PostGIS 3.3.0rc2 Manual

PostGIS 3.3.0rc2 Manual ii

Contents

1 Introduction 1
1.1 Project Steering COMMILIEE o v vttt et e e e e e e e e e e e e e e e e e 1
1.2 Core Contributors Present 1
1.3 Core Contributors Past L 2
1.4 Other Contributors o o e e e e e e e 2

2 PostGIS Installation 5
2.1 Short Version e e e e 5
2.2 Compiling and Install from Source e 5

2.2.1 Gettingthe Source e 6

2.2.2 Install Requirements e e e e e e e e e e e e e 6

2.2.3 Build configuration L e 7

224 Building 9

2.2.5 Building PostGIS Extensions and Deployingthem 9

226 Testing e e e e e e e e e 11

227 Installation e e e e e e e 14

2.3 Installing and Using the address standardizer 15
2.3.1 Installing Regex::Assemble e e e e e 15

2.4 Installing, Upgrading Tiger Geocoder and loading data 15
2.4.1 Tiger Geocoder Enabling your PostGIS database: Using Extension 16
24.1.1 Converting a Tiger Geocoder Regular Install to Extension Model 18

2.4.2 Tiger Geocoder Enabling your PostGIS database: Not Using Extensions 18

2.4.3 Using Address Standardizer Extension with Tiger geocoder 19

244 Loading TigerData 19

2.4.5 Upgrading your Tiger Geocoder Install 19

2.5 Common Problems during installation e 20

PostGIS 3.3.0rc2 Manual iii
3 PostGIS Administration 21
3.1 Performance Tuning L e e e e e e 21
311 Startup ..o e e e 21
3.1.2 Runtime oo e e e e 22

3.2 Configuring raster SUPPOTt v v v v v i e 22
3.3 Creating spatial databases e e e 23
3.3.1 Spatially enable database using EXTENSION 23

3.3.2 Spatially enable database without using EXTENSION (discouraged) 23

3.3.3 Create a spatially-enabled database from atemplate 24

3.4 Upgrading spatial databases L e e e e e e e 24
34.1 Softupgrade L 24
3.4.1.1 Soft Upgrade 9.1+ using eXtensions« v v v v vttt e 24

34.1.2 Soft Upgrade Pre 9.1+ or without extensions 25

342 Hardupgrade oL 26

4 Data Management 28
4.1 Spatial DataModel L 28
411 OGC GEOMELIY . . . v v v v e e e e e e e e e e e e e e e e e e e 28
4111 Point 29

4.1.1.2 LineString e e 29

4.1.1.3 LinearRing e e 29

4.1.1.4 Polygon e 29

4.1.1.5 MultiPoint oL e e e 29

4.1.1.6 MultiLineString L e e 29

4.1.1.7 MultiPolygon e 30

4.1.1.8 GeometryCollection e e e e e e 30

4.1.1.9 PolyhedralSurface e 30

4.1.1.10 Triangle e e e e 30

41111 TIN Lo e 30

412 SQL/MMPart3-Curves o v ot e e e e 30
4.1.2.1 CircularString 31

4.1.2.2 CompoundCurve o vt e e e e e e e e e e e e 31

4123 CurvePolygon e 31

4.1.2.4 MultiCurve e 31

4.1.25 MultiSurface L. 31

413 WKTand WKB e 32

42 Geometry Data Type o e e e e e 33
42.1 PostGISEWKB and EWKT e 33

4.3 Geography DataType e 35

PostGIS 3.3.0rc2 Manual iv

4.3.1 Creating Geography Tables 35

4.3.2 Using Geography Tables e e 36

4.3.3 Whentouse the Geography datatype e 37
43.4 Geography Advanced FAQ 37

4.4 Geometry Validation L e e e e e e e e 38
4.4.1 Simple GEOMELTY o v o i i e e e e e e e e e e e e e e e e 38
442 Valid GEOmetry e e e e 40

4.43 Managing Validity e 42

4.5 Spatial Reference Systems L e e e e e e e e e e e e 43
4.5.1 SPATIAL_REF_SYS Table ettt e 43
4.5.2 User-Defined Spatial Reference Systems L 45

4.6 Spatial Tables L e e e e e e e 45
4.6.1 CreatingaSpatial Table L 45

4.6.2 GEOMETRY_COLUMNS View e e e e e e e e e e e s s s 46

4.6.3 Manually Registering Geometry Columns e 47

4.7 Loading Spatial Data e 49
471 UsingSQLtoLoadData 49

4.7.2 Using the Shapefile Loader e 49

4.8 Extracting Spatial Data e 51
48.1 UsingSQLtoExtractData e 51

4.8.2 Using the Shapefile Dumper e 52

4.9 Spatial Indexes e 52
49.1 GISTIndexes o e e 53
49.2 BRINIndexes. e 53

4.9.3 SP-GISTIndexes o i e 55
494 TuningIndex Usage e 56

5 Spatial Queries 57
5.1 Determining Spatial Relationships L 57
5.1.1 Dimensionally Extended 9-Intersection Model 57

5.1.2 Named Spatial Relationships 59

5.1.3 General Spatial Relationships L 60

5.2 Using Spatial Indexes o e e e e e e 62
5.3 Examples of Spatial SQL L e e 62
6 Performance Tips 65
6.1 Small tables of large geometries e e e e 65
6.1.1 Problemdescription L e 65

6.1.2 Workarounds 65

6.2 CLUSTERing on geometry indices o o v it ittt e e e e e 66

6.3 Avoiding dimension CONVersion e e e e e 66

PostGIS 3.3.0rc2 Manual v
7 Building Applications 67
7.1 Using MapServer o ot e e e e e e e e e e e 67
7.1.1 BasicUsage o oL e e 67

7.1.2 Frequently Asked Questions L e e e e 68

7.1.3 Advanced Usage e e e e 69

7.1.4 Exampleso e 70

7.2 JavaClients JDBC) e e e 71
7.3 CClients (libpq)« o o o 72
731 TextCursors o v o i i e e e e e e e e e e e 72

7.3.2 Binary CUISOTS o v o ot e e e e e e e e e e e e e e e e e e 72
PostGIS Reference 73
8.1 PostGIS Geometry/Geography/Box Data Types 0 i i i e 73
.11 box2d 73

8.1.2 box3d e 74

8.1.3 GEOMELIY o e e e e e 74

8.1.4 geometry_dump L e e e e 75

8.1.5 geography e e 75

8.2 Table Management Functions L e 75
8.2.1 AddGeometryColumn e 75

8.2.2 DropGeometryColumn L e e e e e e e 77

8.2.3 DropGeometryTable e 78

824 Find_SRID 79

8.2.5 Populate_Geometry_Columns e e e e e e e e 79

8.2.6 UpdateGeometrySRID L 81

8.3 Geometry CONSLIUCIOTS v v v v i i e 82
8.3.1 ST _Collect o e s 82

8.3.2 ST _LineFromMultiPoint e e 84

8.3.3 ST_MakeEnvelope e e e e 84

8.3.4 ST Makelline s 85

8.3.5 ST_MakePoint e 86

8.3.6 ST MakePoIintM e e s 87

8.3.7 ST_MakePolygon e 88

8.3.8 ST _Point e 90

8.3.9 ST PointZ e s 91
8.3.10 ST_PointM e 92
83.11 ST_PointZM o e e 92
8.3.12 ST_Polygon e 93
8.3.13 ST_TileEnvelope o o e e 94

PostGIS 3.3.0rc2 Manual Vi

8.4

8.3.14 ST_HexagonGrid e e 94
8.3.15 ST_Hexagon 0t i e e e e e 97
8.3.16 ST_SquareGrid e e 98
8.3.17 ST_Square o o e e e e e 99
8.3.18 ST Letters o o e e e 100
GEOMELTY ACCESSOTS + & v v v v v e 101
8.4.1 GeometryType e e e e 101
8.4.2 ST_Boundary e e e e e e e 102
8.4.3 ST_BoundingDiagonal 104
8.4.4 ST CoordDim e e e s 105
8.4.5 ST DImMension o o i s 106
84.6 ST Dump e e e 106
8.4.7 ST_DumpPoints e 108
8.4.8 ST_DumpSegments i i e e e e e e e e e 112
849 ST DumpRings e 114
8.4.10 ST _EndPoint e e s 115
8.4.11 ST_Envelope e e e 116
8.4.12 ST_ExteriorRing e e e 118
8.4.13 ST_GeometryN L e e e e 119
8.4.14 ST_GeometryType o o i e e e e e e e 121
8415 ST_HaSAIC o e e 122
8.4.16 ST_InteriorRingN e e e e 122
8.4.17 ST_IsClosed o o o e e 123
8.4.18 ST _ISCollection o o i e e e e e e e s 125
8.4.19 ST_ISEmpty e 126
8.4.20 ST_IsPolygonCCW L . e e e e e e e 127
8.4.21 ST IsPolygonCW L e 128
8.4.22 ST_ISRIng 129
8.4.23 ST_IsSimple e 129
8424 ST_M . . . o 130
8.4.25 ST MemSize o 131
8426 ST_NDIMS ot e e e 132
8427 ST_NPOINtS o e e e 133
8428 ST_NRINGS o o 134
8.4.29 ST _NumGeOMELIi€S v i e e e e e e e e e e e e e e e e 134
8.4.30 ST_NumlnteriorRings e e 135
8.4.31 ST_NumlnteriorRing o e 136
8.4.32 ST NumPatches e e 136
8.4.33 ST _NumPoints e e e e 137

PostGIS 3.3.0rc2 Manual vii

8.5

8.4.34 ST _PatchN 137
8.4.35 ST_PointN 138
8436 ST _Points o o o e 140
8.4.37 ST _StartPoint e e 140
8.4.38 ST_Summary e e e e e 141
8.4.39 ST_X . . o 143
8.4.40 STLY . . o o 143
8441 ST_Z o 144
8.4.42 ST Zmflag« e 145
Geometry EItOrs L e e e e e 146
8.5.1 ST_AddPoint e 146
8.5.2 ST CollectionEXtract o o e e e 147
8.5.3 ST_CollectionHOMOZENIZE o v it ittt et e e e e e 148
854 ST CurveToLine e 149
8.5.5 ST_Scroll o o 152
8.5.6 ST_FlipCoordinates i it e e e e e e e e e e e e 153
8.5.7 ST _Force2D 153
8.5.8 ST Force3D s 154
8.5.9 ST Force3DZ e 155
8.5.10 ST _Force3DM e s 156
8.5.11 ST _ForcedD e 156
8.5.12 ST _ForcePolygonCCW e e e e e e 157
8.5.13 ST ForceCollection o v e e e e e e 158
8.5.14 ST _ForcePolygonCW e e e e 159
8.5.15 ST_ForceSFS o 159
8.5.16 ST ForceRHR e e 160
8.5.17 ST _ForceCurve o e e e 160
8.5.18 ST _LIneToCurve o e e e e e e e e e e s 161
8519 ST Multi o o 163
8.5.20 ST Normalize e e 163
8.5.21 ST_QuantizeCoordinates 0 i i it e e e e e e e e e 164
8.5.22 ST _RemovePoInt e e e e 166
8.5.23 ST_RemoveRepeatedPoints L 166
8.5.24 ST _REVEISE o v o o e s 167
8.5.25 ST_Segmentize o L e e e e e e e 168
8.5.26 ST_SetPoint 169
8.5.27 ST_ShiftLongitude L 170
8.5.28 ST_WrapX o e e e e e 171
8.529 ST SnapToGrid e 172

PostGIS 3.3.0rc2 Manual viii

8.6

8.7

8.8

8.5.30 ST_Snap 173
8.5.31 ST_SwapOrdinates it e e e e e e e e e e 176
Geometry Validation L 177
8.6.1 ST_IsValid 177
8.6.2 ST _IsValidDetail e 178
8.6.3 ST IsValidReason 0 e e 180
8.6.4 ST _MakeValid L e 181
Spatial Reference System Functions e e e 186
8.7.1 ST_SetSRID e 186
8.7.2 ST_SRID e 187
8.7.3 ST Transform s 188
Geometry Input L e e e e 190
8.8.1 Well-Known Text (WKT) e e 190
8.8.1.1 ST_BdPolyFromText e e e e e 190
8.8.1.2 ST_BdMPolyFromText e 191
8.8.1.3 ST_GeogFromText e e 191
8.8.1.4 ST_GeographyFromText e 192
8.8.1.5 ST_GeomCollFromText e e 192
8.8.1.6 ST GeomFromEWKT e 193
8.8.1.7 ST_GeometryFromText e e 194
8.8.1.8 ST GeomFromText e 194
8.8.1.9 ST _LineFromText e 196
8.8.1.10 ST MLineFromText o s 197
8.8.1.11 ST_MPointFromText e e e 197
8.8.1.12 ST_MPolyFromText e 198
8.8.1.13 ST_PointFromText e e 199
8.8.1.14 ST PolygonFromText 200
8.8.1.15 ST_WKTToSQL e 201
8.8.2 Well-Known Binary (WKB) e 201
8.8.2.1 ST_GeogFromWKB e 201
8.8.2.2 ST_GeomFromEWKB e 202
8.8.2.3 ST _GeomFromWKB e 203
8.8.24 ST LineFromWKB e 204
8.8.2.5 ST LinestringFromWKB 205
8.8.2.6 ST PointFromWKB e 205
8.8.27 ST_WKBToSQL 206
8.8.3 Other Formats e e 207
8.8.3.1 ST_Box2dFromGeoHash e 207

8.8.3.2 ST_GeomFromGeoHash e 207

PostGIS 3.3.0rc2 Manual iX
8.8.3.3 ST GeomFromGML e 208

8.8.3.4 ST_GeomFromGeoJSON e 211

8.8.3.5 ST GeomFromKML e 212

8.8.3.6 ST_GeomFromTWKB e 212

8.83.7 ST_GMLToSQL 213

8.8.3.8 ST_LineFromEncodedPolyline 213

8.8.3.9 ST PointFromGeoHash 214
8.8.3.10 ST_FromFlatGeobufToTable e 215
8.8.3.11 ST FromFlatGeobuf s 215

8.9 Geometry OUIPUL e e e e e e e e e e e 215
8.9.1 Well-Known Text (WKT) e e e e e e 215
89.1.1 ST_ASEWKT 215

8.9.1.2 ST _ASText o 217

8.9.2 Well-Known Binary (WKB) e e 218
8.9.2.1 ST _AsBinary 218

8.9.22 ST_ASsEWKB 219

8923 ST _ASsHEXEWKB 220

8.9.3 OtherFormats 221
8.9.3.1 ST_AsEncodedPolyline 221

8.9.3.2 ST_AsFlatGeobuf 222

8933 ST _AsGeobuf 223

8.9.3.4 ST_AsGeoJSON 223

8935 ST _AsGML 225

893.6 ST_AsKML 228

8.9.3.7 ST_AsLatLonText e 229

8.9.3.8 ST _ASMVTGEOM o o o o o e e e e 231

8.9.3.9 ST _AsMVT 231
8.9.3.10 ST_AsSVG 233
8.93.11 ST_ASTWKB 233
8.9.3.12 ST_AsX3D 234
8.9.3.13 ST _GeoHash. 238

.10 OPerators v v o e e e e e e e e e e e e e 239
8.10.1 Bounding Box Operators e 239
8011 && o 239
8.10.1.2 &&(geometry,box2df) L 240
8.10.1.3 &&(box2df,geometry) e e 240
8.10.1.4 &&(box2df,box2df) 241
8.10.1.5 &&& 242
8.10.1.6 &&&(geometry,gidX) L e 243

PostGIS 3.3.0rc2 Manual X

8.10.1.7 &&&(gidx,geometry) e 244
8.10.1.8 &&&(gidx,gidX) 245
8.10.1.9 &< . . . 245
80110 &<l o o 246
0111 &> . . . o 247
0112 << o 248
0113 <<l . . 248
80114 = . . . o 249
0115 >> . . o 250
8I10.1.1I6 @ 251
8.10.1.17 @(geometry,box2df) 252
8.10.1.18 @(box2df,geometry) e e e e e e e e e e 253
8.10.1.19 @(box2df,box2df) L 253
810.1.20 1&> o 254
0121 I>> . . o o 255
8.10.1.22 ~ o 256
8.10.1.23 ~(geometry,box2df) L 256
8.10.1.24 ~(box2df,geometry) e e e e e e e 257
8.10.1.25 ~(box2df,box2df) 258
8.10.1.26 ~= 259
8.10.2 Distance Operatorsttt e e e e e e e e e e 259
8102.1 <> . 259
8.10.2.2 1=l . 261
81023 <> . . . 262
81024 <<->> Lo 263
81025 <<#>> . o L e 264
8.11 Spatial Relationships 265
8.11.1 Topological Relationships e e e 265
8. 11.1.1 ST_3DINtersects o o v v o o e e e e e e e e 265
8.11.1.2 ST _Contains v v e e e e e e e e e 266
8.11.1.3 ST _ContainsProperly e 269
8.11.1.4 ST_CoveredBy e e e e 270
8. 11.1.5 ST_CoVers o e s 271
8. 11.1.6 ST_CrOSSES . . . o v v e e e e e e e e e e e e e 273
8.11.1.7 ST_Disjoint e 275
8.11.1.8 ST_Equals 276
8.11.1.9 ST_INtersects o v v i e e e e e 277
8.11.1.10 ST_LineCrossingDirection ittt 278

8.11.1.11 ST OrderingEquals e 281

PostGIS 3.3.0rc2 Manual Xi

8.11.1.12 ST_Overlaps o o e 282
8.11.1.13 ST_Relate e e 285
8.11.1.14 ST_RelateMatch e 287
8.11.1.15 ST_Touches e e 288
8.11.1.16 ST_Within 290

8.11.2 Distance Relationships e e e e 291
8.11.2.1 ST _3DDWithin 291
8.11.2.2 ST _3DDFullyWithin e 292
8.11.2.3 ST _DFullyWithin e 293
8.11.2.4 ST DWithin e 294
8.11.2.5 ST PointlnsideCircle s 295

8.12 Measurement Functions L. 296
8.12.1 ST_Area e 296
8.12.2 ST_Azimuth e e 298
8.12.3 ST_Angle e 299
8.12.4 ST _ClosestPoint e e e e e 300
8.12.5 ST 3DClosestPoint s 302
8.12.6 ST _DIStance o o o o e e e e s 303
8.12.7 ST_3DDIStance v v v vt e e e e e e e e e e e e e e e 305
8.12.8 ST_DistanceSphere e e e e e e e e e 306
8.12.9 ST_DistanceSpheroid e 306
8.12.10 ST _FrechetDistance o o o o e e e e e e e e s30T
8.12.11 ST HausdorffDistance o o e s 308
8.12.12ST_Length e e e e e e e e o310
8.12.13ST_Length2D 311
8.12.14ST_3DLength e e e e e 312
8.12.15 ST _LengthSpheroid e 312
8.12.16 ST_Longestline i e e e e e e e e e e e e e 313
8.12.17ST_3DLongestLine o e e e e e e 315
8. 12.18 ST _MaxDistance e e e e e e e e s 3T
8.12.19 ST_3DMaxDiStance v v v i e e e e e e e e e 317
8.12.20 ST _MinimumClearance o v v v i i e e e e e e e 318
8.12.21 ST_MinimumClearancelLine e e 319
8.12.22 ST Perimeter o o o e e e s 319
8.12.23 ST _Perimeter2D e e e 321
8.12.24 ST _3DPerimeter o e e e e e e e e 322
81225 ST_Project o e e 322
8.12.26 ST_Shortestline e e e e 323

8.12.27 ST_3DShortestLine e 324

PostGIS 3.3.0rc2 Manual Xii

8.13

8.14

Overlay Functions e e 325
8.13.1 ST_ClipByBox2D e e 325
8.13.2 ST Difference o s 326
8.13.3 ST INtersection v v i e e e e e e e 328
8.13.4 ST MemUnion o o s 331
8.13.5 ST_Node e e 331
8.13.6 ST_Split 332
8.13.7 ST_Subdivide e 334
8.13.8 ST_SymbDifference e e 337
8.13.9 ST_UnaryUnion i e e e e e e e e e e 338
A3 10ST_Union o e e e 339
Geometry Processing e e e e e e 341
8.14.1 ST_Buffer 341
8.14.2 ST _BuildArea L . 346
8.14.3 ST_Centroid e 347
8.14.4 ST_ChaikinSmoothing e e e e e 349
8.14.5 ST ConcaveHull e 350
8.14.6 ST ConvexHull. e 353
8.14.7 ST_DelaunayTriangles o e e e e 354
8.14.8 ST _FilterByM e e 0359
8.14.9 ST _GeneratePoInts e e e 360
8.14.10 ST _GeometricMedian o i i e e e e300
81411 ST_LineMerge o o o e e e 362
8.14.12 ST _MaximumlInscribedCircle e o304
8.14.13 ST_MinimumBoundingCircle e 366
8.14.14 ST_MinimumBoundingRadius e 3067
8.14.15 ST_OrientedEnvelope o . e e e 368
8.14.16 ST_OffsetCurve e e e e e 369
8.14.17 ST_PointOnSurface e 373
8.14.18 ST_Polygonize e e e e e e e e e e e e e e s3T5
8.14.19 ST_ReducePrecision 0 0 i e e e e 376
8.14.20 ST_SharedPaths e e 378
81421 ST_Simplify o 379
8.14.22 ST_SimplifyPreserveTopology e 380
8.14.23 ST_SimplifyPolygonHull o 381
8.14.24 ST_SimplifyVW . . o e 384
8.14.25 ST_SetEffectiveArea e e 384
8.14.26 ST_TriangulatePolygon o e 386

8.14.27 ST_VoronoilLines e e 387

PostGIS 3.3.0rc2 Manual xiii

8.14.28 ST_VoronoiPolygons 388
8.15 Affine Transformations e e 391
8.15.1 ST_Affine 391
8.15.2 ST _Rotate o e s 393
8.15.3 ST_RotateX e 394
8.15.4 ST _RotateY o o e e 395
8.15.5 ST_RotateZ e 395
8.15.6 ST_Scale e 397
8.15.7 ST Translate e e e 398
8.15.8 ST _TransScale e e 399
8.16 Clustering Functions e 400
8.16.1 ST_ClusterDBSCAN L e e 400
8.16.2 ST_ClusterIntersecting o v v it et e e e e e e e e e e e 402
8.16.3 ST ClusterKMeans 0 e e e e e 402
8.16.4 ST ClusterWithin s 404
8.17 Bounding Box Functions e e e e e e e 405
8.17.1 Box2D 405
8.17.2 Box3D . . . 406
8.17.3 ST EstimatedEXtent s 407
8.17.4 ST_Expand e e e e e 407
8.17.5 ST_EXtent o o o e e e 409
8.17.6 ST_3DEXent o ot e e e e e e e e e 410
8.17.7 ST_MakeBox2D 411
8.17.8 ST _3DMakeBox e e e 412
8.17.9 ST _XMaX o v ittt e e e e 412
SATAOST_XMIN . . . o v v e e e e e e e 413
BATALST_YMaAX o o s e e e 414
SATA2ST_YMIN o e 415
BATA3ST_ZMaX o o e e e 416
BATIAST_ZMIN o e 417
8.18 Linear Referencing L 418
8.18.1 ST_LinelnterpolatePoint e e e e 418
8.18.2 ST_3DLinelnterpolatePoint L e 420
8.18.3 ST_LinelnterpolatePoints e e e e e e 421
8.18.4 ST _LineLocatePoint e e e e 422
8.18.5 ST_LineSubstring o e e e 423
8.18.6 ST_LocateAlong e e e e e 424
8.18.7 ST LocateBetween o e e e 425

8.18.8 ST _LocateBetweenElevations e e 427

PostGIS 3.3.0rc2 Manual Xiv

8.19

8.20

8.21

8.22

8.18.9 ST_InterpolatePoint 427
81810 ST _AdAMEAasUre o e e e e e e e e s 428
Trajectory Functions e 429
8.19.1 ST_IsValidTrajectory o o it e e e e e e e e e e e e e e e e e 429
8.19.2 ST _ClosestPointOfApproach 430
8.19.3 ST DistanceCPA e e 431
8.19.4 ST_CPAWIthin L . e 431
SFCGAL FunCtions o i ittt e e e e e e e e e e e e 432
8.20.1 postgis_sfcgal_version e e 432
8.20.2 postgis_sfcgal_full_version e e e e 433
8.20.3 ST _3DAIrCa o ot e e 433
8.20.4 ST_3DConvexHull e 434
8.20.5 ST 3DINtersection o v v v v e e e e e e e 435
8.20.6 ST 3DDifference e e e e 437
8.20.7 ST 3DUNION o ot e e e e e 438
8.20.8 ST_AlphaShape 439
8.20.9 ST_ApproximateMedialAXiso 442
8.20.10 ST_ConstrainedDelaunayTriangles e e 443
820.11ST_Extrude e 444
8.20.12 ST _ForceLHR e 446
820.13ST_IsPlanar e 446
8.20.14 ST_IsSolid o 446
8.20.15ST_MakeSolid L 447
8.20.16 ST_MinkowskiSum e e 447
8.20.17 ST_OptimalAlphaShape e 449
8.20. 18 ST_Orientation v v v ot e e e e e e e s 451
8.20.19 ST_StraightSkeleton o e e e e 452
8.20.20 ST_Tesselate o o e e e s 453
8.20.21 ST_Volume e e 455
Long Transaction SUPPOIt o o i e e e e e e e e e e e e e 456
821.1 AddAuth 456
8.21.2 CheckAuth 457
8.21.3 DisableLongTransactions L e e 458
8.21.4 EnableLongTransactions o v v v ittt e e e e e e e 458
8.21.5 LockRow L e 459
8.21.6 UnlockROWS o . 459
Version Functions oL e e e e e e 460
8.22.1 PostGIS_Extensions_Upgrade e 460

