not fit into normal data pages (like long
texts, images or complex geometries with lots of vertices), see the PostgreSQL Documentation for TOAST for more information).

The problem appears if you happen to have a table with rather large geometries, but not too many rows of them (like a table
containing the boundaries of all European countries in high resolution). Then the table itself is small, but it uses lots of TOAST
space. In our example case, the table itself had about 80 rows and used only 3 data pages, but the TOAST table used 8225 pages.

Now issue a query where you use the geometry operator && to search for a bounding box that matches only very few of those
rows. Now the query optimizer sees that the table has only 3 pages and 80 rows. It estimates that a sequential scan on such a
small table is much faster than using an index. And so it decides to ignore the GIST index. Usually, this estimation is correct.
But in our case, the && operator has to fetch every geometry from disk to compare the bounding boxes, thus reading all TOAST
pages, too.

To see whether your suffer from this issue, use the "EXPLAIN ANALYZE" postgresql command. For more information and
the technical details, you can read the thread on the PostgreSQL performance mailing list: http://archives.postgresql.org/pgsql-
performance/2005-02/msg00030.php

and newer thread on PostGIS https://lists.osgeo.org/pipermail/postgis-devel/2017-June/026209.html

6.1.2 Workarounds

The PostgreSQL people are trying to solve this issue by making the query estimation TOAST-aware. For now, here are two
workarounds:

The first workaround is to force the query planner to use the index. Send "SET enable_seqscan TO off;" to the server before
issuing the query. This basically forces the query planner to avoid sequential scans whenever possible. So it uses the GIST index
as usual. But this flag has to be set on every connection, and it causes the query planner to make misestimations in other cases,
so you should "SET enable_seqscan TO on;" after the query.

The second workaround is to make the sequential scan as fast as the query planner thinks. This can be achieved by creating an
additional column that "caches" the bbox, and matching against this. In our example, the commands are like:

SELECT AddGeometryColumn ('myschema', 'mytable', '"bbox', '4326"', '"GEOMETRY"', '2");
UPDATE mytable SET bbox = ST_Envelope (ST_Force2D (geom)) ;

Now change your query to use the && operator against bbox instead of geom_column, like:

http://www.postgresql.org/docs/current/static/storage-toast.html
http://archives.postgresql.org/pgsql-performance/2005-02/msg00030.php
http://archives.postgresql.org/pgsql-performance/2005-02/msg00030.php
https://lists.osgeo.org/pipermail/postgis-devel/2017-June/026209.html

PostGIS 3.2.6 Manual 65/873

SELECT geom_column
FROM mytable
WHERE bbox && ST_SetSRID('BOX3D(0 0,1 1)'::box3d,4326);

Of course, if you change or add rows to mytable, you have to keep the bbox "in sync". The most transparent way to do this would
be triggers, but you also can modify your application to keep the bbox column current or run the UPDATE query above after
every modification.

6.2 CLUSTERing on geometry indices

For tables that are mostly read-only, and where a single index is used for the majority of queries, PostgreSQL offers the CLUS-
TER command. This command physically reorders all the data rows in the same order as the index criteria, yielding two
performance advantages: First, for index range scans, the number of seeks on the data table is drastically reduced. Second, if
your working set concentrates to some small intervals on the indices, you have a more efficient caching because the data rows
are spread along fewer data pages. (Feel invited to read the CLUSTER command documentation from the PostgreSQL manual
at this point.)

However, currently PostgreSQL does not allow clustering on PostGIS GIST indices because GIST indices simply ignores NULL
values, you get an error message like:

lwgeom=# CLUSTER my_geom_index ON my_table;
ERROR: cannot cluster when index access method does not handle null values
HINT: You may be able to work around this by marking column "geom" NOT NULL.

As the HINT message tells you, one can work around this deficiency by adding a "not null" constraint to the table:

lwgeom=# ALTER TABLE my_table ALTER COLUMN geom SET not null;
ALTER TABLE

Of course, this will not work if you in fact need NULL values in your geometry column. Additionally, you must use the above
method to add the constraint, using a CHECK constraint like "ALTER TABLE blubb ADD CHECK (geometry is not null);" will
not work.