8.22.2 PostGIS_Full_Version e e 461

PostGIS 3.3.0rc2 Manual XV

8.22.3 PostGIS_GEOS_Version o o o s 461
8.22.4 PostGIS_Liblwgeom_Version ittt e e e 462
8.22.5 PostGIS_LibXML_Version e e e 462
8.22.6 PostGIS_Lib_Build_Date e 463
8.22.7 PostGIS_Lib_Version s 463
8.22.8 PostGIS_PROJ_Version 0 0 o o e e e 464
8.22.9 PostGIS_Wagyu_Version i e e e e e 464
8.22.10 PostGIS_Scripts_Build_Date e 465
8.22.11 PostGIS_Scripts_Installed 465
8.22.12 PostGIS_Scripts_Released L e e 466
8.22. 13 PostGIS_Version e e e 466

8.23 Grand Unified Custom Variables (GUCS) e et e e e e 467
8.23.1 postgis.backend L 467
8.23.2 postgis.gdal_datapath L e e e 467
8.23.3 postgis.gdal_enabled_drivers L. e 468
8.23.4 postgis.enable_outdb_rasters L. e e 470
8.23.5 postgis.gdal_config_options e e e e e 470

8.24 Troubleshooting Functions e e 471
8.24.1 PostGIS_AddBBOX e 471
8.24.2 PostGIS_DropBBox e 472
8.24.3 PostGIS_HasBBoX e 472

9 PostGIS Frequently Asked Questions 474
10 Topology 479
10.1 Topology TYPES . . . o v o o o e e e e e e e e e e e e e e e e 479
10.1.1 getfaceedges_returntype o v v it e e e e e e e e e e 479
10.1.2 TopoGeometryt it i e e e e e e e e e e e e 480
10.1.3 validatetopology_returntype v v i it e e e e e e e e e 480

10.2 Topology Domains o e e e e e e e e e e e e 481
10.2.1 TopoElement e 481
10.2.2 TopoElementArray o o i i e e e e 481

10.3 Topology and TopoGeometry Managementt i i i vttt 482
10.3.1 AddTopoGeometryColumn 0 e e e e e 482
10.3.2 DropTopology o e e e e e 483
10.3.3 DropTopoGeometryColumn oot e 483
10.3.4 Populate_Topology_Layer e e 484
10.3.5 TopologySummary e e e e e e 485

10.3.6 ValidateTopology o e e 486

PostGIS 3.3.0rc2 Manual XVi

10.3.7 ValidateTopologyRelation e 488
10.3.8 FindTopology o o e e e e 488
10.3.9 FindLayer o o e e e 488
10.4 Topology Statistics Management v v v it et e e e e e e e e e e e e e e 489
10.5 Topology ConsStructors o v v i it et e e e e e e e e e e e e e e 489
10.5.1 CreateTopology o v v e e e e e e e 489
10.5.2 CopyTopology o o i e e e e e 490
10.5.3 ST_InitTopoGeo o i e e e e e e e e e e e e 491
10.5.4 ST_CreateTopoGeo o o i i e e e e e e e 491
10.5.5 TopoGeo_AddPoint e e e 492
10.5.6 TopoGeo_AddLineString o e e 493
10.5.7 TopoGeo_AddPolygon e e e e e 493
10.6 Topology Editors e 494
10.6.1 ST_AddIsoNode e 494
10.6.2 ST_AddIsoEdge 494
10.6.3 ST_AddEdgeNewFaces e e 495
10.6.4 ST_AddEdgeModFace 495
10.6.5 ST_RemEdgeNewFace e e e e 496
10.6.6 ST_RemEdgeModFace 497
10.6.7 ST_ChangeEdgeGeom 0 i i e e e e e e e e 497
10.6.8 ST_ModEdgeSplit 498
10.6.9 ST_ModEdgeHeal e e e 499
10.6.10 ST_NewEdgeHeal e 499
10.6.11 ST _MovelsoNode e e e s 500
10.6.12 ST_NewEdgesSplit 501
10.6.13 ST_RemovelsoNode e e e 501
10.6.14 ST_RemovelsoEdge o e 502
10.7 Topology ACCESSOTS . . v v v v o et e 503
10.7.1 GetEdgeByPoint e 503
10.7.2 GetFaceByPoint e e e e 503
10.7.3 GetFaceContainingPoint L e 504
10.7.4 GetNodeByPoint e e e 505
10.7.5 GetTopologyID e e 505
10.7.6 GetTopologySRID e 506
10.7.7 GetTopologyName e 506
10.7.8 ST_GetFaceEdges e e e 507
10.7.9 ST_GetFaceGeometry o vt vttt et e e e e e e 508
10.7.10 GetRingEdges L e 508

10.7.11 GetNodeEdges e 509

PostGIS 3.3.0rc2 Manual XVii

10.8 Topology Processing e e 509
10.8.1 Polygonize e e e 509
10.8.2 AddNode 510
10.8.3 AddEdge e e 511
10.8.4 AddFace 512
10.8.5 ST_Simplify o o e e e 513
10.8.6 RemoveUnusedPrimitives e e e 514

10.9 TopoGeometry CONSIIUCIOTS v v v v v v v e 514
10.9.1 CreateTopoGeom i 514
10.9.2 toTopoGeom L e e e e e 516
10.9.3 TopoElementArray_Agg o o i i e e e 517

10.10TopoGeometry Editors L e e 518
10.10.1 clearTopoGeom it e e e e e e e e e e e e 518
10.10.2 TopoGeom_addElement e e 518
10.10.3 TopoGeom_remElement L e e e e e 519
10.10.4 TopoGeom_addTopoGeom o v v i it et e e e e e e e e e 519
10.10.5t0TopoGeom L L e e e e 520

10.11TopoGeometry ACCESSOIS v v v v v ot e it e e e e e e e e e e e e e e e e e 520
10.11.1 GetTopoGeomElementArray o0t i e e e e e 520
10.11.2 GetTopoGeomElements o . . e e e 521
10.11.3ST_SRID o e e 521

10.12TopoGeometry OUPULS o v v vttt i e e e e e e e e e e e e e e 522
10.12.1 AsGML . . L L e e 522
10.12.2 AsTopoJSON . . . o e e 524

10.13Topology Spatial Relationships 525
10131 Equals e e e 525
TOA3.2INMErSECS « . . o v v o e e e e e e e e e e e e e e e 526

10.14Importing and exporting Topologies e 527
10.14.1 Using the Topology eXporter o o v i i i e e e e e e e e e e e e e e 527
10.14.2 Using the Topology Importer v v i i vt e e ettt e e 527

11 Raster Data Management, Queries, and Applications 528

11.1 Loading and Creating Rasters 528
11.1.1 Using raster2pgsql to load rasters o it e e e e 528
11.1.2 Creating rasters using PostGIS raster functions Lo oL 532
11.1.3 Using "outdb" cloud rasters o i i i e 532

11.2 Raster Catalogs o o e e e e e e e 533
11.2.1 Raster Columns Catalog e 533

11.2.2 Raster OVEIVIEWS v o o o e e e e e e e e e e e e 534

PostGIS 3.3.0rc2 Manual XViii

11.3 Building Custom Applications with PostGIS Raster 535
11.3.1 PHP Example Outputting using ST_AsPNG in concert with other raster functions 535
11.3.2 ASP.NET C# Example Outputting using ST_AsPNG in concert with other raster functions 536
11.3.3 Java console app that outputs raster query asImage file 000, 537
11.3.4 Use PLPython to dump outimages viaSQL 539
11.3.5 Outputting Rasters with PSQLo o539

12 Raster Reference 540

12.1 Raster Support Datatypes L e 541
12.1.1 geomval e e e e e e e 541
12.1.2 addbandarg e 541
12.1.3 rastbandarg e 541
12,14 1aster e e e 542
12.1.5 reclassarg e e 542
12.1.6 sUMMAryStats o vt e 543
1217 Unionarg o oo e e e e e 543

12.2 Raster Management oL Lo e e e e e e e e e e e e e 544
12.2.1 AddRasterConstraints e e e e e e e e e e 544
12.2.2 DropRasterConstraints e e e e e e e 545
12.2.3 AddOverviewConstraints o vt e e e e e e e e e e e 546
12.2.4 DropOverviewConStraints v v v v v i it e e e e e e e e e e e e e e e e e 547
12.2.5 PostGIS_GDAL_Version 0 v e e e e e 548
12.2.6 PostGIS_Raster_Lib_Build Date 548
12.2.7 PostGIS_Raster_Lib_Version e e e 549
12.2.8 ST_GDALDIIVErS o o o e e e e 549
1229 ST_Contour o e e e e e e 553
12.2.10 ST_InterpolateRaster e e e 554
12.2.11 UpdateRasterSRID o . e 555
12212 ST_CreateOVerview o o ittt e e et e e e e e e e e e 556

12.3 Raster COnSIruCtorsottt e e e e e 556
12.3.1 ST_AddBand e 556
12.3.2 ST _ASRASIEr o o e e e e s 559
1233 ST Band o e e 561
12.3.4 ST_MakeEmptyCoverage o i i e e e e 562
12.3.5 ST_MakeEmptyRaster e 563
12.3.6 ST_Tile o e e 564
1237 ST_Retileo 567
12.3.8 ST _FromGDALRaASter e e e 567

12.4 RaSter ACCESSOIS . . v v v v o o o e e e e e e e 568

PostGIS 3.3.0rc2 Manual Xix

12.4.1 ST _GeoReference s 568
12.42 ST_Height o e e 569
12.43 ST_ISEmpty o 569
1244 ST MemSize o o e e e 570
1245 ST MetaData e e 571
12.4.6 ST NumBands e e 571
12.477 ST_PixelHeight 572
12.4.8 ST_PixelWidth o e 573
12.49 ST_ScaleX 574
12.4.10ST_ScaleY o o e e 574
12.4.11 ST RasterToWorldCoord e e 575
12.4.12 ST_RasterToWorldCoordX o e e 576
12.4.13 ST RasterToWorldCoordY e 577
12.4.14 ST_Rotation o o e e e e s 578
12415 ST_SkewX o o e 578
12416 ST_SKewY e 579
12417 ST_SRID 580
12418 ST_SUmMmary o o ot e e e e e e e e e e e e e e e e e 580
12.4.19 ST _UpperLeftX 581
12.420 ST_UpperLeftY o o e e e e e e e 582
12421 ST_Width o e 582
12.4.22 ST _WorldToRasterCoord e e e 583
12.4.23 ST WorldToRasterCoordX e e 583
12.4.24 ST _WorldToRasterCoordY o o e e e 584
12.5 Raster Band ACCESSOTS o o v o e e e e e e 585
12.5.1 ST BandMetaData e e e 585
12.5.2 ST _BandNoDataValue e 586
12.5.3 ST BandIsNoData e e e 587
1254 ST_BandPath 588
12.5.5 ST_BandFileSize e 589
12.5.6 ST_BandFileTimestamp o . L 0 e e e e e e 589
12.5.7 ST_BandPixelType o e e e e e e e e e 590
12.5.8 ST _MinPossibleValue e 591
12.5.9 ST _HasNoBand e s 591
12.6 Raster Pixel Accessors and Setters Lo e e e e e 592
12.6.1 ST_PixelAsPolygon 0592
12.6.2 ST_PixelAsPolygons e 593
12.6.3 ST_PixelAsPoint e 594

12.6.4 ST _PixelAsPoints e e e 594

PostGIS 3.3.0rc2 Manual XX

12.6.5 ST PixelAsCentroid s 595
12.6.6 ST _PixelAsCentroids 0 e e e e 596
12.6.7 ST_Value 597
12.6.8 ST NearestValue e e e 600
12.6.9 ST_SetZ e 602
12.6.10ST_SetM o e e e 603
12.6.11 ST_Neighborhood e 604
12.6.12ST_SetValue o e e 606
12.6.13 ST _SetValues o s 607
12.6.14 ST_DumpValues o e e e e e e e e 615
12.6.15ST_PixelOfValue 616
12,7 Raster EAitors o 617
12.7.1 ST SetGeoReference 617
12.7.2 ST_SetRotation e e e e s 619
12.7.3 ST_SetScale 619
12.7.4 ST_SetSkew o o e 620
12.7.5 ST_SetSRID 621
12.7.6 ST_SetUpperLeft e e e 621
1277 ST_Resample o L e e e 622
12.7.8 ST_Rescale e e s 623
1279 ST_ReskeW o o 624
12.7.10 ST_SnapToGrid e e e e e e e e 625
12711 ST_ReSIZE o o o o e e 626
12.7.12 ST_Transform o e e e e e 628
12.8 Raster Band Editors L e e e 631
12.8.1 ST_SetBandNoDataValue e 631
12.8.2 ST _SetBandIsNoData e 631
12.8.3 ST _SetBandPath e 633
12.8.4 ST SetBandIndex e e 634
12.9 Raster Band Statistics and Analytics L e e e e e e e 636
129.1 ST_Count o o e e 636
12.9.2 ST_CountAgg o o i e e e 636
12.9.3 ST_Histogram 0 e e e e e e 637
1294 ST Quantile L e e e 639
12.9.5 ST_SummaryStats o o e e e e e e e 641
12.9.6 ST_SummaryStatsAgg o o e e e e e 643
12.9.7 ST _ValueCount e e e 644
12.10Raster INputs o e e e e e e e e e 646

12.10.1 ST_RastFromWKB o e 646

PostGIS 3.3.0rc2 Manual XXi

12.10.2 ST _RastFromHexWKB e 647
12.11Raster OULPULS o o o o e it e e e e e e e e e e e e e e e e 648
12.11.1 ST_AsBinary/ST_AsWKB 648
12.11.2ST_AsHexWKB o e 649
12.11.3 ST_ASGDALRASIEr o oottt e e e e 649
1211A4ST_ASIPEG . .« . o 650
12115 ST_ASPNG 651
12116 ST_ASTIFF o o e e e e e 652
12.12Raster Processing: Map Algebra 653
12120 ST_CLHpP - . o o o e e e e e e e 653
12.122ST_ColorMap e 656
12,123 ST_Grayscale o e e e e e e e e e 659
12.12.4 ST INtersection o v o v o s 661
12.12.5 ST_MapAlgebra (callback function version) 662
12.12.6 ST_MapAlgebra (expression Version) v v v v v i i i i e e e 669
12.12.7 ST_MapAlgebraEXpr e e e e e e 671
12.12.8 ST_MapAlgebraEXpr o e e 673
12.12.9 ST_MapAlgebraFct. e e e e e 678
12.12.166T_MapAlgebraFct e 682
12.12.18T_MapAlgebraFctNgb e e e 686
12.12.18T Reclass o e 688
1212 0BT _Union o o0 o e e e e 689
12.13Built-in Map Algebra Callback Functions e 691
12.13.1 ST_DIstinctdma o o e e e e e e e e e e e e 691
12.13.2 ST_InvDistWeightdma o e e 692
12133 ST _Max4ma o o ottt e e e e e e 692
12.13.4ST Meandma o o e e e e e 693
12135 ST_MiIndma o o o e e e e e e 695
12.13.6 ST_MinDistdma o e e e e e e 696
12.13. 7ST_Rangedma o ot e e e e e e e e e e e e e e e 696
12.13.8ST_StdDev4Ama e e 697
12139 ST _Sumédma o e 698
12.14Raster Processing: DEM (Elevation) L e 699
12141 ST_ASPECt . . o o o e e e e e e e e e e 699
12,142 ST_HillShade 701
12.143ST_Roughness o o e e 703
12,144 ST_SIOpe o o o e 703
12145 ST_TPL .« . o o e 705

12146 ST_TRI e e 706

PostGIS 3.3.0rc2 Manual Xxii

12.15Raster Processing: Raster to Geometry e e 706
12.15.1Box3D . . . L 706
12.152ST_ConvexHull L . o e 707
12.15.3 ST_DumpAsPolygons e 708
12,154 ST_Envelope o o e 709
12.15.5 ST_MinConvexHull e 710
12.15.6 ST_Polygon e e e e 711

12.16Raster Operators vttt e e e e e e e e e e e e e e e 712
12.16.1 && . . . o o e 712
12,162 &< o o e 713
12103 &> . o o 713
12,164 = . L L 714
12165 @ . . . o 715
12.16.6 ~= e e 715
12.10.7 ~ o e 716

12.17Raster and Raster Band Spatial Relationships L 716
12171 ST_Contains v v v v o o e e e e e e e e s 716
12.17.2ST_ContainsProperly o e e 717
12.17.3 ST _COVEIS o o o e e s 718
12.17.4ST_CoveredBy 719
12175 ST _DIsjoint o o o o oo o e e e e e e e e e e 720
12.17.6 ST_INtersects o o o o e e e e e e e 721
12177 ST_Overlaps o o e e 722
12.17.8 ST_Touches o o e e e 723
12.17.9 ST_SameAlignment e e 723
12.17.16T_NotSameAlignmentReason e 724
1217 18T_Withino oo e e 725
1217.08T_DWithin o Lo e e e 726
121713T_DFullyWithin 00 e 727

12.18Raster TIPS o o o o e 728
12.18.10ut-DB Rasters o e e e e 728

12.18.1.1 Directory containing many files L 728
12.18.1.2 Maximum Number of Open Files 728
12.18.1.2.1 Maximum number of open files for the entire system 729
12.18.1.2.2 Maximum number of open files per process 729

13 PostGIS Raster Frequently Asked Questions 732

PostGIS 3.3.0rc2 Manual xxiii
14 PostGIS Extras 736
14.1 Address Standardizer L. e e 736
14.1.1 How the Parser Works e 736
14.1.2 Address Standardizer Types L e 736
14.1.2.1 stdaddro e 736

14.1.3 Address Standardizer Tables L 737
14.1.3.1 rulestable e e e 737

14.1.3.2 lextable e 740

14.1.33 gaztable e 740

14.1.4 Address Standardizer Functions L e 741
14.1.4.1 parse_address e 741

14.1.4.2 standardize address e e e 742

14.2 Tiger GEoCOdeT v v it e e e e e e e e e 744
14.2.1 Drop_Indexes_Generate_SCript o o it e e e 744
14.2.2 Drop_Nation_Tables_Generate_Script o i e 745
14.2.3 Drop_State_Tables_Generate_Script i i v i e e e e e 745
1424 Geocode e 746
1425 Geocode_Intersection e e 748
14.2.6 Get_Geocode_Setting L e e 749
14.2.7 Get_Tract e e s 750
14.2.8 Install_Missing_Indexes o e e 751
1429 Loader_Generate_Census_SCript. o vttt it e 752
14.2.10 Loader_Generate_Script o e e e e e e e 754
14.2.11 Loader_Generate_Nation_Script e e 756
14.2.12 Missing_Indexes_Generate_Script o 757

14.2. 13 Normalize_ Address e e 757
14.2.14 Pagc_Normalize_Address i i i e e e e e e e 759
14.2.15Pprint_Addy 760
142,16 Reverse_Geocode L e e 761
14.2.17 Topology_Load_Tiger o i i i e e e e e 763
14.2.18 Set_Geocode_Setting e e e 765

15 PostGIS Special Functions Index 767
15.1 PostGIS Aggregate Functions e e e e 767
15.2 PostGIS Window Functions e 767
15.3 PostGIS SQL-MM Compliant Functions e 768
15.4 PostGIS Geography Support Functions e e e 772
15.5 PostGIS Raster Support Functions e 774
15.6 PostGIS Geometry / Geography / Raster Dump Functions 779

PostGIS 3.3.0rc2 Manual XXiV

15.7 PostGIS Box Functions e 779
15.8 PostGIS Functions that support 3D e 780
15.9 PostGIS Curved Geometry Support Functions e 785
15.10PostGIS Polyhedral Surface Support Functions L o o 788
15.11PostGIS Function Support Matrix e e e 791
15.12New, Enhanced or changed PostGIS Functions e 798
15.12.1 PostGIS Functions new or enhanced in3.3 oo 798
15.12.2 PostGIS Functions new or enhanced in3.2 799
15.12.3 PostGIS Functions new or enhanced in 3.1 801
15.12.4 PostGIS Functions new or enhanced in 3.0 o 802
15.12.5 PostGIS Functions new or enhancedin 2.5 L e 804
15.12.6 PostGIS Functions new or enhanced in 2.4 805
15.12.7 PostGIS Functions new or enhanced in 2.3 L e 806
15.12.8 PostGIS Functions new or enhanced in2.2 L o Lo 808
15.12.9 PostGIS functions breaking changes in 2.2 L 810
15.12.1PostGIS Functions new or enhanced in 2.1 Lo 811
15.12.1 PostGIS functions breaking changesin 2.1 e 815
15.12.1PostGIS Functions new, behavior changed, or enhancedin2.0 816
15.12.1P0stGIS Functions changed behaviorin2.0 823
15.12.120stGIS Functions new, behavior changed, or enhancedin 1.5 825
15.12.1PostGIS Functions new, behavior changed, or enhancedin 1.4 826
15.12.1@0stGIS Functions new in 1.3 L L e 827

16 Reporting Problems 828
16.1 Reporting Software Bugs L 828
16.2 Reporting Documentation Issues e 828
A Appendix 829
Al PostGIS 3.3.0rc2 e 829
ALl BugFixes e e e e e 829

A2 PostGIS 3.3.0rcl e e 829
A2.1 BugFixes 830

A3 PostGIS 3.3.0beta e e 830
A3.1 NewPFeatures e e 830
A.3.2 Enhancements L e e e e e 830
A33 BugFixes 830

A4 PostGIS 3.3.0betal e 831
A4.1 Enhancements L e e e e e e 831

A.42 Newfeatures e 831

PostGIS 3.3.0rc2 Manual XXV

Ad3 BugFix 831
A5 PostGIS 3.3.0alphal e e e e 831
A.5.1 Breakingchanges L 832
A52 Enhancements L e e e 832
AS53 Newfeatures e 832
AS54 BugFix e 832
A.6 PostGIS 3.2.0 (Olivier Courtin Edition) e 833
A.6.1 Breakingchanges e e e e e 833
A.6.2 Enhancements e 833
A63 Newfeatures e 834
A7 PostGIS 3.2.0beta3 L e 835
A.7.1 Breaking changes/fiXes e e e e 835
A.8 Release 3.2.0beta2 L e e e 835
A.8.1 Breaking changes/fiXes e e e e e 835
A.8.2 Enhancements L e e 836
A9 Release 3.2.0betal e e 836
A.9.1 BugFixes and Breaking Changes 836
A92 Enhancements e e 836
A.10 Release 3.2.0alphal L e 836
A.10.1 Breakingchanges L e e e e 836
A.10.2 Enhancements L e e e e e e 837
A10.3 New features o L oo e e 837
A.11 Release 3.1.0betal L e e 838
A.11.1 Breakingchanges e e e e e e 838
A.11.2 Enhancements L e e e e e 838
A.12 Release 3.1.0alpha3 e e e 838
A.12.1 Breakingchanges L e e e 838
A12.2 New features o o o o e e e 839
A.12.3 Enhancements L e e e e e e 839
Ad24 BugFixes o o o 839
A.13 Release 3.1.0alpha2 e 839
A.13.1 New Features o 840
A.13.2 Enhancements L e e e e e 840
Ad33 BugfiXes e e 840
A.14 Release 3.1.0alphal e 840
A.14.1 Breaking Changes e 840
A 142 New features o o o o e e e e e 841
A.14.3 Enhancementso e e 841

A.15 Release 3.0.0 L e e 841

PostGIS 3.3.0rc2 Manual XXVi

A.15.1 New Features e 841
A.15.2 Breaking Changes e e e e 842
A.15.3 Enhancements L e e e e 842
A.16 Release 3.0.0rc2 oL e e 843
A.16.1 Major highlights e 844
A.17 Release 3.0.0rcl o L e 844
A.17.1 Major highlights 844
A.18 Release 3.0.0betal e e 844
A.18.1 Major highlights e 844
A.19 Release 3.0.0alphad L e e e e e 845
A.19.1 Major highlights 845
A.20 Release 3.0.0alpha3 e e e e 845
A.20.1 Major highlights 845
A.21 Release 3.0.0alpha2 L e e e e 846
A.21.1 Major highlights 846
A.22 Release 3.0.0alphal L e e e e 846
A22.1 New Features e e 846
A23 Release 2.5.0 e 846
A.23.1 New Features e e 847
A.23.2 Breaking Changes e e e e e e 847
A24 Release 2.4.5 . . . L e e 848
A24.1 BugFixes o o e e e e e e 848
A25 Release 2.4.4 . . . L L e e 849
A25.1 BugFixes o o e e e e 849
A.25.2 Enhancementsl e e e e e e 849
A26 Release 2.4.3 . . . L L L e 849
A.26.1 Bug Fixes and Enhancements oL 849
A2T7 Release 2.4.2 . . . L L L e 850
A.27.1 BugFixes and Enhancements L 850
A28 Release 2.4.1 L L e 850
A.28.1 Bug Fixes and Enhancements L 850
A29 Release 2.4.0 L L e 850
A29.1 New Features e 851
A.29.2 Enhancements and Fixes e 851
A.29.3 Breaking Changes L 852
A30 Release 2.3.3 . . . L e 852
A30.1 Bug Fixes and Enhancements L 852
A3l Release 2.3.2 L L e 852

A31.1 Bug Fixes and Enhancements L 852

PostGIS 3.3.0rc2 Manual XXVii

A32 Release 2.3.1 L e e e 853
A.32.1 Bug Fixes and Enhancements e 853
A33 Release 2.3.0 L e e e 853
A.33.1 Important / Breaking Changes e e e 853
A.33.2 New Features e e e 853
A333 BugFixes o o e 854
A.33.4 Performance Enhancements 854
A34 Release 2.2.2 . . . L e e 854
A34.1 New Features e 855
A35Release 2.2.1 . . . L. e e 855
A35.1 New Features e e 855
A36 Release 2.2.0 e 856
A36.1 New Features e 856
A36.2 Enhancements e e e 857
A37 Release 2.1.8 L e e 858
A37.1 BugFixes o o e e e e e e e 858
A38 Release 2.1.7 L e e e e 858
A38.1 BugFixes e e e e e e 858
A39 Release 2.1.6 858
A.39.1 Enhancements e e 858
A392 BugFixes o o e e 859
AdO0 Release 2.1.5 859
A.40.1 Enhancements L e e e e e 859
A40.2 BugFixes o o e 859
A4l Release 2.1.4 L L e e 859
A41.1 Enhancements L e e e 859
AA4L2 BugFixes o o e 860
Ad2 Release 2.1.3 . . . L L e 860
AA42.1 Important changes L e e e e e e e 860
Ad2.2 BugFixes o e e e e e e e 861
AAd3 Release 2.1.2 L e e e 861
AA43.1 BugFixes o e e e e e e 861
A43.2 Enhancements L e e e e e e e e e 861
Ad4d Release 2.1.1 . . . oL L e 862
A44.1 Important Changes e 862
Ad42 BugFixes o o 862
A44.3 Enhancementsl e e e e e e 862
A4S Release 2.1.0 . . . oL e 862

A.45.1 Important / Breaking Changes e 862

PostGIS 3.3.0rc2 Manual XXViii

AA45.2 New Features e 863
A45.3 Enhancements e e e 864
AdS5.4 FIXES . . o o v 866
AA4S5S5 KnownIssues oL e 867
A6 Release 2.0.5 867
A46.1 BugFixes o e e e e e e 867
A.46.2 Tmportant Changes e 867
AdT Release 2.0.4 . . . L L e 867
Ad7.1 BugFixes 867
A47.2 Enhancementso e e e e e 868
AA4T73 Knownlssues o L e e e e 868
Ad8 Release 2.0.3 868
A48.1 BugFixes 869
A48.2 Enhancements e e e e 869
AA49 Release 2.0.2 L e e 869
AA49.1 BugFixes o e e e e e 869
A49.2 Enhancementsl e e e e e e e 870
ASORelease 2.0.1 e 870
AS0.1 BugFixes o L e 871
A.50.2 Enhancements e e 872
AS1 Release 2.0.0 L e e 872
A.51.1 Testers - Ourunsung heroes i e e e e e e 872
A.51.2 Important / Breaking Changes 872
ASL3 New Features 0 e 873
A.51.4 Enhancementsl e e e e e e 873
ASLS BugFixes o e e e e e e 874
A.51.6 Release specificcredits L L 874
A52 Release 1.5.4 L L e 874
AS52.1 BugFixes o L 874
AS53 Release 1.5.3 .« . . o L e 875
AS53.1 BugFixes Lo 875
A54 Release 1.5.2 . . . o L L e 875
AS54.1 BugFixes o L 875
AS55 Release 1.5.1 . . o o L L e 876
AS5.1 BugFixes o e 876
AS56 Release 1.5.0 L L e 876
A56.1 APIStability 877
A.56.2 Compatibility e e e e e e e e 877

A.56.3 New Features e 877

PostGIS 3.3.0rc2 Manual XXiX

A.56.4 Enhancements e e e e e e e e 878
AS6.5 Bugfixes e e e e e e 878
AS5T Release 1.4.0 o 878
AST.1 APIStability 878
A.57.2 Compatibility L. e 878
AST73 NewFeatures o0 878
A.57.4 Enhancements L e 879
AST.S Bugfixeso o . o e e e e e e e 879
AS8 Release 1.3.6 e 879
AS9 Release 1.3.5 . . . 879
A.60 Release 1.3.4 o 880
A6l Release 1.3.3 880
A.62 Release 1.3.2 o 880
A.63 Release 1.3.1 880
A.64 Release 1.3.0 e 880
A.64.1 Added Functionality e e e e e e e 880
A.64.2 Performance Enhancements 880
A.64.3 Other Changes o o i i e e e e e e e e e e e e e 881
A.65 Release 1.2.1 . . . o o o e 881
AB5.1 Changes o o e e e e e e e e e 881
A.66 Release 1.2.0 o 881
AB0.1 Changes o o e e e e e e e 881
A.67 Release 1.1.6 o e 881
A67.1 Upgrading e e e e e e e 881
A67.2 BugfiXes 882
A.67.3 Otherchanges. o e e e e e e e e 882
A68 Release 1.1.5 o oL 882
A68.1 Upgrading e e e e e e 882
A68.2 BUgfixes e 882
A.683 New Features e 882
A.69 Release 1.1.4 o e 882
A69.1 Upgrading e e e e e e e 883
A69.2 Bugfixes e 883
A.69.3 Javachanges 883
A0 Release 1.1.3 L e 883
A70.1 Upgrading o e e 883
A70.2 Bug fiXes / COITECINESS v vttt it e e e e e e 883
A.703 New functionalities L L 884

A70.4 JDBCchanges e e 884

PostGIS 3.3.0rc2 Manual XXX

A.70.5 Otherchanges. o e e 884
A1 Release 1.1.2 o oo e 884
ATL.1 Upgrading oL e 884
ATL2 Bugfixes o o i e e e e e e e e 884
A.71.3 New functionalities 885
AT71.4 Otherchanges. e e e e e e e e 885
A2 Release 1.1.1 . . . o L o e e e 885
AT2.1 Upgrading o o e e e e e e e e e 885
AT722 BugfiXes e 885
A.72.3 New functionalities L L e 885
A3 Release 1.1.0 L L e e 886
AT3.1 Credits o o 886
A.73.2 Upgrading e e 886
A73.3 New functions oL e 886
AT73.4 Bugfixes 887
A.73.5 Function semantic changes e e e e e e 887
A.73.6 Performance improvementso i e e e e e e e 887
AT37 JDBC2WOTKS . . . o oo e e 887
A.73.8 Other new things 887
A73.9 Otherchanges. o . i e e e e e e e 887
A74 Release 1.0.6 L 888
AT4.1 Upgrading o o e e e e e e e 888
AT42 BugfiXes o e 888
AT43 TMPrOVEMENTS v v v v v i e 888
A75 Release 1.0.5 . . . o L e 888
AT5.1 Upgrading o e e e e e e e 888
A75.2 Library changes L e 889
A.75.3 Loaderchanges L e e e e e 889
AT75.4 Otherchanges. e 889
AT6 Release 1.0.4 L L L e 889
AT6.1 Upgrading 889
AT6.2 BUugfixes o e e e e e e 889
AT6.3 ImpProvements e e e e e 890
ATT Release 1.0.3 . . o o L L L e 890
AT7.1 Upgrading oL e 890
AT7.2 BugfiXes o oo e e 890
AT73 Improvements oL e e e e e e 890
AT8 Release 1.0.2 L L L e 890

AT78.1 Upgrading L e e 891

PostGIS 3.3.0rc2 Manual XXXi

AT78.2 BUugfiXes e 891
AT78.3 ITmMProvements o i e e e e e e e e e e e 891
AT9 Release 1.0.1 891
AT79.1 Upgrading L e e 891
A79.2 Library changes o e e e e e e 891
A.79.3 Other changes/additions e e e e e 891
AB0 Release 1.0.0 892
A.80.1 Upgrading e e 892
A.80.2 Librarychanges e 892
A.80.3 Other changes/additions e e e e e 892
A.81 Release 1.0.0RCO 892
ABL.1 Upgrading e 892
A.81.2 Librarychanges e e 892
A.81.3 Scriptschanges L e e e e e 892
A.81.4 Otherchanges. e e 893
A82 Release 1.0.0RCS 893
A82.1 Upgrading e e e e e e 893
A82.2 Librarychanges L e 893
A.82.3 Otherchanges. e e 893
A83 Release 1.0.0RC4 893
A83.1 Upgrading o e e e e e 893
A83.2 Librarychanges e 893
A.83.3 Scriptschanges e 894
A.83.4 Otherchanges. e e e e e 894
AB4 Release 1.0.0RC3 894
AB4.1 Upgrading e 894
A.84.2 Librarychanges e e 894
A.84.3 Scriptschanges e e e e e 894
AB4.4 JDBCchanges e 895
A.84.5 Otherchanges. e 895
A85 Release 1.O.ORC2 L 895
A85.1 Upgrading o e 895
A.85.2 Librarychanges 895
A.85.3 Scriptschanges e 895
A.85.4 Otherchanges. e e e e e e 896
A.86 Release 1.0.0RCL L 896
A.86.1 Upgrading e 896

AB6.2 Changes o i e 896

Abstract

PostGIS is an extension to the PostgreSQL object-relational database system which allows GIS (Geographic Information Sys-
tems) objects to be stored in the database. PostGIS includes support for GiST-based R-Tree spatial indexes, and functions for
analysis and processing of GIS objects.

Spatial PostgreSQL */ 0SGeo

Project

This is the manual for version 3.3.0rc2

This work is licensed under a Creative Commons Attribution-Share Alike 3.0 License. Feel free to use
this material any way you like, but we ask that you attribute credit to the PostGIS Project and wherever possible, a link back to
http://postgis.net.

https://www.postgresql.org/
http://creativecommons.org/licenses/by-sa/3.0/
http://postgis.net

PostGIS 3.3.0rc2 Manual 1/896

Chapter 1

Introduction

PostGIS is a spatial extension for the PostgreSQL relational database that was created by Refractions Research Inc, as a spatial
database technology research project. Refractions is a GIS and database consulting company in Victoria, British Columbia,
Canada, specializing in data integration and custom software development.

PostGIS is now a project of the OSGeo Foundation and is developed and funded by many FOSS4G developers and organizations
all over the world that gain great benefit from its functionality and versatility.

The PostGIS project development group plans on supporting and enhancing PostGIS to better support a range of important
GIS functionality in the areas of OGC and SQL/MM spatial standards, advanced topological constructs (coverages, surfaces,
networks), data source for desktop user interface tools for viewing and editing GIS data, and web-based access tools.

1.1 Project Steering Committee

The PostGIS Project Steering Committee (PSC) coordinates the general direction, release cycles, documentation, and outreach
efforts for the PostGIS project. In addition the PSC provides general user support, accepts and approves patches from the general
PostGIS community and votes on miscellaneous issues involving PostGIS such as developer commit access, new PSC members
or significant API changes.

Raiil Marin Rodriguez MVT support, Bug fixing, Performance and stability improvements, GitHub curation, alignment of
PostGIS with PostgreSQL releases

Regina Obe Buildbot Maintenance, Windows production and experimental builds, documentation, alignment of PostGIS with
PostgreSQL releases, X3D support, TIGER geocoder support, management functions.

Darafei Praliaskouski Index improvements, bug fixing and geometry/geography function improvements, SFCGAL, raster,
GitHub curation, and bot maintenance.

Paul Ramsey (Chair) Co-founder of PostGIS project. General bug fixing, geography support, geography and geometry index
support (2D, 3D, nD index and anything spatial index), underlying geometry internal structures, GEOS functionality inte-
gration and alignment with GEOS releases, alignment of PostGIS with PostgreSQL releases, loader/dumper, and Shapefile
GUI loader.

Sandro Santilli Bug fixes and maintenance, buildbot maintenance, git mirror management, management functions, integration
of new GEOS functionality and alignment with GEOS releases, topology support, and raster framework and low level API
functions.

1.2 Core Contributors Present

Nicklas Avén Distance function enhancements (including 3D distance and relationship functions) and additions, Tiny WKB
(TWKB) output format and general user support

PostGIS 3.3.0rc2 Manual 2/896

Dan Baston Geometry clustering function additions, other geometry algorithm enhancements, GEOS enhancements and general
user support

Martin Davis GEOS enhancements and documentation
Bjorn Harrtell MapBox Vector Tile and GeoBuf functions. Gogs testing and GitLab experimentation.

Aliaksandr Kalenik Geometry Processing, PostgreSQL gist, general bug fixing

1.3 Core Contributors Past

Bborie Park Prior PSC Member. Raster development, integration with GDAL, raster loader, user support, general bug fixing,
testing on various OS (Slackware, Mac, Windows, and more)

Mark Cave-Ayland Prior PSC Member. Coordinated bug fixing and maintenance effort, spatial index selectivity and binding,
loader/dumper, and Shapefile GUI Loader, integration of new and new function enhancements.

Jorge Arévalo Raster development, GDAL driver support, loader

Olivier Courtin (Emeritus) Input/output XML (KML,GML)/GeoJSON functions, 3D support and bug fixes.

Chris Hodgson Prior PSC Member. General development, site and buildbot maintenance, OSGeo incubation management
Mateusz Loskot CMake support for PostGIS, built original raster loader in python and low level raster API functions

Kevin Neufeld Prior PSC Member. Documentation and documentation support tools, buildbot maintenance, advanced user
support on PostGIS newsgroup, and PostGIS maintenance function enhancements.

Dave Blasby The original developer/Co-founder of PostGIS. Dave wrote the server side objects, index bindings, and many of
the server side analytical functions.

Jeff Lounsbury Original development of the Shapefile loader/dumper.
Mark Leslie Ongoing maintenance and development of core functions. Enhanced curve support. Shapefile GUI loader.
Pierre Racine Architect of PostGIS raster implementation. Raster overall architecture, prototyping, programming support

David Zwarg Raster development (mostly map algebra analytic functions)

1.4 Other Contributors

PostGIS 3.3.0rc2 Manual

3/896

Individual Contributors

Alex Bodnaru
Alex Mayrhofer
Andrea Peri
Andreas Forg Tollefsen
Andreas Neumann
Andrew Gierth
Anne Ghisla
Antoine Bajolet
Arthur Lesuisse
Artur Zakirov
Barbara Phillipot
Ben Jubb
Bernhard Reiter
Bjorn Esser

Brian Hamlin
Bruce Rindahl
Bruno Wolff II1
Bryce L. Nordgren
Carl Anderson
Charlie Savage
Christoph Berg
Christoph Moench-Tegeder
Dane Springmeyer
Dave Fuhry

David Garnier
David Skea

David Techer
Dmitry Vasilyev
Eduin Carrillo
Eugene Antimirov
Even Rouault
Frank Warmerdam
George Silva
Gerald Fenoy
Gino Lucrezi

Greg Troxel
Guillaume Lelarge
Giuseppe Broccolo
Han Wang
Haribabu Kommi
Havard Tveite
IIDA Tetsushi
Ingvild Nystuen
Jackie Leng

James Marca

Jan Katins

Jason Smith

Jeff Adams

Jim Jones

Joe Conway

Jonne Savolainen
Jose Carlos Martinez Llari
Jorg Habenicht
Julien Rouhaud
Kashif Rasul
Klaus Foerster
Kris Jurka
Laurenz Albe

Lars Roessiger
Leo Hsu

Loic Bartoletti
Loic Dachary
Luca S. Percich
Lucas C. Villa Real
Maria Arias de Reyna
Marc Ducobu
Mark Sondheim
Markus Schaber
Markus Wanner
Matt Amos

Matt Bretl

Matthias Bay
Maxime Guillaud
Maxime van Noppen
Michael Fuhr

Mike Toews

Nathan Wagner
Nathaniel Clay
Nikita Shulga
Norman Vine
Patricia Tozer

Rafal Magda

Ralph Mason

Rémi Cura

Richard Greenwood
Roger Crew

Ron Mayer
Sebastiaan Couwenberg
Sergei Shoulbakov
Sergey Fedoseev
Shinichi Sugiyama
Shoaib Burq

Silvio Grosso
Stefan Corneliu Petrea
Steffen Macke
Stepan Kuzmin
Stephen Frost
Steven Ottens

Talha Rizwan

Tom Glancy

Tom van Tilburg
Vincent Mora
Vincent Picavet
Volf Tomas

Corporate Sponsors These are corporate entities that have contributed developer time, hosting, or direct monetary funding to
the PostGIS project. In alphabetical order:

e Aiven
e Arrival 3D

* Associazione Italiana per I’'Informazione Geografica Libera (GFOSS.it)

* AusVet

* Avencia

* Azavea

* Boundless

* Cadcorp

e Camptocamp
* Carto

* Crunchy Data

* City of Boston (DND)

* City of Helsinki

* Clever Elephant Solutions

https://aiven.io
https://arrival3d.com
http://gfoss.it
https://www.ausvet.com.au
https://www.azavea.com
https://www.boundlessgeo.com
https://www.cadcorp.com
https://www.camptocamp.com
https://carto.com
https://www.crunchydata.com
https://www.boston.gov
https://www.hel.fi
https://blog.cleverelephant.ca

PostGIS 3.3.0rc2 Manual 4 /896

* Cooperativa Alveo
* Deimos Space
* Faunalia
* Geographic Data BC
* Hunter Systems Group
e [Sciences, LLC
» Kontur
* Lidwala Consulting Engineers
* LISAsoft
* Logical Tracking & Tracing International AG
* Maponics
* Michigan Tech Research Institute
* Natural Resources Canada
* Norwegian Forest and Landscape Institue
* Norwegian Institute of Bioeconomy Research (NIBIO)
* OSGeo
* Oslandia
* Palantir Technologies
 Paragon Corporation
* R3 GIS
* Refractions Research
* Regione Toscana - SITA
» Safe Software
* Sirius Corporation plc
 Stadt Uster
* UC Davis Center for Vectorborne Diseases
* Université Laval
e U.S. Department of State (HIU)
* Zonar Systems
Crowd Funding Campaigns Crowd funding campaigns are campaigns we run to get badly wanted features funded that can
service a large number of people. Each campaign is specifically focused on a particular feature or set of features. Each
sponsor chips in a small fraction of the needed funding and with enough people/organizations contributing, we have the

funds to pay for the work that will help many. If you have an idea for a feature you think many others would be willing to
co-fund, please post to the PostGIS newsgroup your thoughts and together we can make it happen.

PostGIS 2.0.0 was the first release we tried this strategy. We used PledgeBank and we got two successful campaigns out
of it.

postgistopology - 10 plus sponsors each contributed $250 USD to build toTopoGeometry function and beef up topology
support in 2.0.0. It happened.

postgis6dwindows - 20 someodd sponsors each contributed $100 USD to pay for the work needed to work out PostGIS
64-bit issues on windows. It happened.
Important Support Libraries The GEOS geometry operations library

The GDAL Geospatial Data Abstraction Library used to power much of the raster functionality introduced in PostGIS 2.
In kind, improvements needed in GDAL to support PostGIS are contributed back to the GDAL project.

The PROIJ cartographic projection library

Last but not least, PostgreSQL, the giant that PostGIS stands on. Much of the speed and flexibility of PostGIS would not be
possible without the extensibility, great query planner, GIST index, and plethora of SQL features provided by PostgreSQL.

https://www.alveo.coop
http://www.elecnor-deimos.com
https://www.faunalia.eu
https://gov.bc.ca
https://www.isciences.com
https://www.kontur.io
https://www.lidwala.com
https://www.jirotech.com
http://www.mtri.org
https://www.nrcan.gc.ca
https://www.nibio.no/
https://www.osgeo.org
https://oslandia.com
https://www.palantir.com
https://www.paragoncorporation.com
https://www.r3-gis.com
http://www.refractions.net
https://www.regione.toscana.it
https://www.safe.com
http://www.uster.ch
https://www.ucdavis.edu
https://www.ulaval.ca
https://hiu.state.gov
https://www.zonarsystems.com
https://lists.osgeo.org/mailman/listinfo/postgis-users
http://www.pledgebank.com
http://www.pledgebank.com/postgistopology
http://www.pledgebank.com/postgis64windows
https://libgeos.org
https://gdal.org
https://www.proj4.org
http://www.postgresql.org

PostGIS 3.3.0rc2 Manual 5/896

Chapter 2

PostGIS Installation

This chapter details the steps required to install PostGIS.

2.1 Short Version

To compile assuming you have all the dependencies in your search path:

tar -xvfz postgis-3.3.0rc2.tar.gz
cd postgis-3.3.0rc2

./configure

make

make install

Once PostGIS is installed, it needs to be enabled (Section 3.3) or upgraded (Section 3.4) in each individual database you want to
use it in.

2.2 Compiling and Install from Source

Note
Many OS systems now include pre-built packages for PostgreSQL/PostGIS. In many cases compilation is only neces-
sary if you want the most bleeding edge versions or you are a package maintainer.

Ncrld This section includes general compilation instructions, if you are compiling for Windows etc or another OS, you may
find additional more detailed help at PostGIS User contributed compile guides and PostGIS Dev Wiki.
Pre-Built Packages for various OS are listed in PostGIS Pre-built Packages
If you are a windows user, you can get stable builds via Stackbuilder or PostGIS Windows download site We also
have very bleeding-edge windows experimental builds that are built usually once or twice a week or whenever anything
exciting happens. You can use these to experiment with the in progress releases of PostGIS

The PostGIS module is an extension to the PostgreSQL backend server. As such, PostGIS 3.3.0rc2 requires full PostgreSQL
server headers access in order to compile. It can be built against PostgreSQL versions 11 - 15. Earlier versions of PostgreSQL
are not supported.

Refer to the PostgreSQL installation guides if you haven’t already installed PostgreSQL. http://www.postgresql.org .

http://trac.osgeo.org/postgis/wiki/UsersWikiInstall
http://trac.osgeo.org/postgis/wiki/DevWikiMain
http://trac.osgeo.org/postgis/wiki/UsersWikiPackages
https://postgis.net/windows_downloads
https://postgis.net/windows_downloads
http://www.postgresql.org

PostGIS 3.3.0rc2 Manual 6 /896

Note
For GEOS functionality, when you install PostgresSQL you may need to explicitly link PostgreSQL against the standard

¢ C++ library:
Note

LDFLAGS=-1stdc++ ./configure [YOUR OPTIONS HERE]

This is a workaround for bogus C++ exceptions interaction with older development tools. If you experience weird
problems (backend unexpectedly closed or similar things) try this trick. This will require recompiling your PostgreSQL
from scratch, of course.

The following steps outline the configuration and compilation of the PostGIS source. They are written for Linux users and will
not work on Windows or Mac.

2.2.1 Getting the Source

Retrieve the PostGIS source archive from the downloads website http://download.osgeo.org/postgis/source/postgis-3.3.0rc2.tar.gz

wget http://download.osgeo.org/postgis/source/postgis—-3.3.0rc2.tar.gz
tar -xvzf postgis-3.3.0rc2.tar.gz
cd postgis—-3.3.0rc2

This will create a directory called postgis—3.3.0rc2 in the current working directory.
Alternatively, checkout the source from the git repository https://git.osgeo.org/gitea/postgis/postgis/ .
git clone https://git.osgeo.org/gitea/postgis/postgis.git postgis

cd postgis

sh autogen.sh

Change into the newly created postgis directory to continue the installation.

./configure

2.2.2 Install Requirements

PostGIS has the following requirements for building and usage:

Required

* PostgreSQL 11 - 15. A complete installation of PostgreSQL (including server headers) is required. PostgreSQL is available
from http://www.postgresql.org .

For a full PostgreSQL / PostGIS support matrix and PostGIS/GEOS support matrix refer to http://trac.osgeo.org/postgis/wiki/-
UsersWikiPostgreSQLPostGIS

* GNU C compiler (gcc). Some other ANSI C compilers can be used to compile PostGIS, but we find far fewer problems when
compiling with gcc.