6.3 Avoiding dimension conversion

Sometimes, you happen to have 3D or 4D data in your table, but always access it using OpenGIS compliant ST_AsText() or
ST_AsBinary() functions that only output 2D geometries. They do this by internally calling the ST_Force2D() function, which
introduces a significant overhead for large geometries. To avoid this overhead, it may be feasible to pre-drop those additional
dimensions once and forever:

UPDATE mytable SET geom = ST_Force2D (geom) ;
VACUUM FULL ANALYZE mytable;

Note that if you added your geometry column using AddGeometryColumn() there’ll be a constraint on geometry dimension. To
bypass it you will need to drop the constraint. Remember to update the entry in the geometry_columns table and recreate the
constraint afterwards.

In case of large tables, it may be wise to divide this UPDATE into smaller portions by constraining the UPDATE to a part of the
table via a WHERE clause and your primary key or another feasible criteria, and running a simple "VACUUM;" between your
UPDATE:s. This drastically reduces the need for temporary disk space. Additionally, if you have mixed dimension geometries,
restricting the UPDATE by "WHERE dimension(geom)>2" skips re-writing of geometries that already are in 2D.

PostGIS 3.2.6 Manual 66 /873

Chapter 7

Building Applications

7.1 Using MapServer

The Minnesota MapServer is an internet web-mapping server which conforms to the OpenGIS Web Map Service specification.

* The MapServer homepage is at http://mapserver.org.

* The OpenGIS Web Map Service specification is at http://www.opengeospatial.org/standards/wms.

7.1.1 Basic Usage

To use PostGIS with MapServer, you need to know how to configure MapServer, which is beyond the scope of this documentation.
This section covers specific PostGIS issues and configuration details.

To use PostGIS with MapServer, you will need:

e Version 0.6 or newer of PostGIS.

* Version 3.5 or newer of MapServer.

MapServer accesses PostGIS/PostgreSQL data like any other PostgreSQL client, using the 1ibpq interface. This means that
MapServer can be installed on any machine with network access to the PostGIS server, and use PostGIS as a source of data. The
faster the connection between the systems, the better.

1. Compile and install MapServer, with whatever options you desire, including the "--with-postgis" configuration option.

2. In your MapServer map file, add a PostGIS layer. For example:

LAYER
CONNECTIONTYPE postgis
NAME "widehighways"
Connect to a remote spatial database
CONNECTION "user=dbuser dbname=gisdatabase host=bigserver"
PROCESSING "CLOSE_CONNECTION=DEFER"
Get the lines from the 'geom' column of the 'roads' table
DATA "geom from roads using srid=4326 using unique gid"

STATUS ON

TYPE LINE

Of the lines in the extents, only render the wide highways
FILTER "type = 'highway' and numlanes >= 4"

CLASS

Make the superhighways brighter and 2 pixels wide

http://mapserver.org
http://www.opengeospatial.org/standards/wms

PostGIS 3.2.6 Manual 67 /873

EXPRESSION ([numlanes] >= 6)
STYLE
COLOR 255 22 22
WIDTH 2
END
END
CLASS
All the rest are darker and only 1 pixel wide
EXPRESSION ([numlanes] < 6)
STYLE
COLOR 205 92 82
END
END
END

In the example above, the PostGIS-specific directives are as follows:

CONNECTIONTYPE For PostGIS layers, this is always "postgis".

CONNECTION The database connection is governed by the a ’connection string’ which is a standard set of keys and
values like this (with the default values in <>):
user=<username> password=<password> dbname=<username> hostname=<server> port=<5432>
An empty connection string is still valid, and any of the key/value pairs can be omitted. At a minimum you will
generally supply the database name and username to connect with.

DATA The form of this parameter is "<geocolumn> from <tablename> using srid=<srid> using unique <primary key>"
where the column is the spatial column to be rendered to the map, the SRID is SRID used by the column and the
primary key is the table primary key (or any other uniquely-valued column with an index).