* GNU Make (gmake or make). For many systems, GNU make is the default version of make. Check the version by invoking
make -—v. Other versions of make may not process the PostGIS Makefile properly.

* Proj reprojection library. Proj 4.9 or above is required. The Proj library is used to provide coordinate reprojection support
within PostGIS. Proj is available for download from https://proj.org/ .

* GEOS geometry library, version 3.6 or greater, but GEOS 3.9+ is required to take full advantage of all the new functions and
features. GEOS is available for download from http://trac.osgeo.org/geos/ .

http://download.osgeo.org/postgis/source/postgis-3.3.0rc2.tar.gz
http://download.osgeo.org/postgis/source/postgis-3.3.0rc2.tar.gz
https://git-scm.com/
https://git.osgeo.org/gitea/postgis/postgis/
http://www.postgresql.org
http://trac.osgeo.org/postgis/wiki/UsersWikiPostgreSQLPostGIS
http://trac.osgeo.org/postgis/wiki/UsersWikiPostgreSQLPostGIS
https://proj.org/
http://trac.osgeo.org/geos/

PostGIS 3.3.0rc2 Manual 7 /896

LibXML2, version 2.5.x or higher. LibXML2 is currently used in some imports functions (ST_GeomFromGML and ST_GeomFromKI
LibXML2 is available for download from https://gitlab.gnome.org/GNOME/libxml2/-/releases.

JSON-C, version 0.9 or higher. JSON-C is currently used to import GeoJSON via the function ST_GeomFromGeoJson.
JSON-C is available for download from https://github.com/json-c/json-c/releases/.

GDAL, version 2+ is required 3+ is preferred. This is required for raster support. https://gdal.org/download.html.

If compiling with PostgreSQL+JIT, LLVM version >=6 is required https://trac.osgeo.org/postgis/ticket/4125.

Optional

GDAL (pseudo optional) only if you don’t want raster you can leave it out. Also make sure to enable the drivers you want to
use as described in Section 3.2.

GTK (requires GTK+2.0, 2.84) to compile the shp2pgsql-gui shape file loader. http://www.gtk.org/ .

SFCGAL, version 1.3.1 (or higher), 1.4.1 or higher is recommended. SFCGAL can be used to provide additional 2D and
3D advanced analysis functions to PostGIS cf Section 8.20. And also allow to use SFCGAL rather than GEOS for some 2D
functions provided by both backends (like ST_Intersection or ST_Area, for instance). A PostgreSQL configuration vari-
able postgis.backend allow end user to control which backend he want to use if SFCGAL is installed (GEOS by
default). Nota: SFCGAL 1.2 require at least CGAL 4.3 and Boost 1.54 (cf: https://oslandia.gitlab.io/SFCGAL/dev.html)
https://gitlab.com/Oslandia/SFCGAL/.

In order to build the Section 14.1 you will also need PCRE http://www.pcre.org (which generally is already installed on nix sys-

tems). Regex: : Assemble perl CPAN package is only needed if you want to rebuild the data encoded in parseaddress—stcit:
h. Section 14.1 will automatically be built if it detects a PCRE library, or you passina valid ——with-pcre-dir=/path/to/pcre
during configure.

To enable ST_AsMVT protobuf-c library 1.1.0 or higher (for usage) and the protoc-c compiler (for building) are required.
Also, pkg-config is required to verify the correct minimum version of protobuf-c. See protobuf-c. By default, Postgis will use
Wagyu to validate MVT polygons faster which requires a c++11 compiler. It will use CXXFLAGS and the same compiler as
the PostgreSQL installation. To disable this and use GEOS instead use the ——without-wagyu during the configure step.

CUnit (CUnit). This is needed for regression testing. http://cunit.sourceforge.net/
DocBook (xs1tproc) is required for building the documentation. Docbook is available from http://www.docbook.org/ .

DBLatex (dblatex) is required for building the documentation in PDF format. DBLatex is available from http://dblatex.sourceforge.:

ImageMagick (convert) is required to generate the images used in the documentation. ImageMagick is available from
http://www.imagemagick.org/ .

2.2.3 Build configuration

As with most linux installations, the first step is to generate the Makefile that will be used to build the source code. This is done
by running the shell script

Jconfigure

With no additional parameters, this command will attempt to automatically locate the required components and libraries needed
to build the PostGIS source code on your system. Although this is the most common usage of ./configure, the script accepts
several parameters for those who have the required libraries and programs in non-standard locations.

The following list shows only the most commonly used parameters. For a complete list, use the --help or --help=short parame-
ters.

--with-library-minor-version Starting with PostGIS 3.0, the library files generated by default will no longer have the minor

version as part of the file name. This means all PostGIS 3 libs will end in postgis—3. This was done to make pg_upgrade
easier, with downside that you can only install one version PostGIS 3 series in your server. To get the old behavior of file
including the minor version: e.g. postgis—3. 0 add this switch to your configure statement.

https://gitlab.gnome.org/GNOME/libxml2/-/releases
https://github.com/json-c/json-c/releases
https://gdal.org/download.html
https://trac.osgeo.org/postgis/ticket/4125
http://www.gtk.org/
https://oslandia.gitlab.io/SFCGAL/dev.html
https://gitlab.com/Oslandia/SFCGAL/
http://www.pcre.org
https://github.com/protobuf-c/protobuf-c
http://cunit.sourceforge.net/
http://www.docbook.org/
http://dblatex.sourceforge.net/
http://dblatex.sourceforge.net/
http://www.imagemagick.org/

PostGIS 3.3.0rc2 Manual 8/896

--prefix=PREFIX This is the location the PostGIS loader executables and shared libs will be installed. By default, this location
is the same as the detected PostgreSQL installation.

« 1 Caution
This parameter is currently broken, as the package will only install into the PostgreSQL installation directory. Visit
http://trac.osgeo.org/postgis/ticket/635 to track this bug.

--with-pgconfig=FILE PostgreSQL provides a utility called pg_config to enable extensions like PostGIS to locate the Post-
greSQL installation directory. Use this parameter (--with-pgconfig=/path/to/pg_config) to manually specify a particular
PostgreSQL installation that PostGIS will build against.

--with-gdalconfig=FILE GDAL, a required library, provides functionality needed for raster support gdal-config to enable soft-
ware installations to locate the GDAL installation directory. Use this parameter (--with-gdalconfig=/path/to/gdal-config)
to manually specify a particular GDAL installation that PostGIS will build against.

--with-geosconfig=FILE GEOS, a required geometry library, provides a utility called geos-config to enable software installa-
tions to locate the GEOS installation directory. Use this parameter (--with-geosconfig=/path/to/geos-config) to manually
specify a particular GEOS installation that PostGIS will build against.

--with-xml2config=FILE LibXML is the library required for doing GeomFromKML/GML processes. It normally is found
if you have libxml installed, but if not or you want a specific version used, you’ll need to point PostGIS at a specific
xml2-config confi file to enable software installations to locate the LibXML installation directory. Use this parameter
(>--with-xml2config=/path/to/xml2-config) to manually specify a particular LibXML installation that PostGIS will build
against.

--with-projdir=DIR Proj is a reprojection library required by PostGIS. Use this parameter (--with-projdir=/path/to/projdir)
to manually specify a particular Proj installation directory that PostGIS will build against.

--with-libiconv=DIR Directory where iconv is installed.

--with-jsondir=DIR JSON-C is an MIT-licensed JSON library required by PostGIS ST_GeomFromJSON support. Use this
parameter (--with-jsondir=/path/to/jsondir) to manually specify a particular JSON-C installation directory that PostGIS
will build against.

--with-pcredir=DIR PCRE is an BSD-licensed Perl Compatible Regular Expression library required by address_standardizer
extension. Use this parameter (--with-pcredir=/path/to/pcredir) to manually specify a particular PCRE installation di-
rectory that PostGIS will build against.

--with-gui Compile the data import GUI (requires GTK+2.0). This will create shp2pgsql-gui graphical interface to shp2pgsql.
--without-raster Compile without raster support.

--without-topology Disable topology support. There is no corresponding library as all logic needed for topology is in postgis-
3.3.0rc2 library.

--with-gettext=no By default PostGIS will try to detect gettext support and compile with it, however if you run into incompatibil-
ity issues that cause breakage of loader, you can disable it entirely with this command. Refer to ticket http://trac.osgeo.org/-
postgis/ticket/748 for an example issue solved by configuring with this. NOTE: that you aren’t missing much by turning
this off. This is used for international help/label support for the GUI loader which is not yet documented and still experi-
mental.

--with-sfcgal=PATH By default PostGIS will not install with sfcgal support without this switch. PATH is an optional argument
that allows to specify an alternate PATH to sfcgal-config.

--without-phony-revision Disable updating postgis_revision.h to match current HEAD of the git repository.

http://trac.osgeo.org/postgis/ticket/635
http://oss.metaparadigm.com/json-c/
http://www.pcre.org/
http://trac.osgeo.org/postgis/ticket/748
http://trac.osgeo.org/postgis/ticket/748

PostGIS 3.3.0rc2 Manual 9/896

Note
. If you obtained PostGIS from the code repository , the first step is really to run the script
Note! Jautogen.sh
This script will generate the configure script that in turn is used to customize the installation of PostGIS.
If you instead obtained PostGIS as a tarball, running ./autogen.sh is not necessary as configure has already been
generated.

2.2.4 Building

Once the Makefile has been generated, building PostGIS is as simple as running
make
The last line of the output should be "PostGIS was built successfully. Ready to install.”

As of PostGIS v1.4.0, all the functions have comments generated from the documentation. If you wish to install these comments
into your spatial databases later, run the command which requires docbook. The postgis_comments.sql and other package
comments files raster_comments.sql, topology_comments.sql are also packaged in the tar.gz distribution in the doc folder so no
need to make comments if installing from the tar ball. Comments are also included as part of the CREATE EXTENSION install.

make comments

Introduced in PostGIS 2.0. This generates html cheat sheets suitable for quick reference or for student handouts. This requires
xsltproc to build and will generate 4 files in doc folder topology_cheatsheet .html, tiger_geocoder_cheatsheet.
html, raster_cheatsheet.html, postgis_cheatsheet.html

You can download some pre-built ones available in html and pdf from PostGIS / PostgreSQL Study Guides

make cheatsheets

2.2.5 Building PostGIS Extensions and Deploying them

The PostGIS extensions are built and installed automatically if you are using PostgreSQL 9.1+.

If you are building from source repository, you need to build the function descriptions first. These get built if you have docbook
installed. You can also manually build with the statement:

make comments

Building the comments is not necessary if you are building from a release tar ball since these are packaged pre-built with the tar
ball already.

The extensions should automatically build as part of the make install process. You can if needed build from the extensions folders
or copy files if you need them on a different server.

cd extensions

cd postgis

make clean

make

export PGUSER=postgres #overwrite psqgl variables
make check #to test before install

make install

to test extensions

make check RUNTESTFLAGS=--extension

N;ld Note

make check uses psqlto run tests and as such can use psql environment variables. Common ones useful to override
are PGUSER,PGPORT, and PGHOST. Refer to psqgl environment variables

https://trac.osgeo.org/postgis/wiki/CodeRepository
http://www.postgis.us/study_guides
https://www.postgresql.org/docs/current/libpq-envars.html

PostGIS 3.3.0rc2 Manual 10/ 896

The extension files will always be the same for the same version of PostGIS and PostgreSQL regardless of OS, so it is fine to
copy over the extension files from one OS to another as long as you have the PostGIS binaries already installed on your servers.

If you want to install the extensions manually on a separate server different from your development, You need to copy the
following files from the extensions folder into the PostgreSQL / share / extension folder of your PostgreSQL install
as well as the needed binaries for regular PostGIS if you don’t have them already on the server.

* These are the control files that denote information such as the version of the extension to install if not specified. postgis.
control, postgis_topology.control.

 All the files in the /sql folder of each extension. Note that these need to be copied to the root of the PostgreSQL share/extension
folder extensions/postgis/sqgl/*.sql, extensions/postgis_topology/sgl/*.sqgl

Once you do that, you should see postgis, postgis_topology as available extensions in PgAdmin -> extensions.
If you are using psql, you can verify that the extensions are installed by running this query:

SELECT name, default_version,installed_version
FROM pg_available_extensions WHERE name LIKE 'postgis%' or name LIKE 'address$%';

name | default_version | installed_version
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, T
address_standardizer | 3.3.0rc2 | 3.3.0rc2
address_standardizer_data_us | 3.3.0rc2 | 3.3.0rc2
postgis | 3.3.0rc2 | 3.3.0xrc2
postgis_raster | 3.3.0rc2 | 3.3.0rc2
postgis_sfcgal | 3.3.0xrc2 |
postgis_tiger_geocoder | 3.3.0rc2 | 3.3.0rc2
postgis_topology | 3.3.0rc2 |

(6 rows)

If you have the extension installed in the database you are querying, you’ll see mention in the installed_version column.
If you get no records back, it means you don’t have postgis extensions installed on the server at all. PgAdmin III 1.14+ will also
provide this information in the extensions section of the database browser tree and will even allow upgrade or uninstall by
right-clicking.

If you have the extensions available, you can install postgis extension in your database of choice by either using pgAdmin
extension interface or running these sql commands:

CREATE EXTENSION postgis;

CREATE EXTENSION postgis_raster;

CREATE EXTENSION postgis_sfcgal;

CREATE EXTENSION fuzzystrmatch; —--needed for postgis_tiger_geocoder
—-—-optional used by postgis_tiger_geocoder, or can be used standalone
CREATE EXTENSION address_standardizer;

CREATE EXTENSION address_standardizer_data_us;

CREATE EXTENSION postgis_tiger_geocoder;

CREATE EXTENSION postgis_topology;

In psql you can use to see what versions you have installed and also what schema they are installed.

\connect mygisdb
\x
\dx postgis=

List of installed extensions

—[RECORD 1 J————m o
Name | postgis
Version | 3.3.0rc2
Schema | public
\

Description PostGIS geometry, geography, and raster spat..

PostGIS 3.3.0rc2 Manual 11 /896

= RECORD 2] oo e e o e e e e e e e e e e e e e e e e e e e S e e e e e

Name | postgis_raster

Version | 3.0.0dev

Schema | public

Description | PostGIS raster types and functions

S RE ORISR

Name | postgis_tiger_geocoder

Version | 3.3.0rc2

Schema | tiger

Description | PostGIS tiger geocoder and reverse geocoder

=[REEORD A [o————————————— e e e

Name | postgis_topology

Version | 3.3.0rc2

Schema | topology

Description | PostGIS topology spatial types and functions
Warning

Extension tables spatial_ref_sys, layer, topology can not be explicitly backed up. They can only be backed
up when the respective postgis or postgis_topology extension is backed up, which only seems to happen

0 when you backup the whole database. As of PostGIS 2.0.1, only srid records not packaged with PostGIS are backed
up when the database is backed up so don’t go around changing srids we package and expect your changes to be
there. Put in a ticket if you find an issue. The structures of extension tables are never backed up since they are created
with CREATE EXTENSION and assumed to be the same for a given version of an extension. These behaviors are
built into the current PostgreSQL extension model, so nothing we can do about it.

If you installed 3.3.0rc2, without using our wonderful extension system, you can change it to be extension based by running
the below commands to package the functions in their respective extension. Installing using “unpackaged™ was removed in
PostgreSQL 13, so you are advised to switch to an extension build before upgrading to PostgreSQL 13.

CREATE EXTENSION postgis FROM unpackaged;

CREATE EXTENSION postgis_raster FROM unpackaged;

CREATE EXTENSION postgis_topology FROM unpackaged;
CREATE EXTENSION postgis_tiger_geocoder FROM unpackaged;

2.2.6 Testing

If you wish to test the PostGIS build, run
make check

The above command will run through various checks and regression tests using the generated library against an actual Post-
greSQL database.

) Note
Noteh
If you configured PostGIS using non-standard PostgreSQL, GEOS, or Proj locations, you may need to add their library

locations to the LD_LIBRARY_PATH environment variable.

Caution

' 1 % Currently, the make check relies on the PATH and PGPORT environment variables when performing the checks - it
does not use the PostgreSQL version that may have been specified using the configuration parameter --with-pgconfig.
So make sure to modify your PATH to match the detected PostgreSQL installation during configuration or be prepared
to deal with the impending headaches.

PostGIS 3.3.0rc2 Manual 12 /896

If successful, make check will produce the output of almost 500 tests. The results will look similar to the following (numerous
lines omitted below):

CUnit - A unit testing framework for C - Version 2.1-3
http://cunit.sourceforge.net/

Run Summary: Type Total Ran Passed Failed Inactive
suites 44 44 n/a 0 0
tests 300 300 300 0 0
asserts 4215 4215 4215 0 n/a
Elapsed time = 0.229 seconds

Running tests

Run tests: 134
Failed: O

-— if you build with SFCGAL

Running tests

Run tests: 13
Failed: 0

—-— if you built with raster support

Run Summary: Type Total Ran Passed Failed Inactive
suites 12 12 n/a 0 0
tests 65 65 65 0 0

asserts 45896 45896 45896 0 n/a

PostGIS 3.3.0rc2 Manual 13 /896

Running tests

Run tests: 101
Failed: 0

—— topology regress

Running tests

Run tests: 51
Failed: 0

-— if you built --with-gui, you should see this too

CUnit - A unit testing framework for C - Version 2.1-2
http://cunit.sourceforge.net/

Run Summary: Type Total Ran Passed Failed Inactive
suites 2 2 n/a 0 0

tests 4 4 4 0 0

asserts 4 4 4 0 n/a

The postgis_tiger_geocoder and address_standardizer extensions, currently only support the standard Post-
greSQL installcheck. To test these use the below. Note: the make install is not necessary if you already did make install at root
of PostGIS code folder.

For address_standardizer:

cd extensions/address_standardizer
make install
make installcheck

Output should look like:

=== dropping database "contrib_regression"
DROP DATABASE

=== creating database "contrib_regression" ==
CREATE DATABASE

ALTER DATABASE

=== == running regression test queries ==

test test-init-extensions ... ok
test test-parseaddress ... ok
test test-standardize_address_1 ... ok

test test-standardize_address_2 ... ok

PostGIS 3.3.0rc2 Manual 14 /896

All 4 tests passed.

For tiger geocoder, make sure you have postgis and fuzzystrmatch extensions available in your PostgreSQL instance. The
address_standardizer tests will also kick in if you built postgis with address_standardizer support:

cd extensions/postgis_tiger_geocoder
make install
make installcheck

output should look like:

=== == dropping database "contrib_regression" ==============
DROP DATABASE

creating database "contrib_regression"
CREATE DATABASE
ALTER DATABASE

installing fuzzystrmatch
CREATE EXTENSION

=== installing postgis ==

CREATE EXTENSION

—————————————— installing postgis_tiger_geocoder ==============
CREATE EXTENSION

installing address_standardizer
CREATE EXTENSION

=== running regression test queries ==
test test—-normalize_address ... Ok

test test-pagc_normalize_address ... ok

All 2 tests passed.

2.2.7 Installation

To install PostGIS, type
make install

This will copy the PostGIS installation files into their appropriate subdirectory specified by the --prefix configuration parameter.
In particular:

* The loader and dumper binaries are installed in [prefix] /bin.

e The SQL files, such as postgis.sqgl, are installed in [prefix]/share/contrib.

¢ The PostGIS libraries are installed in [prefix]/lib.

If you previously ran the make comments command to generate the postgis_comments.sql, raster_comments.sgl
file, install the sql file by running

make comments-install

N;‘“’! Note

postgis_comments.sqgl, raster_comments.sql, topology_comments.sqgl was separated from the
typical build and installation targets since with it comes the extra dependency of xsltproc.

PostGIS 3.3.0rc2 Manual 15/ 896

2.3 Installing and Using the address standardizer

The address_standardizer extension used to be a separate package that required separate download. From PostGIS 2.2
on, it is now bundled in. For more information about the address_standardize, what it does, and how to configure it for your
needs, refer to Section 14.1.

This standardizer can be used in conjunction with the PostGIS packaged tiger geocoder extension as a replacement for the
Normalize_Address discussed. To use as replacement refer to Section 2.4.3. You can also use it as a building block for your own
geocoder or use it to standardize your addresses for easier compare of addresses.

The address standardizer relies on PCRE which is usually already installed on many Nix systems, but you can download the
latest at: http://www.pcre.org. If during Section 2.2.3, PCRE is found, then the address standardizer extension will automatically
be built. If you have a custom pcre install you want to use instead, pass to configure ——with-pcredir=/path/to/pcre
where /path/to/pcre is the root folder for your pcre include and lib directories.

For Windows users, the PostGIS 2.1+ bundle is packaged with the address_standardizer already so no need to compile and can
move straight to CREATE EXTENSION step.

Once you have installed, you can connect to your database and run the SQL:

CREATE EXTENSION address_standardizer;

The following test requires no rules, gaz, or lex tables

SELECT num, street, city, state, zip
FROM parse_address ('l Devonshire Place PH301, Boston, MA 02109');

Output should be
num | street | city | state | zip
————— et et
1 | Devonshire Place PH301 | Boston | MA | 02109

2.3.1 Installing Regex::Assemble

Perl Regex:Assemble is no longer needed for compiling address_standardizer extension since the files it generates are part of the
source tree. However if you need to edit the usps—st-city-orig.txt orusps—st—-city-orig.txt usps-st-city-adc
tx, you need to rebuild parseaddress—-stcities.h which does require Regex: Assemble.

cpan Regexp::Assemble

or if you are on Ubuntu / Debian you might need to do

sudo perl -MCPAN -e "install Regexp::Assemble"

2.4 Installing, Upgrading Tiger Geocoder and loading data

Extras like Tiger geocoder may not be packaged in your PostGIS distribution. If you are missing the tiger geocoder extension or
want a newer version than what your install comes with, then use the share/extension/postgis_tiger_geocoder. *
files from the packages in Windows Unreleased Versions section for your version of PostgreSQL. Although these packages are for
windows, the postgis_tiger_geocoder extension files will work on any OS since the extension is an SQL/plpgsql only extension.

http://www.pcre.org
http://postgis.net/windows_downloads/

PostGIS 3.3.0rc2 Manual 16 /896

2.4.1 Tiger Geocoder Enabling your PostGIS database: Using Extension

If you are using PostgreSQL 9.1+ and PostGIS 2.1+, you can take advantage of the new extension model for installing tiger
geocoder. To do so:

1. First get binaries for PostGIS 2.1+ or compile and install as usual. This should install the necessary extension files as well
for tiger geocoder.

2. Connect to your database via psql or pgAdmin or some other tool and run the following SQL commands. Note that if you
are installing in a database that already has postgis, you don’t need to do the first step. If you have fuzzystrmatch
extension already installed, you don’t need to do the second step either.

CREATE EXTENSION postgis;

CREATE EXTENSION fuzzystrmatch;

CREATE EXTENSION postgis_tiger_geocoder;

——this one is optional if you want to use the rules based standardizer (<
pagc_normalize_address)

CREATE EXTENSION address_standardizer;

If you already have postgis_tiger_geocoder extension installed, and just want to update to the latest run:
ALTER EXTENSION postgis UPDATE;

ALTER EXTENSION postgis_tiger_geocoder UPDATE;

If you made custom entries or changes to tiger.loader_platformand tiger.loader_variables you may
need to update these.

3. To confirm your install is working correctly, run this sql in your database:

SELECT na.address, na.streetname,na.streettypeabbrev, na.zip
FROM normalize_address ('l Devonshire Place, Boston, MA 02109') AS na;

Which should output
address | streetname | streettypeabbrev | zip
————————— T e
1 | Devonshire | P1 | 02109

4. Create anew record in tiger.loader_platform table with the paths of your executables and server.

So for example to create a profile called debbie that follows sh convention. You would do:

INSERT INTO tiger.loader_platform(os, declare_sect, pgbin, wget, unzip_command, psqgl, <+
path_sep,
loader, environ_set_command, county_process_command)
SELECT 'debbie', declare_sect, pgbin, wget, unzip_command, psqgl, path_sep,
loader, environ_set_command, county_process_command
FROM tiger.loader_platform
WHERE os = 'sh';

And then edit the paths in the declare_sect column to those that fit Debbie’s pg, unzip,shp2pgsql, psql, etc path locations.
If you don’t edit this loader_platform table, it will just contain common case locations of items and you’ll have to
edit the generated script after the script is generated.

5. As of PostGIS 2.4.1 the Zip code-5 digit tabulation area zcta5 load step was revised to load current zcta5S data and is part
of the Loader_Generate_Nation_Script when enabled. It is turned off by default because it takes quite a bit of time to load
(20 to 60 minutes), takes up quite a bit of disk space, and is not used that often.

To enable it, do the following:

UPDATE tiger.loader_lookuptables SET load = true WHERE table_name = 'zctab20';

PostGIS 3.3.0rc2 Manual 17 / 896

10.

11.

12.

13.

If present the Geocode function can use it if a boundary filter is added to limit to just zips in that boundary. The Re-
verse_Geocode function uses it if the returned address is missing a zip, which often happens with highway reverse geocod-

ing.

Create a folder called gisdata on root of server or your local pc if you have a fast network connection to the server.
This folder is where the tiger files will be downloaded to and processed. If you are not happy with having the folder on
the root of the server, or simply want to change to a different folder for staging, then edit the field staging_fold in the
tiger.loader_variables table.

Create a folder called temp in the gisdata folder or wherever you designated the staging_fold to be. This will be
the folder where the loader extracts the downloaded tiger data.

Then run the Loader_Generate_Nation_Script SQL function make sure to use the name of your custom profile and copy
the script to a .sh or .bat file. So for example to build the nation load:

psgl —-c "SELECT Loader_Generate_Nation_Script ('debbie')" -d geocoder -tA > /gisdata/ ¢
nation_script_load.sh

Run the generated nation load commandline scripts.

cd /gisdata
sh nation_script_load.sh

After you are done running the nation script, you should have three tables in your tiger_data schema and they should
be filled with data. Confirm you do by doing the following queries from psql or pgAdmin

SELECT count () FROM tiger_data.county_all;

By default the tables corresponding to bg, tract, tabblock are not loaded. These tables are not used by the geocoder
but are used by folks for population statistics. If you wish to load them as part of your state loads, run the following
statement to enable them.

UPDATE tiger.loader_lookuptables SET load = true WHERE load = false AND lookup_name IN <>
("tract', 'bg', 'tabblock');

Alternatively you can load just these tables after loading state data using the Loader_Generate_Census_Script

For each state you want to load data for, generate a state script Loader_Generate_Script.

Warning
DO NOT Generate the state script until you have already loaded the nation data, because the state script utilizes
county list loaded by nation script.

psgl —-c "SELECT Loader_Generate_Script (ARRRAY['MA'], 'debbie')" -d geocoder -tA > /
gisdata/ma_load.sh

PostGIS 3.3.0rc2 Manual 18 /896

14. Run the generated commandline scripts.

cd /gisdata
sh ma_load.sh

15. After you are done loading all data or at a stopping point, it’s a good idea to analyze all the tiger tables to update the stats
(include inherited stats)

SELECT install_missing_indexes();

vacuum (analyze, verbose) tiger.addr;
vacuum (analyze, verbose) tiger.edges;
vacuum (analyze, verbose) tiger.faces;
vacuum (analyze, verbose) tiger.featnames;
vacuum (analyze, verbose) tiger.place;

(
(
(
(
(
vacuum (analyze, verbose) tiger.cousub;
(
(
(
(
(

vacuum (analyze, verbose) tiger.county;

vacuum (analyze, verbose) tiger.state;

vacuum (analyze, verbose) tiger.zip_lookup_base;
vacuum (analyze, verbose) tiger.zip_state;
vacuum (analyze, verbose) tiger.zip_state_loc;

2.4.1.1 Converting a Tiger Geocoder Regular Install to Extension Model

If you installed the tiger geocoder without using the extension model, you can convert to the extension model as follows:

1. Follow instructions in Section 2.4.5 for the non-extension model upgrade.

2. Connect to your database with psql or pgAdmin and run the following command:

CREATE EXTENSION postgis_tiger_geocoder FROM unpackaged;

2.4.2 Tiger Geocoder Enabling your PostGIS database: Not Using Extensions

First install PostGIS using the prior instructions.

If you don’t have an extras folder, download http://download.osgeo.org/postgis/source/postgis-3.3.0rc2.tar.gz
tar xvfz postgis-3.3.0rc2.tar.gz

cd postgis-3.3.0rc2/extras/tiger_geocoder

Editthe tiger_loader_2015. sql (or latest loader file you find, unless you want to load different year) to the paths of your
executables server etc or alternatively you can update the loader_plat form table once installed. If you don’t edit this file or
the loader_platform table, it will just contain common case locations of items and you’ll have to edit the generated script
after the fact when you run the Loader_Generate_Nation_Script and Loader_Generate_Script SQL functions.

If you are installing Tiger geocoder for the first time edit either the create_geocode.bat script If you are on windows or the
create_geocode. sh if you are on Linux/Unix/Mac OSX with your PostgreSQL specific settings and run the corresponding
script from the commandline.

Verify that you now have a t iger schema in your database and that it is part of your database search_path. If it is not, add it
with a command something along the line of:

ALTER DATABASE geocoder SET search_path=public, tiger;

The normalizing address functionality works more or less without any data except for tricky addresses. Run this test and verify
things look like this:

SELECT pprint_addy (normalize_address ('202 East Fremont Street, Las Vegas, Nevada 89101')) —
As pretty_address;
pretty_address

202 E Fremont St, Las Vegas, NV 89101

http://download.osgeo.org/postgis/source/postgis-3.3.0rc2.tar.gz

PostGIS 3.3.0rc2 Manual 19/896

2.4.3 Using Address Standardizer Extension with Tiger geocoder

One of the many complaints of folks is the address normalizer function Normalize_Address function that normalizes an address
for prepping before geocoding. The normalizer is far from perfect and trying to patch its imperfectness takes a vast amount of
resources. As such we have integrated with another project that has a much better address standardizer engine. To use this new
address_standardizer, you compile the extension as described in Section 2.3 and install as an extension in your database.

Once you install this extension in the same database as you have installed postgis_tiger_geocoder, then the Pagc_Normalize Ac
can be used instead of Normalize_Address. This extension is tiger agnostic, so can be used with other data sources such

as international addresses. The tiger geocoder extension does come packaged with its own custom versions of rules table (
tiger.pagc_rules), gaztable (tiger.pagc_gaz), and lex table (tiger.pagc_lex). These you can add and update

to improve your standardizing experience for your own needs.

2.4.4 Loading Tiger Data
The instructions for loading data are available in a more detailed form in the extras/tiger_geocoder/tiger_2011/
README. This just includes the general steps.

The load process downloads data from the census website for the respective nation files, states requested, extracts the files,
and then loads each state into its own separate set of state tables. Each state table inherits from the tables defined in tiger
schema so that its sufficient to just query those tables to access all the data and drop a set of state tables at any time using the
Drop_State_Tables_Generate_Script if you need to reload a state or just don’t need a state anymore.

In order to be able to load data you’ll need the following tools:

* A tool to unzip the zip files from census website.
For Unix like systems: unzip executable which is usually already installed on most Unix like platforms.

For Windows, 7-zip which is a free compress/uncompress tool you can download from http://www.7-zip.org/
* shp2pgsqgl commandline which is installed by default when you install PostGIS.

* wget which is a web grabber tool usually installed on most Unix/Linux systems.

If you are on windows, you can get pre-compiled binaries from http://gnuwin32.sourceforge.net/packages/wget.htm

If you are upgrading from tiger_2010, you’ll need to first generate and run Drop_Nation_Tables_Generate_Script. Before you
load any state data, you need to load the nation wide data which you do with Loader_Generate_Nation_Script. Which will
generate a loader script for you. Loader_Generate_Nation_Script is a one-time step that should be done for upgrading (from
2010) and for new installs.

To load state data refer to Loader_Generate_Script to generate a data load script for your platform for the states you desire. Note
that you can install these piecemeal. You don’t have to load all the states you want all at once. You can load them as you need
them.

After the states you desire have been loaded, make sure to run the:

SELECT install missing_indexes () ;

as described in Install_Missing_Indexes.

To test that things are working as they should, try to run a geocode on an address in your state using Geocode

2.4.5 Upgrading your Tiger Geocoder Install

If you have Tiger Geocoder packaged with 2.0+ already installed, you can upgrade the functions at any time even from an interim
tar ball if there are fixes you badly need. This will only work for Tiger geocoder not installed with extensions.

If you don’t have an extras folder, download http://download.osgeo.org/postgis/source/postgis-3.3.0rc2.tar.gz

tar xvfz postgis-3.3.0rc2.tar.gz

http://www.7-zip.org/
http://gnuwin32.sourceforge.net/packages/wget.htm
http://download.osgeo.org/postgis/source/postgis-3.3.0rc2.tar.gz

PostGIS 3.3.0rc2 Manual 20/ 896

cd postgis-3.3.0rc2/extras/tiger_geocoder/tiger_2011

Locate the upgrade_geocoder .bat script If you are on windows or the upgrade_geocoder. sh if you are on Linux/U-
nix/Mac OSX. Edit the file to have your postgis database credentials.

If you are upgrading from 2010 or 2011, make sure to unremark out the loader script line so you get the latest script for loading
2012 data.

Then run th corresponding script from the commandline.
Next drop all nation tables and load up the new ones. Generate a drop script with this SQL statement as detailed in Drop_Nation_Tables_(

SELECT drop_nation_tables_generate_script();

Run the generated drop SQL statements.
Generate a nation load script with this SELECT statement as detailed in Loader_Generate_Nation_Script
For windows

SELECT loader_generate_nation_script ('windows"');

For unix/linux

SELECT loader_generate_nation_script ('sh');

Refer to Section 2.4.4 for instructions on how to run the generate script. This only needs to be done once.

N;‘t"! Note

You can have a mix of 2010/2011 state tables and can upgrade each state separately. Before you upgrade a state to
2011, you first need to drop the 2010 tables for that state using Drop_State_Tables_Generate_Script.

2.5 Common Problems during installation

There are several things to check when your installation or upgrade doesn’t go as you expected.

1. Check that you have installed PostgreSQL 11 or newer, and that you are compiling against the same version of the Post-
greSQL source as the version of PostgreSQL that is running. Mix-ups can occur when your (Linux) distribution has already
installed PostgreSQL, or you have otherwise installed PostgreSQL before and forgotten about it. PostGIS will only work
with PostgreSQL 11 or newer, and strange, unexpected error messages will result if you use an older version. To check the
version of PostgreSQL which is running, connect to the database using psql and run this query:

SELECT version();

If you are running an RPM based distribution, you can check for the existence of pre-installed packages using the rpm
command as follows: rpm -qa | grep postgresql

2. If your upgrade fails, make sure you are restoring into a database that already has PostGIS installed.
SELECT postgis_full_version();
Also check that configure has correctly detected the location and version of PostgreSQL, the Proj library and the GEOS library.

1. The output from configure is used to generate the postgis_config.h file. Check that the POSTGIS_PGSQL_VERSION,
POSTGIS_PROJ_VERSION and POSTGIS_GEOS_VERSION variables have been set correctly.

PostGIS 3.3.0rc2 Manual 21/896

Chapter 3

PostGIS Administration

3.1 Performance Tuning

Tuning for PostGIS performance is much like tuning for any PostgreSQL workload. The only additional consideration is that
geometries and rasters are usually large, so memory-related optimizations generally have more of an impact on PostGIS than
other types of PostgreSQL queries.

For general details about optimizing PostgreSQL, refer to Tuning your PostgreSQL Server.

For PostgreSQL 9.4+ configuration can be set at the server level without touching postgresgl.conf orpostgresgl.auto.con?
by using the ALTER SYSTEM command.

ALTER SYSTEM SET work_mem = '256MB';

—-— this forces non-startup configs to take effect for new connections
SELECT pg_reload_conf ();

—-— show current setting value

—— use SHOW ALL to see all settings

SHOW work_mem;

In addition to the Postgres settings, PostGIS has some custom settings which are listed in Section 8.23.

3.1.1 Startup
These settings are configured in postgresqgl.conf:
constraint_exclusion

* Default: partition

* This is generally used for table partitioning. The default for this is set to "partition" which is ideal for PostgreSQL 8.4 and
above since it will force the planner to only analyze tables for constraint consideration if they are in an inherited hierarchy and
not pay the planner penalty otherwise.

shared_buffers

* Default: ~128MB in PostgreSQL 9.6

* Set to about 25% to 40% of available RAM. On windows you may not be able to set as high.

max_worker_processes This setting is only available for PostgreSQL 9.4+. For PostgreSQL 9.6+ this setting has additional
importance in that it controls the max number of processes you can have for parallel queries.

e Default: 8

* Sets the maximum number of background processes that the system can support. This parameter can only be set at server start.

https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://www.postgresql.org/docs/current/static/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
http://www.postgresql.org/docs/current/static/runtime-config-resource.html#GUC-SHARED-BUFFERS
https://www.postgresql.org/docs/current/static/runtime-config-resource.html#GUC-MAX-WORKER-PROCESSES

PostGIS 3.3.0rc2 Manual 22/ 896

3.1.2 Runtime

work_mem - sets the size of memory used for sort operations and complex queries

Default: 1-4MB
* Adjust up for large dbs, complex queries, lots of RAM
* Adjust down for many concurrent users or low RAM.

* If you have lots of RAM and few developers:

SET work_mem TO '256MB';

maintenance_work_mem - the memory size used for VACUUM, CREATE INDEX, etc.

* Default: 16-64MB
* Generally too low - ties up I/O, locks objects while swapping memory

* Recommend 32MB to 1GB on production servers w/lots of RAM, but depends on the # of concurrent users. If you have lots
of RAM and few developers:

SET maintenance_work_mem TO '1GB';

max_parallel_workers_per_gather

This setting is only available for PostgreSQL 9.6+ and will only affect PostGIS 2.3+, since only PostGIS 2.3+ supports parallel
queries. If set to higher than 0, then some queries such as those involving relation functions like ST_Intersects can use
multiple processes and can run more than twice as fast when doing so. If you have a lot of processors to spare, you should change
the value of this to as many processors as you have. Also make sure to bump up max_worker_processes to at least as high
as this number.

e Default: 0

* Sets the maximum number of workers that can be started by a single Gat her node. Parallel workers are taken from the pool
of processes established by max_worker_processes. Note that the requested number of workers may not actually be
available at run time. If this occurs, the plan will run with fewer workers than expected, which may be inefficient. Setting this
value to 0, which is the default, disables parallel query execution.

3.2 Configuring raster support

If you enabled raster support you may want to read below how to properly configure it.

As of PostGIS 2.1.3, out-of-db rasters and all raster drivers are disabled by default. In order to re-enable these, you need to set the
following environment variables POSTGIS_GDAL_ENABLED_DRIVERS and POSTGIS_ENABLE_OUTDB_RASTERS in the
server environment. For PostGIS 2.2, you can use the more cross-platform approach of setting the corresponding Section 8.23.

If you want to enable offline raster:

POSTGIS_ENABLE_OUTDB_RASTERS=1

Any other setting or no setting at all will disable out of db rasters.
In order to enable all GDAL drivers available in your GDAL install, set this environment variable as follows

POSTGIS_GDAL_ENABLED_DRIVERS=ENABLE_ALL

http://www.postgresql.org/docs/current/static/runtime-config-resource.html#GUC-WORK-MEM
http://www.postgresql.org/docs/current/static/runtime-config-resource.html#GUC-MAINTENANCE-WORK-MEM
https://www.postgresql.org/docs/current/static/runtime-config-resource.html#GUC-MAX-PARALLEL-WORKERS-PER-GATHER

PostGIS 3.3.0rc2 Manual 23 /896

If you want to only enable specific drivers, set your environment variable as follows:

POSTGIS_GDAL_ENABLED_DRIVERS="GTiff PNG JPEG GIF XYZ"

N;’l"! Note

If you are on windows, do not quote the driver list

Setting environment variables varies depending on OS. For PostgreSQL installed on Ubuntu or Debian via apt-postgresql, the
preferred way is to edit /etc/postgresql/10/main/environment where 10 refers to version of PostgreSQL and main
refers to the cluster.

On windows, if you are running as a service, you can set via System variables which for Windows 7 you can get to by right-
clicking on Computer->Properties Advanced System Settings or in explorer navigating to Control Panel\All Control
Panel Items\System. Then clicking Advanced System Settings ->Advanced->Environment Variables and adding new sys-
tem variables.

After you set the environment variables, you’ll need to restart your PostgreSQL service for the changes to take effect.

3.3 Creating spatial databases

3.3.1 Spatially enable database using EXTENSION

If you are using PostgreSQL 9.1+ and have compiled and installed the extensions/postgis modules, you can turn a database into
a spatial one using the EXTENSION mechanism.

Core postgis extension includes geometry, geography, spatial_ref sys and all the functions and comments. Raster and topology
are packaged as a separate extension.

Run the following SQL snippet in the database you want to enable spatially:

CREATE EXTENSION IF NOT EXISTS plpgsqgl;

CREATE EXTENSION postgis;

CREATE EXTENSION postgis_raster; —-—- OPTIONAL
CREATE EXTENSION postgis_topology; —-— OPTIONAL

3.3.2 Spatially enable database without using EXTENSION (discouraged)

ste} Note
N This is generally only needed if you cannot or don’t want to get PostGIS installed in the PostgreSQL extension directory
(for example during testing, development or in a restricted environment).

Adding PostGIS objects and function definitions into your database is done by loading the various sql files located in [prefix]
/share/contrib as specified during the build phase.

The core PostGIS objects (geometry and geography types, and their support functions) are in the postgis. sqgl script. Raster
objects are in the rtpostgis. sqgl script. Topology objects are in the topology . sgl script.

For a complete set of EPSG coordinate system definition identifiers, you can also load the spatial_ref_sys.sqgl definitions
file and populate the spatial_ref_sys table. This will permit you to perform ST_Transform() operations on geometries.

If you wish to add comments to the PostGIS functions, you can find them in the postgis_comments. sql script. Comments
can be viewed by simply typing \dd [function_name] from a psql terminal window.

Run the following Shell commands in your terminal:

PostGIS 3.3.0rc2 Manual 24/ 896

DB=[yourdatabase]
SCRIPTSDIR="pg_config —--sharedir” /contrib/postgis-3.2/

Core objects

psgl -d ${DB} -f ${SCRIPTSDIR}/postgis.sqgl

psgl -d ${DB} -f ${SCRIPTSDIR}/spatial_ref_sys.sql

psgl -d ${DB} -f ${SCRIPTSDIR}/postgis_comments.sql # OPTIONAL

Raster support (OPTIONAL)
psgl -d ${DB} -f ${SCRIPTSDIR}/rtpostgis.sqgl
psgl -d ${DB} —-f ${SCRIPTSDIR}/raster_comments.sqgl # OPTIONAL

Topology support (OPTIONAL)
psgl -d ${DB} —-f ${SCRIPTSDIR}/topology.sql
psgl -d ${DB} —-f ${SCRIPTSDIR}/topology_comments.sqgl # OPTIONAL

3.3.3 Create a spatially-enabled database from a template

Some packaged distributions of PostGIS (in particular the Win32 installers for PostGIS >= 1.1.5) load the PostGIS functions
into a template database called template_postgis. If the template_postgis database exists in your PostgreSQL
installation then it is possible for users and/or applications to create spatially-enabled databases using a single command. Note
that in both cases, the database user must have been granted the privilege to create new databases.

From the shell:

createdb -T template_postgis my_spatial_db

From SQL:

postgres=# CREATE DATABASE my_spatial_db TEMPLATE=template_postgis

3.4 Upgrading spatial databases

Upgrading existing spatial databases can be tricky as it requires replacement or introduction of new PostGIS object definitions.
Unfortunately not all definitions can be easily replaced in a live database, so sometimes your best bet is a dump/reload process.

PostGIS provides a SOFT UPGRADE procedure for minor or bugfix releases, and a HARD UPGRADE procedure for major
releases.

Before attempting to upgrade PostGIS, it is always worth to backup your data. If you use the -Fc flag to pg_dump you will
always be able to restore the dump with a HARD UPGRADE.

3.4.1 Soft upgrade

If you installed your database using extensions, you’ll need to upgrade using the extension model as well. If you installed using
the old sql script way, you are advised to switch your install to extensions because the script way is no longer supported.

3.4.1.1 Soft Upgrade 9.1+ using extensions
If you originally installed PostGIS with extensions, then you need to upgrade using extensions as well. Doing a minor upgrade
with extensions, is fairly painless.

If you are running PostGIS 3 or above, then you should use the PostGIS_Extensions_Upgrade function to upgrade to the latest
version you have installed.

PostGIS 3.3.0rc2 Manual 25/ 896

SELECT postgis_extensions_upgrade () ;

If you are running PostGIS 2.5 or lower, then do the following:

ALTER EXTENSION postgis UPDATE;

SELECT postgis_extensions_upgrade () ;

—— This second call is needed to rebundle postgis_raster extension
SELECT postgis_extensions_upgrade () ;

If you have multiple versions of PostGIS installed, and you don’t want to upgrade to the latest, you can explicitly specify the
version as follows:

ALTER EXTENSION postgis UPDATE TO "3.3.0rc2";
ALTER EXTENSION postgis_topology UPDATE TO "3.3.0rc2";

If you get an error notice something like:

No migration path defined for ... to 3.3.0rc2

Then you’ll need to backup your database, create a fresh one as described in Section 3.3.1 and then restore your backup on top
of this new database.

If you get a notice message like:

Version "3.3.0rc2" of extension "postgis" is already installed

Then everything is already up to date and you can safely ignore it. UNLESS you’re attempting to upgrade from an development
version to the next (which doesn’t get a new version number); in that case you can append "next" to the version string, and next
time you’ll need to drop the "next" suffix again:

ALTER EXTENSION postgis UPDATE TO "3.3.0rc2next";
ALTER EXTENSION postgis_topology UPDATE TO "3.3.0rc2next";

. Note
NO‘H’! If you installed PostGIS originally without a version specified, you can often skip the reinstallation of postgis extension
before restoring since the backup just has CREATE EXTENSION postgis and thus picks up the newest latest
version during restore.

Note
No'ld If you are upgrading PostGIS extension from a version prior to 3.0.0, you will have a new extension postgis_raster which
you can safely drop, if you don’t need raster support. You can drop as follows:

i

DROP EXTENSION postgis_raster;

3.4.1.2 Soft Upgrade Pre 9.1+ or without extensions
This section applies only to those who installed PostGIS not using extensions. If you have extensions and try to upgrade with
this approach you’ll get messages like:

can't drop ... because postgis extension depends on it
NOTE: if you are moving from PostGIS 1.* to PostGIS 2.* or from PostGIS 2.* prior to 17409, you cannot use this procedure
but would rather need to do a HARD UPGRADE.

After compiling and installing (make install) you should find a set of *_upgrade. sql files in the installation folders. You can
list them all with:

PostGIS 3.3.0rc2 Manual 26/ 896

ls “pg_config —--sharedir™/contrib/postgis—3.3.0rc2/*_upgrade.sqgl

Load them all in turn, starting from postgis_upgrade.sql.

psgl —-f postgis_upgrade.sqgl —-d your_spatial_database

The same procedure applies to raster, topology and sfcgal extensions, with upgrade files named rtpostgis_upgrade.sql,
topology_upgrade.sqgl and sfcgal_upgrade.sqgl respectively. If you need them:

psgl —-f rtpostgis_upgrade.sgl —-d your_spatial_database
psgl —-f topology_upgrade.sql -d your_spatial_database
psgl —-f sfcgal_upgrade.sqgl -d your_spatial_database

You are advised to switch to an extension based install by running

psgl —c "SELECT postgis_extensions_upgrade();"

N:rld Note

If you can’t find the postgis_upgrade. sqgl specific for upgrading your version you are using a version too early
for a soft upgrade and need to do a HARD UPGRADE.

The PostGIS_Full_Version function should inform you about the need to run this kind of upgrade using a "procs need upgrade"
message.

3.4.2 Hard upgrade

By HARD UPGRADE we mean full dump/reload of postgis-enabled databases. You need a HARD UPGRADE when PostGIS
objects’ internal storage changes or when SOFT UPGRADE is not possible. The Release Notes appendix reports for each version
whether you need a dump/reload (HARD UPGRADE) to upgrade.

The dump/reload process is assisted by the postgis_restore.pl script which takes care of skipping from the dump all definitions
which belong to PostGIS (including old ones), allowing you to restore your schemas and data into a database with PostGIS
installed without getting duplicate symbol errors or bringing forward deprecated objects.

Supplementary instructions for windows users are available at Windows Hard upgrade.

The Procedure is as follows:

1. Create a "custom-format" dump of the database you want to upgrade (let’s call it o1ddb) include binary blobs (-b) and
verbose (-v) output. The user can be the owner of the db, need not be postgres super account.

pg_dump -h localhost -p 5432 -U postgres -Fc -b -v —-f "/somepath/olddb.backup" olddb

2. Do a fresh install of PostGIS in a new database -- we’ll refer to this database as newdb. Please refer to Section 3.3.2 and
Section 3.3.1 for instructions on how to do this.

The spatial_ref_sys entries found in your dump will be restored, but they will not override existing ones in spatial_ref_sys.
This is to ensure that fixes in the official set will be properly propagated to restored databases. If for any reason you really
want your own overrides of standard entries just don’t load the spatial_ref_sys.sql file when creating the new db.