You can omit the "using srid" and "using unique" clauses and MapServer will automatically determine the correct
values if possible, but at the cost of running a few extra queries on the server for each map draw.

PROCESSING Putting in a CLOSE_CONNECTION=DEFER if you have multiple layers reuses existing connections
instead of closing them. This improves speed. Refer to for MapServer PostGIS Performance Tips for a more detailed
explanation.

FILTER The filter must be a valid SQL string corresponding to the logic normally following the "WHERE" keyword in
a SQL query. So, for example, to render only roads with 6 or more lanes, use a filter of "num_lanes >= 6".

. In your spatial database, ensure you have spatial (GiST) indexes built for any the layers you will be drawing.

CREATE INDEX [indexname] ON [tablename] USING GIST ([geometrycolumn]);

. If you will be querying your layers using MapServer you will also need to use the "using unique" clause in your DATA
statement.

MapServer requires unique identifiers for each spatial record when doing queries, and the PostGIS module of MapServer
uses the unique value you specify in order to provide these unique identifiers. Using the table primary key is the best
practice.

7.1.2 Frequently Asked Questions

1. When I use an EXPRESSION in my map file, the condition never returns as true, even though I know the values exist in

my table.
Unlike shape files, PostGIS field names have to be referenced in EXPRESSIONS using lower case.

EXPRESSION ([numlanes] >= 6)

. The FILTER I use for my Shapefiles is not working for my PostGIS table of the same data.

Unlike shape files, filters for PostGIS layers use SQL syntax (they are appended to the SQL statement the PostGIS con-
nector generates for drawing layers in MapServer).

http://blog.cleverelephant.ca/2008/10/mapserverpostgis-performance-tips.html

PostGIS 3.2.6 Manual 68 /873

FILTER "type = 'highway' and numlanes >= 4"

3. My PostGIS layer draws much slower than my Shapefile layer, is this normal?

In general, the more features you are drawing into a given map, the more likely it is that PostGIS will be slower than
Shapefiles. For maps with relatively few features (100s), PostGIS will often be faster. For maps with high feature density
(1000s), PostGIS will always be slower. If you are finding substantial draw performance problems, it is possible that you
have not built a spatial index on your table.

postgis# CREATE INDEX geotable_gix ON geotable USING GIST (geocolumn);
postgis# VACUUM ANALYZE;

4. My PostGIS layer draws fine, but queries are really slow. What is wrong?

For queries to be fast, you must have a unique key for your spatial table and you must have an index on that unique key.You
can specify what unique key for mapserver to use with the USING UNIQUE clause in your DATA line:

DATA "geom FROM geotable USING UNIQUE gid"

5. Can I use "geography" columns (new in PostGIS 1.5) as a source for MapServer layers?

Yes! MapServer understands geography columns as being the same as geometry columns, but always using an SRID of
4326. Just make sure to include a "using srid=4326" clause in your DATA statement. Everything else works exactly the
same as with geometry.

DATA "geog FROM geogtable USING SRID=4326 USING UNIQUE gid"

7.1.3 Advanced Usage

The USING pseudo-SQL clause is used to add some information to help mapserver understand the results of more complex
queries. More specifically, when either a view or a subselect is used as the source table (the thing to the right of "FROM" in a
DATA definition) it is more difficult for mapserver to automatically determine a unique identifier for each row and also the SRID
for the table. The USING clause can provide mapserver with these two pieces of information as follows:

DATA "geom FROM (
SELECT
tablel.geom AS geom,
tablel.gid AS gid,
table2.data AS data
FROM tablel
LEFT JOIN table2
ON tablel.id = table2.id
) AS new_table USING UNIQUE gid USING SRID=4326"

USING UNIQUE <uniqueid> MapServer requires a unique id for each row in order to identify the row when doing map
queries. Normally it identifies the primary key from the system tables. However, views and subselects don’t automatically
have an known unique column. If you want to use MapServer’s query functionality, you need to ensure your view or
subselect includes a uniquely valued column, and declare it with USING UNIQUE