If your database is really old or you know you’ve been using long deprecated functions in your views and functions, you
might need to load 1egacy.sqgl for all your functions and views etc. to properly come back. Only do this if _really_
needed. Consider upgrading your views and functions before dumping instead, if possible. The deprecated functions can
be later removed by loading uninstall_legacy.sqgl.

http://trac.osgeo.org/postgis/wiki/UsersWikiWinUpgrade

PostGIS 3.3.0rc2 Manual 27 / 896

3. Restore your backup into your fresh newdb database using postgis_restore.pl. Unexpected errors, if any, will be printed
to the standard error stream by psql. Keep a log of those.

perl utils/postgis_restore.pl "/somepath/olddb.backup" | psgl -h localhost -p 5432 -U <
postgres newdb 2> errors.txt

Errors may arise in the following cases:

1. Some of your views or functions make use of deprecated PostGIS objects. In order to fix this you may try loading
legacy.sql script prior to restore or you’ll have to restore to a version of PostGIS which still contains those objects
and try a migration again after porting your code. If the 1egacy . sql way works for you, don’t forget to fix your code to
stop using deprecated functions and drop them loading uninstall_legacy.sqgl.

2. Some custom records of spatial_ref_sys in dump file have an invalid SRID value. Valid SRID values are bigger than 0 and
smaller than 999000. Values in the 999000.999999 range are reserved for internal use while values > 999999 can’t be used
at all. All your custom records with invalid SRIDs will be retained, with those > 999999 moved into the reserved range,
but the spatial_ref_sys table would lose a check constraint guarding for that invariant to hold and possibly also its primary
key (when multiple invalid SRIDS get converted to the same reserved SRID value).

In order to fix this you should copy your custom SRS to a SRID with a valid value (maybe in the 910000..910999 range),
convert all your tables to the new srid (see UpdateGeometrySRID), delete the invalid entry from spatial_ref_sys and re-
construct the check(s) with:

ALTER TABLE spatial_ref_ sys ADD CONSTRAINT spatial_ref sys_srid_check check (srid > 0 <
AND srid < 999000);

ALTER TABLE spatial_ref_sys ADD PRIMARY KEY (srid));
If you are upgrading an old database containing french IGN cartography, you will have probably SRIDs out of range and
you will see, when importing your database, issues like this :

WARNING: SRID 310642222 converted to 999175 (in reserved zone)
In this case, you can try following steps : first throw out completely the IGN from the sql which is resulting from post-
gis_restore.pl. So, after having run :

perl utils/postgis_restore.pl "/somepath/olddb.backup" > olddb.sqgl

run this command :

grep -v IGNF olddb.sgl > olddb-without-IGN.sqgl

Create then your newdb, activate the required Postgis extensions, and insert properly the french system IGN with : this
script After these operations, import your data :

psgl -h localhost -p 5432 -U postgres -d newdb -f olddb-without-IGN.sgl 2> errors.txt

https://en.wikipedia.org/wiki/Institut_g%C3%A9ographique_national
https://raw.githubusercontent.com/Remi-C/IGN_spatial_ref_for_PostGIS/master/Put_IGN_SRS_into_Postgis.sql
https://raw.githubusercontent.com/Remi-C/IGN_spatial_ref_for_PostGIS/master/Put_IGN_SRS_into_Postgis.sql

PostGIS 3.3.0rc2 Manual 28 /896

Chapter 4

Data Management

4.1 Spatial Data Model

4.1.1 OGC Geometry

The Open Geospatial Consortium (OGC) developed the Simple Features Access standard (SFA) to provide a model for geospatial
data. It defines the fundamental spatial type of Geometry, along with operations which manipulate and transform geometry
values to perform spatial analysis tasks. PostGIS implements the OGC Geometry model as the PostgreSQL data types geometry
and geography.

Geometry is an abstract type. Geometry values belong to one of its concrete subtypes which represent various kinds and
dimensions of geometric shapes. These include the atomic types Point, LineString, LinearRing and Polygon, and the collection
types MultiPoint, MultiLineString, MultiPolygon and GeometryCollection. The Simple Features Access - Part 1: Common
architecture v1.2.1 adds subtypes for the structures PolyhedralSurface, Triangle and TIN.

Geometry models shapes in the 2-dimensional Cartesian plane. The PolyhedralSurface, Triangle, and TIN types can also repre-
sent shapes in 3-dimensional space. The size and location of shapes are specified by their coordinates. Each coordinate has a
X and Y ordinate value determining its location in the plane. Shapes are constructed from points or line segments, with points
specified by a single coordinate, and line segments by two coordinates.

Coordinates may contain optional Z and M ordinate values. The Z ordinate is often used to represent elevation. The M ordinate
contains a measure value, which may represent time or distance. If Z or M values are present in a geometry value, they must be
defined for each point in the geometry. If a geometry has Z or M ordinates the coordinate dimension is 3D; if it has both Z and
M the coordinate dimension is 4D.

Geometry values are associated with a spatial reference system indicating the coordinate system in which it is embedded. The
spatial reference system is identified by the geometry SRID number. The units of the X and Y axes are determined by the
spatial reference system. In planar reference systems the X and Y coordinates typically represent easting and northing, while in
geodetic systems they represent longitude and latitude. SRID O represents an infinite Cartesian plane with no units assigned to
its axes. See Section 4.5.

The geometry dimension is a property of geometry types. Point types have dimension 0O, linear types have dimension 1, and
polygonal types have dimension 2. Collections have the dimension of the maximum element dimension.

A geometry value may be empty. Empty values contain no vertices (for atomic geometry types) or no elements (for collections).

An important property of geometry values is their spatial extent or bounding box, which the OGC model calls envelope. This is
the 2 or 3-dimensional box which encloses the coordinates of a geometry. It is an efficient way to represent a geometry’s extent
in coordinate space and to check whether two geometries interact.

The geometry model allows evaluating topological spatial relationships as described in Section 5.1.1. To support this the concepts
of interior, boundary and exterior are defined for each geometry type. Geometries are topologically closed, so they always
contain their boundary. The boundary is a geometry of dimension one less than that of the geometry itself.

https://www.ogc.org/standards/sfa
https://portal.ogc.org/files/?artifact_id=25355
https://portal.ogc.org/files/?artifact_id=25355

PostGIS 3.3.0rc2 Manual 29/ 896

The OGC geometry model defines validity rules for each geometry type. These rules ensure that geometry values represents
realistic situations (e.g. it is possible to specify a polygon with a hole lying outside the shell, but this makes no sense geometrically
and is thus invalid). PostGIS also allows storing and manipulating invalid geometry values. This allows detecting and fixing them
if needed. See Section 4.4

4.1.1.1 Point

A Point is a 0-dimensional geometry that represents a single location in coordinate space.

POINT (1 2)
POINT Z (1 2 3)
POINT ZM (1 2 3 4)

4.1.1.2 LineString

A LineString is a 1-dimensional line formed by a contiguous sequence of line segments. Each line segment is defined by two
points, with the end point of one segment forming the start point of the next segment. An OGC-valid LineString has either zero
or two or more points, but PostGIS also allows single-point LineStrings. LineStrings may cross themselves (self-intersect). A
LineString is closed if the start and end points are the same. A LineString is simple if it does not self-intersect.

LINESTRING (1 2, 3 4, 5 6)

4.1.1.3 LinearRing

A LinearRing is a LineString which is both closed and simple. The first and last points must be equal, and the line must not
self-intersect.

LINEARRING (0 0 0, 4 0 0, 4 40, 040, 00 0)

4.1.1.4 Polygon

A Polygon is a 2-dimensional planar region, delimited by an exterior boundary (the shell) and zero or more interior boundaries
(holes). Each boundary is a LinearRing.

POLYGON ((O O 0,4 0 0,4 4 0,0 4 0,00 0),(1160,210,220,1220,110))

4.1.1.5 MultiPoint

A MultiPoint is a collection of Points.

MULTIPOINT ((0 0), (1 2))

4.1.1.6 MultiLineString

A MultiLineString is a collection of LineStrings. A MultiLineString is closed if each of its elements is closed.

MULTILINESTRING ((0 0,1 1,1 2), (2 3,3 2,5 4))

PostGIS 3.3.0rc2 Manual 30/ 896

4.1.1.7 MultiPolygon
A MultiPolygon is a collection of non-overlapping, non-adjacent Polygons. Polygons in the collection may touch only at a finite
number of points.

MULTIPOLYGON (((1 5, 55, 51, 1 1, 1 5)), ((6 5, 91, 61, 6 5)))

4.1.1.8 GeometryCollection

A GeometryCollection is a heterogeneous (mixed) collection of geometries.

GEOMETRYCOLLECTION (POINT (2 3), LINESTRING(2 3, 3 4))

4.1.1.9 PolyhedralSurface

A PolyhedralSurface is a contiguous collection of patches or facets which share some edges. Each patch is a planar Polygon. If
the Polygon coordinates have Z ordinates then the surface is 3-dimensional.

POLYHEDRALSURFACE
((0 00, 001,
(0 0 0,

~
~
~

14

~
~
~

’

~ 0~

14

~

14

~
~

B R PR PO N
B RO O R P~
oOr P OoORr o
e ==
o or oo
<~
oOor o oo
oOr PP o oo
oo o oo

~

o K o
= o o o

< <~

o RFk O
O P O

B R RO o
I N = e BN
~ ~ ~

’

4.1.1.10 Triangle

A Triangle is a polygon defined by three distinct non-collinear vertices. Because a Triangle is a polygon it is specified by four
coordinates, with the first and fourth being equal.

TRIANGLE ((O 0, 0 9, 9 0, 0 0))

4.1.1.11 TIN

A TIN is a collection of non-overlapping Triangles representing a Triangulated Irregular Network.

TIN Z ((¢O OO, 001, 010, O0OO)), ((OOOCG 010, 2160, 0O00O0)))

4.1.2 SQL/MM Part 3 - Curves

The ISO/IEC 13249-3 SOL Multimedia - Spatial standard (SQL/MM) extends the OGC SFA to define Geometry subtypes con-
taining curves with circular arcs. The SQL/MM types support 3DM, 3DZ and 4D coordinates.

N;l-g/! Note

All floating point comparisons within the SQL-MM implementation are performed to a specified tolerance, currently 1E-
8.

https://en.wikipedia.org/wiki/Triangulated_irregular_network
https://www.iso.org/obp/ui/#iso:std:iso-iec:13249:-3:ed-5:v1:en

PostGIS 3.3.0rc2 Manual 31/896

4.1.2.1 CircularString

CircularString is the basic curve type, similar to a LineString in the linear world. A single arc segment is specified by three
points: the start and end points (first and third) and some other point on the arc. To specify a closed circle the start and end points
are the same and the middle point is the opposite point on the circle diameter (which is the center of the arc). In a sequence of
arcs the end point of the previous arc is the start point of the next arc, just like the segments of a LineString. This means that a
CircularString must have an odd number of points greater than 1.

CIRCULARSTRING (0O 0, 1 1, 1 0)

CIRCULARSTRING(0 0, 4 0, 4 4, 0 4, 0 0)

4.1.2.2 CompoundCurve

A CompoundCurve is a single continuous curve that may contain both circular arc segments and linear segments. That means
that in addition to having well-formed components, the end point of every component (except the last) must be coincident with
the start point of the following component.

COMPOUNDCURVE (CIRCULARSTRING(O O, 1 1, 1 0), (1 0, 0 1))

4.1.2.3 CurvePolygon

A CurvePolygon is like a polygon, with an outer ring and zero or more inner rings. The difference is that a ring can be a
CircularString or CompoundCurve as well as a LineString.

As of PostGIS 1.4 PostGIS supports compound curves in a curve polygon.

CURVEPOLYGON (
CIRCULARSTRING(0 O, 4 0, 4 4, 0 4, 0 0),
(r1, 33 31, 11))

Example: A CurvePolygon with the shell defined by a CompoundCurve containing a CircularString and a LineString, and a hole
defined by a CircularString

CURVEPOLYGON (

COMPOUNDCURVE (CIRCULARSTRING(O 0,2 0, 2 1, 2 3, 4 3),
(4 3, 45, 1 4, 00)

CIRCULARSTRING (1.7 1, 1.4 0.4, 1.6

I4

)
0.4, 1.6 0.5, 1.7 1))

4.1.2.4 MultiCurve

A MultiCurve is a collection of curves which can include LineStrings, CircularStrings or CompoundCurves.

MULTICURVE((0 O, 5 5), CIRCULARSTRING(4 0, 4 4, 8 4))

4.1.2.5 MultiSurface

A MultiSurface is a collection of surfaces, which can be (linear) Polygons or CurvePolygons.

MULTISURFACE (
CURVEPOLYGON (
CIRCULARSTRING(O 0, 4 0, 4 4, 0 4, 0 0),
(11, 33, 31, 1 1)),
((10 10, 14 12, 11 10, 10 10), (11 11, 11.5 11, 11 11.5, 11 11)))

PostGIS 3.3.0rc2 Manual 32/896

4.1.3 WKT and WKB

The OGC SFA specification defines two formats for representing geometry values for external use: Well-Known Text (WKT) and
Well-Known Binary (WKB). Both WKT and WKB include information about the type of the object and the coordinates which
define it.

Well-Known Text (WKT) provides a standard textual representation of spatial data. Examples of WKT representations of spatial
objects are:

« POINT(0 0)

« POINT Z (0 0 0)

« POINT ZM (00 0 0)

« POINT EMPTY

« LINESTRING(0 0,1 1,1 2)

« LINESTRING EMPTY

« POLYGON((0 0,4 0,44,04,00),(11,21,22,12,1 1))

« MULTIPOINT((0 0),(1 2))

« MULTIPOINT Z ((0 0 0),(1 2 3))

« MULTIPOINT EMPTY

« MULTILINESTRING((0 0,1 1,1 2),(2 3,3 2,5 4))

« MULTIPOLYGON(((0 0,4 0,4 4,0 4,0 0),(1 1,2 1,22,1 2,1 1)), ((-1 -1,-1 -2,-2 -2,-2 -1 ,-1 -1)))
« GEOMETRYCOLLECTION(POINT(2 3),LINESTRING(2 3,3 4))
« GEOMETRYCOLLECTION EMPTY

Input and output of WKT is provided by the functions ST_AsText and ST_GeomFromText:

text WKT = ST_AsText (geometry);
geometry = ST_GeomFromText (text WKT, SRID);

For example, a statement to create and insert a spatial object from WKT and a SRID is:

INSERT INTO geotable (geom, name)
VALUES (ST_GeomFromText ('POINT (-126.4 45.32)"', 312), 'A Place');

Well-Known Binary (WKB) provides a portable, full-precision representation of spatial data as binary data (arrays of bytes).
Examples of the WKB representations of spatial objects are:
* WKT: POINT(1 1)

WKB: 0101000000000000000000F03F000000000000F03

* WKT: LINESTRING (22, 99)
WKB: 0102000000020000000000000000000040000000000000004000000000000022400000000000002240

Input and output of WKB is provided by the functions ST_AsBinary and ST_GeomFromWKB:

bytea WKB = ST_AsBinary (geometry) ;
geometry = ST_GeomFromWKB (bytea WKB, SRID) ;

For example, a statement to create and insert a spatial object from WKB is:

INSERT INTO geotable (geom, name)
VALUES (ST_GeomFromWKB ('\x0101000000000000000000£03f000000000000£f03f"', 312), 'A Place');

PostGIS 3.3.0rc2 Manual 33 /896

4.2 Geometry Data Type

PostGIS implements the OGC Simple Features model by defining a PostgreSQL data type called geomet ry. It represents all of
the geometry subtypes by using an internal type code (see GeometryType and ST_GeometryType). This allows modelling spatial
features as rows of tables defined with a column of type geometry.

The geomet ry data type is opaque, which means that all access is done via invoking functions on geometry values. Functions
allow creating geometry objects, accessing or updating all internal fields, and compute new geometry values. PostGIS supports
all the functions specified in the OGC Simple feature access - Part 2: SOL option (SFS) specification, as well many others. See
Chapter 8 for the full list of functions.

Note
PostGIS follows the SFA standard by prefixing spatial functions with "ST_". This was intended to stand for "Spatial and
Temporal”, but the temporal part of the standard was never developed. Instead it can be interpreted as "Spatial Type".

The SFA standard specifies that spatial objects include a Spatial Reference System identifier (SRID). The SRID is required when
creating spatial objects for insertion into the database (it may be defaulted to 0). See ST_SRID and Section 4.5

To make querying geometry efficient PostGIS defines various kinds of spatial indexes, and spatial operators to use them. See
Section 4.9 and Section 5.2 for details.

4.2.1 PostGIS EWKB and EWKT

OGC SFA specifications initially supported only 2D geometries, and the geometry SRID is not included in the input/output
representations. The OGC SFA specification 1.2.1 (which aligns with the ISO 19125 standard) adds support for 3D (ZYZ) and
measured (XYM and XYZM) coordinates, but still does not include the SRID value.

Because of these limitations PostGIS defined extended EWKB and EWKT formats. They provide 3D (XYZ and XYM) and 4D
(XYZM) coordinate support and include SRID information. Including all geometry information allows PostGIS to use EWKB
as the format of record (e.g. in DUMP files).

EWKB and EWKT are used for the "canonical forms" of PostGIS data objects. For input, the canonical form for binary data is
EWKB, and for text data either EWKB or EWKT is accepted. This allows geometry values to be created by casting a text value
in either HEXEWKB or EWKT to a geometry value using : : geometry. For output, the canonical form for binary is EWKB,
and for text it is HEXEWKB (hex-encoded EWKB).

For example this statement creates a geometry by casting from an EWKT text value, and outputs it using the canonical form of
HEXEWKB:

SELECT 'SRID=4;POINT (0 0)'::geometry;
geometry

01010000200400000000000000000000000000000000000000

PostGIS EWKT output has a few differences to OGC WKT:

» For 3DZ geometries the Z qualifier is omitted:
OGC: POINT Z (12 3)
EWKT: POINT (1 2 3)

» For 3DM geometries the M qualifier is included:
OGC: POINTM (12 3)
EWKT: POINTM (1 2 3)

https://portal.ogc.org/files/?artifact_id=25354

PostGIS 3.3.0rc2 Manual 34 /896

* For 4D geometries the ZM qualifier is omitted:
OGC: POINTZM (123 4)
EWKT: POINT (123 4)

EWKT avoids over-specifying dimensionality and the inconsistencies that can occur with the OGC/ISO format, such as:

« POINT ZM (1 1)
« POINTZM (11 1)
« POINT(1111)

g% Caution

! 1 PostGIS extended formats are currently a superset of the OGC ones, so that every valid OGC WKB/WKT is also valid
EWKB/EWKT. However, this might vary in the future, if the OGC extends a format in a way that conflicts with the PosGIS
definition. Thus you SHOULD NOT rely on this compatibility!

Examples of the EWKT text representation of spatial objects are:

« POINT(0 0 0) -- XYZ

« SRID=32632;POINT(0 0) -- XY with SRID

« POINTM(0 0 0) -- XYM

« POINT(0 0 0 0) -- XYZM

« SRID=4326;MULTIPOINTM(0 0 0,1 2 1) -- XYM with SRID

« MULTILINESTRING((000,1 10,12 1),23 1,32 1,54 1))

« POLYGON((0 0 0,400,440,040,000),(110,210,220,120,110))

« MULTIPOLYGON(((0 00,4 00,44 0,04 0,0 00),(110,210,220,120,1 1 0)),((-1 -1 0,-1-20,-2-20,-2 -1 0,-1 -1 0)))
« GEOMETRYCOLLECTIONM(POINTM(2 3 9), LINESTRINGM(2 3 4,3 4 5))

« MULTICURVE((0 0, 5 5), CIRCULARSTRING(4 0, 4 4, 8 4))

« POLYHEDRALSURFACE(((000,001,011,010,000)),((000,010,110,100,000)),((000,100,101,001,0
00),((110,111,101,100,110)),((010,011,111,110,010)),(©01,101,111,011,001)))

« TRIANGLE ((0 0, 0 10, 10 0, 0 0))
« TIN(((000,001,010,000)),((000,010,110,000)))

Input and output using these formats is available using the following functions:

bytea EWKB = ST_AsSEWKB (geometry);
text EWKT = ST_ASEWKT (geometry) ;
geometry = ST_GeomFromEWKB (bytea EWKB) ;
geometry = ST_GeomFromEWKT (text EWKT) ;

For example, a statement to create and insert a PostGIS spatial object using EWKT is:

INSERT INTO geotable (geom, name)
VALUES (ST_GeomFromEWKT ('SRID=312;POINTM(-126.4 45.32 15)'"), 'A Place')

PostGIS 3.3.0rc2 Manual 35/896

4.3 Geography Data Type

The PostGIS geography data type provides native support for spatial features represented on "geographic" coordinates (some-
times called "geodetic" coordinates, or "lat/lon", or "lon/lat"). Geographic coordinates are spherical coordinates expressed in
angular units (degrees).

The basis for the PostGIS geometry data type is a plane. The shortest path between two points on the plane is a straight line.
That means functions on geometries (areas, distances, lengths, intersections, etc) are calculated using straight line vectors and
cartesian mathematics. This makes them simpler to implement and faster to execute, but also makes them inaccurate for data on
the spheroidal surface of the earth.

The PostGIS geography data type is based on a spherical model. The shortest path between two points on the sphere is a great
circle arc. Functions on geographies (areas, distances, lengths, intersections, etc) are calculated using arcs on the sphere. By
taking the spheroidal shape of the world into account, the functions provide more accurate results.

Because the underlying mathematics is more complicated, there are fewer functions defined for the geography type than for the
geometry type. Over time, as new algorithms are added the capabilities of the geography type will expand. As a workaround one
can convert back and forth between geometry and geography types.

Like the geometry data type, geography data is associated with a spatial reference system via a spatial reference system identifier
(SRID). Any geodetic (long/lat based) spatial reference system defined in the spatial_ref_sys table can be used. (Prior to
PostGIS 2.2, the geography type supported only WGS 84 geodetic (SRID:4326)). You can add your own custom geodetic spatial
reference system as described in Section 4.5.2.

For all spatial reference systems the units returned by measurement functions (e.g. ST_Distance, ST_Length, ST_Perimeter,
ST_Area) and for the distance argument of ST_DWithin are in meters.

4.3.1 Creating Geography Tables

You can create a table to store geography data using the CREATE TABLE SQL statement with a column of type geography.
The following example creates a table with a geography column storing 2D LineStrings in the WGS84 geodetic coordinate
system (SRID 4326):

CREATE TABLE global_points (
id SERIAL PRIMARY KEY,
name VARCHAR (64),
location geography (POINT, 4326)
)i

The geography type supports two optional type modifiers:

* the spatial type modifier restricts the kind of shapes and dimensions allowed in the column. Values allowed for the spatial type
are: POINT, LINESTRING, POLY GON, MULTIPOINT, MULTILINESTRING, MULTIPOLY GON, GEOMETRYCOLLEC-
TION. The geography type does not support curves, TINS, or POLYHEDRALSURFACEs. The modifier supports coordinate
dimensionality restrictions by adding suffixes: Z, M and ZM. For example, a modifier of 'LINESTRINGM’ only allows
linestrings with three dimensions, and treats the third dimension as a measure. Similarly, 'POINTZM’ requires four dimen-
sional (XYZM) data.

 the SRID modifier restricts the spatial reference system SRID to a particular number. If omitted, the SRID defaults to 4326
(WGS84 geodetic), and all calculations are performed using WGS84.

Examples of creating tables with geography columns:

¢ Create a table with 2D POINT geography with the default SRID 4326 (WGS84 long/lat):

CREATE TABLE ptgeogwgs (gid serial PRIMARY KEY, geog geography (POINT));

* Create a table with 2D POINT geography in NAD83 longlat:

https://www.postgresql.org/docs/current/sql-createtable.html

PostGIS 3.3.0rc2 Manual 36/ 896

CREATE TABLE ptgeognad83(gid serial PRIMARY KEY, geog geography (POINT,4269));

* Create a table with 3D (XYZ) POINTSs and an explicit SRID of 4326:

CREATE TABLE ptzgeogwgs84 (gid serial PRIMARY KEY, geog geography (POINTZ,4326));

* Create a table with 2D LINESTRING geography with the default SRID 4326:

CREATE TABLE lgeog(gid serial PRIMARY KEY, geog geography (LINESTRING));

* Create a table with 2D POLYGON geography with the SRID 4267 (NAD 1927 long lat):

CREATE TABLE lgeognad27(gid serial PRIMARY KEY, geog geography (POLYGON, 4267));

Geography fields are registered in the geography_columns system view. You can query the geography_columns view
and see that the table is listed:

SELECT x FROM geography_columns;

Creating a spatial index works the same as for geometry columns. PostGIS will note that the column type is GEOGRAPHY and
create an appropriate sphere-based index instead of the usual planar index used for GEOMETRY.

—— Index the test table with a spherical index
CREATE INDEX global_points_gix ON global_ points USING GIST (location);

4.3.2 Using Geography Tables

You can insert data into geography tables in the same way as geometry. Geometry data will autocast to the geography type if it
has SRID 4326. The EWKT and EWKB formats can also be used to specify geography values.

—-— Add some data into the test table

INSERT INTO global_points (name, location) VALUES ('Town', 'SRID=4326;POINT(-110 30)"'");
INSERT INTO global_points (name, location) VALUES ('Forest', 'SRID=4326;POINT(-109 29)");
INSERT INTO global_points (name, location) VALUES ('London', 'SRID=4326;POINT (0 49)"');

Any geodetic (long/lat) spatial reference system listed in spatial_ref_sys table may be specified as a geography SRID.
Non-geodetic coordinate systems raise an error if used.

-— NAD 83 lon/lat
SELECT 'SRID=4269;POINT (-123 34)'::geography;
geography

0101000020AD1000000000000000CO5ECO0000000000004140

-— NAD27 lon/lat
SELECT 'SRID=4267;POINT (=123 34)'::geography;
geography

0101000020AB1000000000000000C0O5EC0O0000000000004140

—— NAD83 UTM zone meters — gives an error since it is a meter-based planar projection
SELECT 'SRID=26910;POINT (-123 34) '::geography;

ERROR: Only lon/lat coordinate systems are supported in geography.

Query and measurement functions use units of meters. So distance parameters should be expressed in meters, and return values
should be expected in meters (or square meters for areas).

PostGIS 3.3.0rc2 Manual 37/ 896

—— A distance query using a 1000km tolerance
SELECT name FROM global_points WHERE ST_DWithin (location, 'SRID=4326;POINT (=110 29)"':: «
geography, 1000000) ;

You can see the power of geography in action by calculating how close a plane flying a great circle route from Seattle to London
(LINESTRING(-122.33 47.606, 0.0 51.5)) comes to Reykjavik (POINT(-21.96 64.15)) (map the route).

The geography type calculates the true shortest distance of 122.235 km over the sphere between Reykjavik and the great circle
flight path between Seattle and London.

—-— Distance calculation using GEOGRAPHY

SELECT ST_Distance ('LINESTRING (-122.33 47.606, 0.0 51.5)'::geography, 'POINT(-21.96 64.15) <«
'::geography) ;
st_distance

122235.23815667

The geometry type calculates a meaningless cartesian distance between Reykjavik and the straight line path from Seattle to
London plotted on a flat map of the world. The nominal units of the result is "degrees", but the result doesn’t correspond to any
true angular difference between the points, so even calling them "degrees" is inaccurate.

—— Distance calculation using GEOMETRY
SELECT ST_Distance ('LINESTRING(-122.33 47.606, 0.0 51.5)"'::geometry, 'POINT(-21.96 64.15) <>
'::geometry) ;
st_distance

13.342271221453624

4.3.3 When to use the Geography data type

The geography data type allows you to store data in longitude/latitude coordinates, but at a cost: there are fewer functions defined
on GEOGRAPHY than there are on GEOMETRY; those functions that are defined take more CPU time to execute.

The data type you choose should be determined by the expected working area of the application you are building. Will your data
span the globe or a large continental area, or is it local to a state, county or municipality?

* If your data is contained in a small area, you might find that choosing an appropriate projection and using GEOMETRY is the
best solution, in terms of performance and functionality available.

* If your data is global or covers a continental region, you may find that GEOGRAPHY allows you to build a system without
having to worry about projection details. You store your data in longitude/latitude, and use the functions that have been defined
on GEOGRAPHY.

* If you don’t understand projections, and you don’t want to learn about them, and you’re prepared to accept the limitations in
functionality available in GEOGRAPHY, then it might be easier for you to use GEOGRAPHY than GEOMETRY. Simply load
your data up as longitude/latitude and go from there.

Refer to Section 15.11 for compare between what is supported for Geography vs. Geometry. For a brief listing and description
of Geography functions, refer to Section 15.4

4.3.4 Geography Advanced FAQ

1. Do you calculate on the sphere or the spheroid?

By default, all distance and area calculations are done on the spheroid. You should find that the results of calculations in
local areas match up will with local planar results in good local projections. Over larger areas, the spheroidal calculations
will be more accurate than any calculation done on a projected plane. All the geography functions have the option of
using a sphere calculation, by setting a final boolean parameter to 'FALSE’. This will somewhat speed up calculations,
particularly for cases where the geometries are very simple.

http://gc.kls2.com/cgi-bin/gc?PATH=SEA-LHR

PostGIS 3.3.0rc2 Manual 38 /896

2. What about the date-line and the poles?

All the calculations have no conception of date-line or poles, the coordinates are spherical (longitude/latitude) so a shape
that crosses the dateline is, from a calculation point of view, no different from any other shape.

3. What is the longest arc you can process?

We use great circle arcs as the "interpolation line" between two points. That means any two points are actually joined up
two ways, depending on which direction you travel along the great circle. All our code assumes that the points are joined
by the *shorter* of the two paths along the great circle. As a consequence, shapes that have arcs of more than 180 degrees
will not be correctly modelled.

4. Why is it so slow to calculate the area of Europe / Russia / insert big geographic region here ?

Because the polygon is so darned huge! Big areas are bad for two reasons: their bounds are huge, so the index tends to pull
the feature no matter what query you run; the number of vertices is huge, and tests (distance, containment) have to traverse
the vertex list at least once and sometimes N times (with N being the number of vertices in the other candidate feature).
As with GEOMETRY, we recommend that when you have very large polygons, but are doing queries in small areas, you
"denormalize" your geometric data into smaller chunks so that the index can effectively subquery parts of the object and
so queries don’t have to pull out the whole object every time. Please consult ST_Subdivide function documentation. Just
because you *can* store all of Europe in one polygon doesn’t mean you *should*.

4.4 Geometry Validation

PostGIS is compliant with the Open Geospatial Consortium’s (OGC) Simple Features specification. That standard defines the
concepts of geometry being simple and valid. These definitions allow the Simple Features geometry model to represent spatial
objects in a consistent and unambiguous way that supports efficient computation. (Note: the OGC SF and SQL/MM have the
same definitions for simple and valid.)

4.41 Simple Geometry

A simple geometry is one that has no anomalous geometric points, such as self intersection or self tangency.
A POINT is inherently simple as a O-dimensional geometry object.
MULTIPOINTs are simple if no two coordinates (POINTSs) are equal (have identical coordinate values).

A LINESTRING is simple if it does not pass through the same point twice, except for the endpoints. If the endpoints of a simple
LineString are identical it is called closed and referred to as a Linear Ring.

(a) and (c) are simple LINESTRINGS. (b) and (d) are not simple. (c) is a closed Linear Ring.

PostGIS 3.3.0rc2 Manual 39/896

(a) (b)

(c) (d)

A MULTILINESTRING is simple only if all of its elements are simple and the only intersection between any two elements
occurs at points that are on the boundaries of both elements.

(e) and (f) are simple MULTILINESTRINGS. (g) is not simple.

PostGIS 3.3.0rc2 Manual 40/ 896

(e) ® @

POLYGONSs are formed from linear rings, so valid polygonal geometry is always simple.

To test if a geometry is simple use the ST_IsSimple function:

SELECT
ST_IsSimple ('LINESTRING(O 0, 100 100)') AS straight,
ST_IsSimple ('LINESTRING(O 0, 100 100, 100 0, O 100)') AS crossing;
straight | crossing
__________ +__________
t | £

Generally, PostGIS functions do not require geometric arguments to be simple. Simplicity is primarily used as a basis for defining
geometric validity. It is also a requirement for some kinds of spatial data models (for example, linear networks often disallow
lines that cross). Multipoint and linear geometry can be made simple using ST_UnaryUnion.

4.4.2 Valid Geometry

Geometry validity primarily applies to 2-dimensional geometries (POLYGONs and MULTIPOLYGONSs) . Validity is defined by
rules that allow polygonal geometry to model planar areas unambiguously.

A POLYGON is valid if:

1. the polygon boundary rings (the exterior shell ring and interior hole rings) are simple (do not cross or self-touch). Because
of this a polygon cannnot have cut lines, spikes or loops. This implies that polygon holes must be represented as interior
rings, rather than by the exterior ring self-touching (a so-called "inverted hole").

2. boundary rings do not cross
3. boundary rings may touch at points but only as a tangent (i.e. not in a line)
4. interior rings are contained in the exterior ring

5. the polygon interior is simply connected (i.e. the rings must not touch in a way that splits the polygon into more than one
part)

(h) and (i) are valid POLYGONs. (j-m) are invalid. (j) can be represented as a valid MULTIPOLYGON.

PostGIS 3.3.0rc2 Manual

41/896

(h)) ()
(k) 0] (m)

A MULTIPOLYGON is valid if:

1. its element POLYGONS are valid
2. elements do not overlap (i.e. their interiors must not intersect)

3. elements touch only at points (i.e. not along a line)

(n) is a valid MULTIPOLYGON. (0) and (p) are invalid.

PostGIS 3.3.0rc2 Manual 42/ 896

(n) (0) (p)

These rules mean that valid polygonal geometry is also simple.

For linear geometry the only validity rule is that LINESTRINGs must have at least two points and have non-zero length (or
equivalently, have at least two distinct points.) Note that non-simple (self-intersecting) lines are valid.

SELECT
ST_IsValid ('LINESTRING(O 0, 1 1)') AS len_nonzero,
ST_IsValid ('LINESTRING(O 0, 0 O, 0 0)') AS len_zero,
ST_IsValid ('LINESTRING (10 10, 150 150, 180 50, 20 130)') AS self_int;
len_nonzero | len_zero | self_int
,,,,,,,,,,,,, B
t | £ | t

POINT and MULTIPOINT geometries have no validity rules.

4.4.3 Managing Validity

PostGIS allows creating and storing both valid and invalid Geometry. This allows invalid geometry to be detected and flagged or
fixed. There are also situations where the OGC validity rules are stricter than desired (examples of this are zero-length linestrings
and polygons with inverted holes.)

Many of the functions provided by PostGIS rely on the assumption that geometry arguments are valid. For example, it does not
make sense to calculate the area of a polygon that has a hole defined outside of the polygon, or to construct a polygon from a
non-simple boundary line. Assuming valid geometric inputs allows functions to operate more efficiently, since they do not need
to check for topological correctness. (Notable exceptions are that zero-length lines and polygons with inversions are generally
handled correctly.) Also, most PostGIS functions produce valid geometry output if the inputs are valid. This allows PostGIS
functions to be chained together safely.

If you encounter unexpected error messages when calling PostGIS functions (such as "GEOS Intersection() threw an error!"),
you should first confirm that the function arguments are valid. If they are not, then consider using one of the techniques below to
ensure the data you are processing is valid.

S Note
Nﬂ‘“’! If a function reports an error with valid inputs, then you may have found an error in either PostGIS or one of the libraries
it uses, and you should report this to the PostGIS project. The same is true if a PostGIS function returns an invalid
geometry for valid input.

To test if a geometry is valid use the ST_IsValid function:

PostGIS 3.3.0rc2 Manual 43/ 896

SELECT ST_IsValid('POLYGON ((20 180, 180 180, 180 20, 20 20, 20 180))");

Information about the nature and location of an geometry invalidity are provided by the ST_IsValidDetail function:

SELECT wvalid, reason, ST_AsText (location) AS location

FROM ST_IsValidDetail ('POLYGON ((20 20, 120 190, 50 190, 170 50, 20 20))') AS t;
valid | reason | location
_______ +___________________+___
f | Self-intersection | POINT(91.51162790697674 141.56976744186045)

In some situations it is desirable to correct invalid geometry automatically. Use the ST_MakeValid function to do this. (ST_MakeValid
is a case of a spatial function that does allow invalid input!)

By default, PostGIS does not check for validity when loading geometry, because validity testing can take a lot of CPU time for
complex geometries. If you do not trust your data sources, you can enforce a validity check on your tables by adding a check
constraint:

ALTER TABLE mytable
ADD CONSTRAINT geometry_valid_check
CHECK (ST_IsValid(geom)) ;

4.5 Spatial Reference Systems

A Spatial Reference System (SRS) (also called a Coordinate Reference System (CRS)) defines how geometry is referenced to
locations on the Earth’s surface. There are three types of SRS:

* A geodetic SRS uses angular coordinates (longitude and latitude) which map directly to the surface of the earth.

* A projected SRS uses a mathematical projection transformation to "flatten" the surface of the spheroidal earth onto a plane.
It assigns location coordinates in a way that allows direct measurement of quantities such as distance, area, and angle. The
coordinate system is Cartesian, which means it has a defined origin point and two perpendicular axes (usually oriented North
and East). Each projected SRS uses a stated length unit (usually metres or feet). A projected SRS may be limited in its area of
applicability to avoid distortion and fit within the defined coordinate bounds.

* A local SRS is a Cartesian coordinate system which is not referenced to the earth’s surface. In PostGIS this is specified by a
SRID value of 0.

There are many different spatial reference systems in use. Common SRSes are standardized in the European Petroleum Survey
Group EPSG database. For convenience PostGIS (and many other spatial systems) refers to SRS definitions using an integer
identifier called a SRID.

A geometry is associated with a Spatial Reference System by its SRID value, which is accessed by ST_SRID. The SRID for a
geometry can be assigned using ST_SetSRID. Some geometry constructor functions allow supplying a SRID (such as ST_Point
and ST_MakeEnvelope). The EWKT format supports SRIDs with the SRID=n; prefix.

Spatial functions processing pairs of geometries (such as overlay and relationship functions) require that the input geometries are
in the same spatial reference system (have the same SRID). Geometry data can be transformed into a different spatial reference
system using ST_Transform. Geometry returned from functions has the same SRS as the input geometries.

4.5.1 SPATIAL_REF_SYS Table

The SPATIAL_REF_SYS table used by PostGIS is an OGC-compliant database table that defines the available spatial reference
systems. It holds the numeric SRIDs and textual descriptions of the coordinate systems.

The spatial_ref_sys table definition is:

https://en.wikipedia.org/wiki/Spatial_reference_system
http://www.epsg.org/

PostGIS 3.3.0rc2 Manual 44 / 896

CREATE TABLE spatial_ref_ sys (
srid INTEGER NOT NULL PRIMARY KEY,
auth_name VARCHAR (256),
auth_srid INTEGER,
srtext VARCHAR (2048) ,
proj4text VARCHAR(2048)

The columns are:

srid An integer code that uniquely identifies the Spatial Reference System (SRS) within the database.

auth_name The name of the standard or standards body that is being cited for this reference system. For example, "EPSG" is a
valid auth_name.

auth_srid The ID of the Spatial Reference System as defined by the Authority cited in the auth_name. In the case of EPSG,
this is the EPSG code.

srtext The Well-Known Text representation of the Spatial Reference System. An example of a WKT SRS representation is:

PROJCS ["NAD83 / UTM Zone 10N",
GEOGCS ["NAD83",
DATUM["North_American_Datum_1983",
SPHEROID["GRS 1980",6378137,298.257222101]
]I
PRIMEM["Greenwich", 0],
UNIT["degree",0.0174532925199433]

]I
PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin", 0],
PARAMETER["central_meridian",-123],
PARAMETER["scale_factor",0.9996],
PARAMETER["false_easting", 5000007,
PARAMETER ["false_northing", 0],

UNIT ["metre", 1]

For a discussion of SRS WKT, see the OGC standard Well-known text representation of coordinate reference systems.

projdtext PostGIS uses the PROJ library to provide coordinate transformation capabilities. The proj4text column contains
the PROJ coordinate definition string for a particular SRID. For example:

+proj=utm +zone=10 +ellps=clrk66 +datum=NAD27 +units=m

For more information see the PROJ web site. The spatial_ref_sys.sql file contains both srtext andprojdtext
definitions for all EPSG projections.

When retrieving spatial reference system definitions for use in transformations, PostGIS uses fhe following strategy:
e If auth_name and auth_srid are present (non-NULL) use the PROJ SRS based on those entries (if one exists).

» If srtext is present create a SRS using it, if possible.

* If proj4text is present create a SRS using it, if possible.

http://en.wikipedia.org/wiki/SRID
http://docs.opengeospatial.org/is/12-063r5/12-063r5.html
https://proj.org/

PostGIS 3.3.0rc2 Manual 45/ 896

4.5.2 User-Defined Spatial Reference Systems

The PostGIS spatial_ref_sys table contains over 3000 of the most common spatial reference system definitions that are
handled by the PROJ projection library. But there are many coordinate systems that it does not contain. You can add SRS
definitions to the table if you have the required information about the spatial reference system. Or, you can define your own
custom spatial reference system if you are familiar with PROJ constructs. Keep in mind that most spatial reference systems are
regional and have no meaning when used outside of the bounds they were intended for.

A resource for finding spatial reference systems not defined in the core set is http://spatialreference.org/

Some commonly used spatial reference systems are: 4326 - WGS 84 Long Lat, 4269 - NAD 83 Long Lat, 3395 - WGS 84 World
Mercator, 2163 - US National Atlas Equal Area, and the 60 WGS84 UTM zones. UTM zones are one of the most ideal for
measurement, but only cover 6-degree regions. (To determine which UTM zone to use for your area of interest, see the utmzone
PostGIS plpgsql helper function.)

US states use State Plane spatial reference systems (meter or feet based) - usually one or 2 exists per state. Most of the meter-based
ones are in the core set, but many of the feet-based ones or ESRI-created ones will need to be copied from spatialreference.org.

You can even define non-Earth-based coordinate systems, such as Mars 2000 This Mars coordinate system is non-planar (it’s in
degrees spheroidal), but you can use it with the geography type to obtain length and proximity measurements in meters instead
of degrees.

Here is an example of loading a custom coordinate system using an unassigned SRID and the PROJ definition for a US-centric
Lambert Conformal projection:

INSERT INTO spatial_ref_ sys (srid, projdtext)
VALUES (990000,
'+proj=lcc +lon_0=-95 +lat_0=25 +lat_1=25 +lat_2=25 +x_0=0 +y_0=0 +datum=WGS84 +units=m <
+no_defs'

)i

4.6 Spatial Tables

4.6.1 Creating a Spatial Table

You can create a table to store geometry data using the CREATE TABLE SQL statement with a column of type geometry.
The following example creates a table with a geometry column storing 2D (XY) LineStrings in the BC-Albers coordinate system
(SRID 3005):

CREATE TABLE roads (

id SERIAL PRIMARY KEY,

name VARCHAR (64),

geom geometry (LINESTRING, 3005)
)i

The geomet ry type supports two optional type modifiers:

* the spatial type modifier restricts the kind of shapes and dimensions allowed in the column. The value can be any of the
supported geometry subtypes (e.g. POINT, LINESTRING, POLYGON, MULTIPOINT, MULTILINESTRING, MULTIPOLY-
GON, GEOMETRYCOLLECTION, etc). The modifier supports coordinate dimensionality restrictions by adding suffixes: Z,
M and ZM. For example, a modifier of 'LINESTRINGM’ allows only linestrings with three dimensions, and treats the third
dimension as a measure. Similarly, "POINTZM’ requires four dimensional (XYZM) data.

* the SRID modifier restricts the spatial reference system SRID to a particular number. If omitted, the SRID defaults to 0.
Examples of creating tables with geometry columns:

* Create a table holding any kind of geometry with the default SRID:

https://proj.org
http://spatialreference.org/
http://spatialreference.org/ref/epsg/4326/
http://spatialreference.org/ref/epsg/4269/
http://spatialreference.org/ref/epsg/3395/
http://spatialreference.org/ref/epsg/3395/
http://spatialreference.org/ref/epsg/2163/
http://trac.osgeo.org/postgis/wiki/UsersWikiplpgsqlfunctionsDistance
http://trac.osgeo.org/postgis/wiki/UsersWikiplpgsqlfunctionsDistance
http://spatialreference.org
http://spatialreference.org/ref/iau2000/mars-2000/
https://www.postgresql.org/docs/current/sql-createtable.html

PostGIS 3.3.0rc2 Manual 46/ 896

CREATE TABLE geoms (gid serial PRIMARY KEY, geom geometry);

* Create a table with 2D POINT geometry with the default SRID:

CREATE TABLE pts(gid serial PRIMARY KEY, geom geometry (POINT));

* Create a table with 3D (XYZ) POINTSs and an explicit SRID of 3005:

CREATE TABLE pts(gid serial PRIMARY KEY, geom geometry (POINTZ,3005));

* Create a table with 4D (XYZM) LINESTRING geometry with the default SRID:

CREATE TABLE lines(gid serial PRIMARY KEY, geom geometry (LINESTRINGZM));

* Create a table with 2D POLYGON geometry with the SRID 4267 (NAD 1927 long lat):

CREATE TABLE polys(gid serial PRIMARY KEY, geom geometry (POLYGON, 4267));

It is possible to have more than one geometry column in a table. This can be specified when the table is created, or a column can
be added using the ALTER TABLE SQL statement. This example adds a column that can hold 3D LineStrings:

ALTER TABLE roads ADD COLUMN geom2 geometry (LINESTRINGZ,4326);

4.6.2 GEOMETRY_COLUMNS View

The OGC Simple Features Specification for SOL defines the GEOMETRY_ COLUMNS metadata table to describe geometry table
structure. In PostGIS geometry_columns is a view reading from database system catalog tables. This ensures that the spatial
metadata information is always consistent with the currently defined tables and views. The view structure is:

\d geometry_columns

View "public.geometry_columns"
Column | Type

f _table_schema
f_table_name

)

character varying(256)

)

f_geometry_column)

(

(
character varying (256

(

+
f_table_catalog | character varying (256
|
|
| character varying (256
|
|
|

coord_dimension integer
srid integer
type character varying(30)

The columns are:

f table_catalog, f table_schema, f_table_name The fully qualified name of the feature table containing the geometry column.
There is no PostgreSQL analogue of "catalog" so that column is left blank. For "schema" the PostgreSQL schema name is
used (public is the default).

f geometry_column The name of the geometry column in the feature table.
coord_dimension The coordinate dimension (2, 3 or 4) of the column.

srid The ID of the spatial reference system used for the coordinate geometry in this table. It is a foreign key reference to the
spatial_ref_sys table (see Section 4.5.1).

type The type of the spatial object. To restrict the spatial column to a single type, use one of: POINT, LINESTRING, POLY-
GON, MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, GEOMETRYCOLLECTION or corresponding XYM
versions POINTM, LINESTRINGM, POLYGONM, MULTIPOINTM, MULTILINESTRINGM, MULTIPOLYGONM,
GEOMETRYCOLLECTIONM. For heterogeneous (mixed-type) collections, you can use "GEOMETRY" as the type.

https://www.postgresql.org/docs/current/sql-altertable.html

PostGIS 3.3.0rc2 Manual 47 / 896

4.6.3 Manually Registering Geometry Columns

Two of the cases where you may need this are the case of SQL Views and bulk inserts. For bulk insert case, you can correct
the registration in the geometry_columns table by constraining the column or doing an alter table. For views, you could expose
using a CAST operation. Note, if your column is typmod based, the creation process would register it correctly, so no need to do
anything. Also views that have no spatial function applied to the geometry will register the same as the underlying table geometry
column.

—— Lets say you have a view created like this

CREATE VIEW public.vwmytablemercator AS
SELECT gid, ST_Transform(geom, 3395) As geom, f_name
FROM public.mytable;

-— For it to register correctly

—— You need to cast the geometry

DROP VIEW public.vwmytablemercator;

CREATE VIEW public.vwmytablemercator AS
SELECT gid, ST_Transform(geom, 3395) ::geometry (Geometry, 3395) As geom, f_name
FROM public.mytable;

—-— If you know the geometry type for sure is a 2D POLYGON then you could do
DROP VIEW public.vwmytablemercator;
CREATE VIEW public.vwmytablemercator AS
SELECT gid, ST_Transform(geom,3395) ::geometry (Polygon, 3395) As geom, f_name
FROM public.mytable;

—-Lets say you created a derivative table by doing a bulk insert

SELECT poi.gid, poi.geom, citybounds.city_name

INTO myschema.my_special_pois

FROM poi INNER JOIN citybounds ON ST_Intersects (citybounds.geom, poi.geom);

—— Create 2D index on new table
CREATE INDEX idx_myschema_myspecialpois_geom_gist
ON myschema.my_special_pois USING gist (geom) ;

—-— If your points are 3D points or 3M points,
—— then you might want to create an nd index instead of a 2D index
CREATE INDEX my_special_pois_geom_gist_nd

ON my_special_pois USING gist (geom gist_geometry_ops_nd);

—-— To manually register this new table's geometry column in geometry_columns.
—-— Note it will also change the underlying structure of the table to

—-— to make the column typmod based.

SELECT populate_geometry_columns ('myschema.my_special_pois'::regclass);

—— If you are using PostGIS 2.0 and for whatever reason, you

—-— you need the constraint based definition behavior

—— (such as case of inherited tables where all children do not have the same type and srid)
—-— set optional use_typmod argument to false

SELECT populate_geometry_columns ('myschema.my_special_ pois'::regclass, false);

Although the old-constraint based method is still supported, a constraint-based geometry column used directly in a view, will not
register correctly in geometry_columns, as will a typmod one. In this example we define a column using typmod and another
using constraints.

CREATE TABLE pois_ny(gid SERIAL PRIMARY KEY, poi_name text, cat text, geom geometry (POINT <
,4326));
SELECT AddGeometryColumn ('pois_ny', 'geom_2160', 2160, 'POINT', 2, false);

If we run in psql

PostGIS 3.3.0rc2 Manual

48 /896

\d pois_ny;

We observe they are defined differently -- one is typmod, one is constraint

Table "public.pois_ny"

Column | Type | Modifiers
___________ T
gid | integer | not null default nextval ('pois_ny_gid_seq'::regclass)
poi_name | text |
cat | character varying(20) |
geom | geometry (Point,4326) |
geom_2160 | geometry |
Indexes:

"pois_ny_pkey" PRIMARY KEY, btree (gid)
Check constraints:

"enforce_dims_geom_2160" CHECK (st_ndims (geom_2160) = 2)

"enforce_geotype_geom_2160" CHECK (geometrytype (geom_2160) = 'POINT'::text
OR geom_2160 IS NULL)

"enforce_srid_geom_2160" CHECK (st_srid(geom_2160) = 2160)

In geometry_columns, they both register correctly

SELECT f_table_name, f_geometry_column, srid, type
FROM geometry_columns

WHERE f_table_name = 'pois_ny';
f_table_name | f_geometry_column | srid | type
7777777777777 o
pois_ny | geom | 4326 | POINT
pois_ny | geom_2160 | 2160 | POINT

However -- if we were to create a view like this

CREATE VIEW vw_pois_ny_parks AS
SELECT =

FROM pois_ny

WHERE cat='park';

SELECT f_table_name, f_geometry_column, srid, type

FROM geometry_columns
WHERE f_table_name = 'vw_pois_ny_parks';

The typmod based geom view column registers correctly, but the constraint based one does not.

f _table_name | f_geometry_column | srid | type
—————————————————— o
vw_pois_ny_parks | geom | 4326 | POINT
vw_pois_ny_parks | geom_2160 | 0 | GEOMETRY

This may change in future versions of PostGIS, but for now to force the constraint-based view column to register correctly, you

need to do this:

DROP VIEW vw_pois_ny_parks;
CREATE VIEW vw_pois_ny_parks AS
SELECT gid, poi_name, cat,
geom,
geom_2160: :geometry (POINT,2160) As geom_2160
FROM pois_ny
WHERE cat = 'park';
SELECT f_table_name, f_geometry_column, srid, type

PostGIS 3.3.0rc2 Manual 49/ 896

FROM geometry_columns

WHERE f_table_name = 'vw_pois_ny_parks';

f _table_name | f_geometry_column | srid | type
—————————————————— Bt e
vw_pois_ny_parks | geom | 4326 | POINT
vw_pois_ny_parks | geom_ 2160 | 2160 | POINT

4.7 Loading Spatial Data

Once you have created a spatial table, you are ready to upload spatial data to the database. There are two built-in ways to get
spatial data into a PostGIS/PostgreSQL database: using formatted SQL statements or using the Shapefile loader.

4.7.1 Using SQL to Load Data

If spatial data can be converted to a text representation (as either WKT or WKB), then using SQL might be the easiest way to get
data into PostGIS. Data can be bulk-loaded into PostGIS/PostgreSQL by loading a text file of SQL INSERT statements using
the psgl SQL utility.

A SQL load file (roads . sgl for example) might look like this:

BEGIN;
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (1, 'LINESTRING (191232 243118,191108 243242)"','Jeff Rd');
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (2, 'LINESTRING (189141 244158,189265 244817)"', 'Geordie Rd');
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (3, 'LINESTRING (192783 228138,192612 229814) "', 'Paul St');
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (4, 'LINESTRING (189412 252431,189631 259122)"', 'Graeme Ave');
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (5, '"LINESTRING (190131 224148,190871 228134)"','Phil Tce');
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (6, 'LINESTRING (198231 263418,198213 268322) "', 'Dave Cres');
COMMIT;

The SQL file can be loaded into PostgreSQL using psql:

psgl —-d [database] —-f roads.sgl

4.7.2 Using the Shapefile Loader

The shp2pgsqgl data loader converts Shapefiles into SQL suitable for insertion into a PostGIS/PostgreSQL database either in
geometry or geography format. The loader has several operating modes selected by command line flags.

There is also a shp2pgsgl—-gui graphical interface with most of the options as the command-line loader. This may be easier
to use for one-off non-scripted loading or if you are new to PostGIS. It can also be configured as a plugin to PgAdminlIII.

(claldlp) These are mutually exclusive options:

-¢ Creates a new table and populates it from the Shapefile. This is the default mode.

-a Appends data from the Shapefile into the database table. Note that to use this option to load multiple files, the files
must have the same attributes and same data types.

-d Drops the database table before creating a new table with the data in the Shapefile.

PostGIS 3.3.0rc2 Manual 50 /896

-p Only produces the table creation SQL code, without adding any actual data. This can be used if you need to completely
separate the table creation and data loading steps.

-? Display help screen.

-D Use the PostgreSQL "dump" format for the output data. This can be combined with -a, -c and -d. It is much faster to load
than the default "insert" SQL format. Use this for very large data sets.

-s [<KRFROM_SRID>:]<SRID> Creates and populates the geometry tables with the specified SRID. Optionally specifies that the
input shapefile uses the given FROM_SRID, in which case the geometries will be reprojected to the target SRID.

-k Keep identifiers’ case (column, schema and attributes). Note that attributes in Shapefile are all UPPERCASE.

-i Coerce all integers to standard 32-bit integers, do not create 64-bit bigints, even if the DBF header signature appears to warrant
it.

-I Create a GiST index on the geometry column.

-m -ma_file_name Specify a file containing a set of mappings of (long) column names to 10 character DBF column names.
The content of the file is one or more lines of two names separated by white space and no trailing or leading space. For
example:

COLUMNNAME DBFFIELDI1
AVERYLONGCOLUMNNAME DBFFIELD2

-S Generate simple geometries instead of MULTT geometries. Will only succeed if all the geometries are actually single (L.E. a
MULTIPOLYGON with a single shell, or or a MULTIPOINT with a single vertex).

-t <dimensionality> Force the output geometry to have the specified dimensionality. Use the following strings to indicate the
dimensionality: 2D, 3DZ, 3DM, 4D.

If the input has fewer dimensions that specified, the output will have those dimensions filled in with zeroes. If the input
has more dimensions that specified, the unwanted dimensions will be stripped.

-w Output WKT format, instead of WKB. Note that this can introduce coordinate drifts due to loss of precision.

-e Execute each statement on its own, without using a transaction. This allows loading of the majority of good data when there
are some bad geometries that generate errors. Note that this cannot be used with the -D flag as the "dump" format always
uses a transaction.

-W <encoding> Specify encoding of the input data (dbf file). When used, all attributes of the dbf are converted from the
specified encoding to UTF8. The resulting SQL output will contain a SET CLIENT_ENCODING to UTF8 command,
so that the backend will be able to reconvert from UTFS§ to whatever encoding the database is configured to use internally.

-N <policy> NULL geometries handling policy (insert*,skip,abort)

-n -n Only import DBF file. If your data has no corresponding shapefile, it will automatically switch to this mode and load just
the dbf. So setting this flag is only needed if you have a full shapefile set, and you only want the attribute data and no
geometry.

-G Use geography type instead of geometry (requires lon/lat data) in WGS84 long lat (SRID=4326)

-T <tablespace> Specify the tablespace for the new table. Indexes will still use the default tablespace unless the -X parameter
is also used. The PostgreSQL documentation has a good description on when to use custom tablespaces.

-X <tablespace> Specify the tablespace for the new table’s indexes. This applies to the primary key index, and the GIST spatial
index if - is also used.

-Z When used, this flag will prevent the generation of ANALYZE statements. Without the -Z flag (default behavior), the
ANALYZE statements will be generated.

An example session using the loader to create an input file and loading it might look like this:

PostGIS 3.3.0rc2 Manual 51/896

shp2pgsgl -c -D -s 4269 -i -I shaperoads.shp myschema.roadstable > roads.sqgl
psgl -d roadsdb -f roads.sql

A conversion and load can be done in one step using UNIX pipes:

shp2pgsgl shaperoads.shp myschema.roadstable | psgl -d roadsdb

4.8 Extracting Spatial Data

Spatial data can be extracted from the database using either SQL or the Shapefile dumper. The section on SQL presents some of
the functions available to do comparisons and queries on spatial tables.

4.8.1 Using SQL to Extract Data

The most straightforward way of extracting spatial data out of the database is to use a SQL SELECT query to define the data set
to be extracted and dump the resulting columns into a parsable text file:

db=# SELECT road_id, ST_AsText (road_geom) AS geom, road_name FROM roads;

road_id | geom | road_name
________ e S
1 | LINESTRING (191232 243118,191108 243242) | Jeff Rd
2 | LINESTRING (189141 244158,189265 244817) | Geordie Rd
3 | LINESTRING (192783 228138,192612 229814) | Paul St
4 | LINESTRING (189412 252431,189631 259122) | Graeme Ave
5 | LINESTRING (190131 224148,190871 228134) | Phil Tce
6 | LINESTRING (198231 263418,198213 268322) | Dave Cres
7 | LINESTRING (218421 284121,224123 241231) | Chris Way
(6 rows)

There will be times when some kind of restriction is necessary to cut down the number of records returned. In the case of
attribute-based restrictions, use the same SQL syntax as used with a non-spatial table. In the case of spatial restrictions, the
following functions are useful:

ST_Intersects This function tells whether two geometries share any space.

= This tests whether two geometries are geometrically identical. For example, if "'POLYGON((0 0,1 1,1 0,0 0))’ is the same as
’POLYGON((0 0,1 1,1 0,0 0))’ (it is).

Next, you can use these operators in queries. Note that when specifying geometries and boxes on the SQL command line, you
must explicitly turn the string representations into geometries function. The 312 is a fictitious spatial reference system that
matches our data. So, for example:

SELECT road_id, road_name
FROM roads
WHERE roads_geom="'SRID=312; LINESTRING (191232 243118,191108 243242) '::geometry;

The above query would return the single record from the "ROADS_GEOM" table in which the geometry was equal to that value.
To check whether some of the roads passes in the area defined by a polygon:

SELECT road_id, road_name
FROM roads
WHERE ST_Intersects (roads_geom, 'SRID=312;POLYGON((...))");

PostGIS 3.3.0rc2 Manual 52 /896

The most common spatial query will probably be a "frame-based" query, used by client software, like data browsers and web
mappers, to grab a "map frame" worth of data for display.

When using the "&&" operator, you can specify either a BOX3D as the comparison feature or a GEOMETRY. When you specify
a GEOMETRY, however, its bounding box will be used for the comparison.

Using a "BOX3D" object for the frame, such a query looks like this:

SELECT ST_AsText (roads_geom) AS geom
FROM roads
WHERE
roads_geom && ST_MakeEnvelope (191232, 243117,191232, 243119,312);

Note the use of the SRID 312, to specify the projection of the envelope.

4.8.2 Using the Shapefile Dumper

The pgsgl2shp table dumper connects to the database and converts a table (possibly defined by a query) into a shape file. The
basic syntax is:

pgsgl2shp [<options>] <database> [<schema>.]<table>
pgsgl2shp [<options>] <database> <query>
The commandline options are:

-f <filename> Write the output to a particular filename.

-h <host> The database host to connect to.

-p <port> The port to connect to on the database host.

-P <password> The password to use when connecting to the database.
-u <user> The username to use when connecting to the database.

-g <geometry column> In the case of tables with multiple geometry columns, the geometry column to use when writing the
shape file.

-b Use a binary cursor. This will make the operation faster, but will not work if any NON-geometry attribute in the table lacks a
cast to text.

-r Raw mode. Do not drop the gid field, or escape column names.

-m filename Remap identifiers to ten character names. The content of the file is lines of two symbols separated by a single
white space and no trailing or leading space: VERYLONGSYMBOL SHORTONE ANOTHERVERYLONGSYMBOL
SHORTER etc.

4.9 Spatial Indexes

Spatial indexes make using a spatial database for large data sets possible. Without indexing, a search for features requires a
sequential scan of every record in the database. Indexing speeds up searching by organizing the data into a structure which can
be quickly traversed to find matching records.

The B-tree index method commonly used for attribute data is not very useful for spatial data, since it only supports storing and
querying data in a single dimension. Data such as geometry (which has 2 or more dimensions) requires an index method that
supports range query across all the data dimensions. One of the key advantages of PostgreSQL for spatial data handling is that it
offers several kinds of index methods which work well for multi-dimensional data: GiST, BRIN and SP-GiST indexes.

PostGIS 3.3.0rc2 Manual 53 /896

non non

* GiST (Generalized Search Tree) indexes break up data into "things to one side", "things which overlap", "things which are
inside" and can be used on a wide range of data-types, including GIS data. PostGIS uses an R-Tree index implemented on top
of GiST to index spatial data. GiST is the most commonly-used and versatile spatial index method, and offers very good query
performance.

* BRIN (Block Range Index) indexes operate by summarizing the spatial extent of ranges of table records. Search is done via
a scan of the ranges. BRIN is only appropriate for use for some kinds of data (spatially sorted, with infrequent or no update).
But it provides much faster index create time, and much smaller index size.

* SP-GiST (Space-Partitioned Generalized Search Tree) is a generic index method that supports partitioned search trees such
as quad-trees, k-d trees, and radix trees (tries).

Spatial indexes store only the bounding box of geometries. Spatial queries use the index as a primary filter to quickly deter-
mine a set of geometries potentially matching the query condition. Most spatial queries require a secondary filter that uses a
spatial predicate function to test a more specific spatial condition. For more information on queying with spatial predicates see
Section 5.2.

See also the PostGIS Workshop section on spatial indexes, and the PostgreSQL manual.

4.9.1 GiST Indexes

GiST stands for "Generalized Search Tree" and is a generic form of indexing for multi-dimensional data. PostGIS uses an R-Tree
index implemented on top of GiST to index spatial data. GiST is the most commonly-used and versatile spatial index method,
and offers very good query performance. Other implementations of GiST are used to speed up searches on all kinds of irregular
data structures (integer arrays, spectral data, etc) which are not amenable to normal B-Tree indexing. For more information see
the PostgreSQL manual.

Once a spatial data table exceeds a few thousand rows, you will want to build an index to speed up spatial searches of the data
(unless all your searches are based on attributes, in which case you’ll want to build a normal index on the attribute fields).

The syntax for building a GiST index on a "geometry" column is as follows:

CREATE INDEX [indexname] ON [tablename] USING GIST ([geometryfield]);

The above syntax will always build a 2D-index. To get the an n-dimensional index for the geometry type, you can create one
using this syntax:

CREATE INDEX [indexname] ON [tablename] USING GIST ([geometryfield] gist_geometry_ops_nd);

Building a spatial index is a computationally intensive exercise. It also blocks write access to your table for the time it creates,
so on a production system you may want to do in in a slower CONCURRENTLY-aware way:

CREATE INDEX CONCURRENTLY [indexname] ON [tablename] USING GIST ([geometryfield]);

After building an index, it is sometimes helpful to force PostgreSQL to collect table statistics, which are used to optimize query
plans:

VACUUM ANALYZE [table_name] [(column_name)];

4.9.2 BRIN Indexes

BRIN stands for "Block Range Index". It is a general-purpose index method introduced in PostgreSQL 9.5. BRIN is a lossy
index method, meaning that a secondary check is required to confirm that a record matches a given search condition (which is
the case for all provided spatial indexes). It provides much faster index creation and much smaller index size, with reasonable
read performance. Its primary purpose is to support indexing very large tables on columns which have a correlation with their
physical location within the table. In addition to spatial indexing, BRIN can speed up searches on various kinds of attribute data
structures (integer, arrays etc). For more information see the PostgreSQL manual.

https://postgis.net/workshops/postgis-intro/indexing.html
https://www.postgresql.org/docs/current/indexes.html
https://www.postgresql.org/docs/current/gist.html
https://www.postgresql.org/docs/current/brin.html

PostGIS 3.3.0rc2 Manual 54 / 896

Once a spatial table exceeds a few thousand rows, you will want to build an index to speed up spatial searches of the data. GiST
indexes are very performant as long as their size doesn’t exceed the amount of RAM available for the database, and as long as
you can afford the index storage size, and the cost of index update on write. Otherwise, for very large tables BRIN index can be
considered as an alternative.

A BRIN index stores the bounding box enclosing all the geometries contained in the rows in a contiguous set of table blocks,
called a block range. When executing a query using the index the block ranges are scanned to find the ones that intersect the
query extent. This is efficient only if the data is physically ordered so that the bounding boxes for block ranges have minimal
overlap (and ideally are mutually exclusive). The resulting index is very small in size, but is typically less performant for read
than a GiST index over the same data.

Building a BRIN index is much less CPU-intensive than building a GiST index. It’s common to find that a BRIN index is ten
times faster to build than a GiST index over the same data. And because a BRIN index stores only one bounding box for each
range of table blocks, it’s common to use up to a thousand times less disk space than a GiST index.

You can choose the number of blocks to summarize in a range. If you decrease this number, the index will be bigger but will
probably provide better performance.

For BRIN to be effective, the table data should be stored in a physical order which minimizes the amount of block extent overlap.
It may be that the data is already sorted appropriately (for instance, if it is loaded from another dataset that is already sorted in
spatial order). Otherwise, this can be accomplished by sorting the data by a one-dimensional spatial key. One way to do this is
to create a new table sorted by the geometry values (which in recent PostGIS versions uses an efficient Hilbert curve ordering):

CREATE TABLE table_sorted AS
SELECT * FROM table ORDER BY geom;

Alternatively, data can be sorted in-place by using a GeoHash as a (temporary) index, and clustering on that index:

CREATE INDEX idx_temp_geohash ON table
USING btree (ST_GeoHash(ST_Transform(geom, 4326), 20));
CLUSTER table USING idx_temp_geohash;

The syntax for building a BRIN index on a geomet ry column is:

CREATE INDEX [indexname] ON [tablename] USING BRIN ([geome_col]);

The above syntax builds a 2D index. To build a 3D-dimensional index, use this syntax:

CREATE INDEX [indexname] ON [tablename]
USING BRIN ([geome_col] brin_geometry_inclusion_ops_3d);

You can also get a 4D-dimensional index using the 4D operator class:

CREATE INDEX [indexname] ON [tablename]
USING BRIN ([geome_col] brin_geometry_inclusion_ops_4d);

The above commands use the default number of blocks in a range, which is 128. To specify the number of blocks to summarise
in a range, use this syntax

CREATE INDEX [indexname] ON [tablename]
USING BRIN ([geome_col]) WITH (pages_per_range = [number]);

Keep in mind that a BRIN index only stores one index entry for a large number of rows. If your table stores geometries with
a mixed number of dimensions, it’s likely that the resulting index will have poor performance. You can avoid this performance
penalty by choosing the operator class with the least number of dimensions of the stored geometries

The geography datatype is supported for BRIN indexing. The syntax for building a BRIN index on a geography column is:

CREATE INDEX [indexname] ON [tablename] USING BRIN ([geog_col]);

PostGIS 3.3.0rc2 Manual 55 /896

The above syntax builds a 2D-index for geospatial objects on the spheroid.

Currently, only "inclusion support" is provided, meaning that just the & &, ~ and @ operators can be used for the 2D cases (for both
geometry and geography), and just the & & & operator for 3D geometries. There is currently no support for KNN searches.

An important difference between BRIN and other index types is that the database does not maintain the index dynamically.
Changes to spatial data in the table are simply appended to the end of the index. This will cause index search performance to de-

grade over time. The index can be updated by performing a VACUUM, or by using a special functionbrin_summarize_new_values
For this reason BRIN may be most appropriate for use with data that is read-only, or only rarely changing. For more information

refer to the manual.

To summarize using BRIN for spatial data:

* Index build time is very fast, and index size is very small.

* Index query time is slower than GiST, but can still be very acceptable.

* Requires table data to be sorted in a spatial ordering.

* Requires manual index maintenance.

* Most appropriate for very large tables, with low or no overlap (e.g. points), which are static or change infrequently.

* More effective for queries which return relatively large numbers of data records.

4.9.3 SP-GiST Indexes

SP-GiST stands for "Space-Partitioned Generalized Search Tree" and is a generic form of indexing for multi-dimensional data
types that supports partitioned search trees, such as quad-trees, k-d trees, and radix trees (tries). The common feature of these
data structures is that they repeatedly divide the search space into partitions that need not be of equal size. In addition to spatial
indexing, SP-GiST is used to speed up searches on many kinds of data, such as phone routing, ip routing, substring search, etc.
For more information see the PostgreSQL manual.

As it is the case for GiST indexes, SP-GiST indexes are lossy, in the sense that they store the bounding box enclosing spatial
objects. SP-GiST indexes can be considered as an alternative to GiST indexes.

Once a GIS data table exceeds a few thousand rows, an SP-GiST index may be used to speed up spatial searches of the data. The
syntax for building an SP-GiST index on a "geometry" column is as follows:

CREATE INDEX [indexname] ON [tablename] USING SPGIST ([geometryfield]);

The above syntax will build a 2-dimensional index. A 3-dimensional index for the geometry type can be created using the 3D
operator class:

CREATE INDEX [indexname] ON [tablename] USING SPGIST ([geometryfield] <+

spgist_geometry_ops_3d);

Building a spatial index is a computationally intensive operation. It also blocks write access to your table for the time it creates,
so on a production system you may want to do in in a slower CONCURRENTLY-aware way:

CREATE INDEX CONCURRENTLY [indexname] ON [tablename] USING SPGIST ([geometryfield]);

After building an index, it is sometimes helpful to force PostgreSQL to collect table statistics, which are used to optimize query
plans:

VACUUM ANALYZE [table_name] [(column_name)];

An SP-GiST index can accelerate queries involving the following operators:

¢ <<, &<, &>, >>, <<, &<, 1&>, [>>, &&, @>, <@, and ~=, for 2-dimensional indexes,

e &/&, ~==, @>>, and <<@, for 3-dimensional indexes.

There is no support for kNN searches at the moment.

https://www.postgresql.org/docs/current/brin-intro.html#BRIN-OPERATION
https://www.postgresql.org/docs/current/spgist.html

PostGIS 3.3.0rc2 Manual 56 / 896

4.9.4 Tuning Index Usage

Ordinarily, indexes invisibly speed up data access: once an index is built, the PostgreSQL query planner automatically decides
when to use it to improve query performance. But there are some situations where the planner does not choose to use existing
indexes, so queries end up using slow sequential scans instead of a spatial index.

If you find your spatial indexes are not being used, there are a few things you can do:

» Examine the query plan and check your query actually computes the thing you need. An erroneous JOIN, either forgotten or
to the wrong table, can unexpectedly retrieve table records multiple times. To get the query plan, execute with EXPLAIN in
front of the query.

* Make sure statistics are gathered about the number and distributions of values in a table, to provide the query planner with
better information to make decisions around index usage. VACUUM ANALYZE will compute both.

You should regularly vacuum your databases anyways. Many PostgreSQL DBAs run VACUUM as an off-peak cron job on a
regular basis.

* If vacuuming does not help, you can temporarily force the planner to use the index information by using the command SET
ENABLE_SEQSCAN TO OFF;. This way you can check whether the planner is at all able to generate an index-accelerated
query plan for your query. You should only use this command for debugging; generally speaking, the planner knows better
than you do about when to use indexes. Once you have run your query, do not forget to run SET ENABLE_SEQSCAN TO
ON; so that the planner will operate normally for other queries.

e If SET ENABLE_SEQSCAN TO OFF; helps your query to run faster, your Postgres is likely not tuned for your hardware. If
you find the planner wrong about the cost of sequential versus index scans try reducing the value of RANDOM_PAGE_COST in
postgresqgl.conf, or use SET RANDOM_PAGE_COST TO 1.1;. The default value for RANDOM_PAGE_COST is 4.0.
Try setting it to 1.1 (for SSD) or 2.0 (for fast magnetic disks). Decreasing the value makes the planner more likely to use index
scans.

» If SET ENABLE_SEQSCAN TO OFF; does not help your query, the query may be using a SQL construct that the Postgres
planner is not yet able to optimize. It may be possible to rewrite the query in a way that the planner is able to handle.
For example, a subquery with an inline SELECT may not produce an efficient plan, but could possibly be rewritten using a
LATERAL JOIN.

For more information see the Postgres manual section on Query Planning.

https://www.postgresql.org/docs/current/runtime-config-query.html

PostGIS 3.3.0rc2 Manual 57 /896

Chapter 5

Spatial Queries

The raison d’etre of spatial databases is to perform queries inside the database which would ordinarily require desktop GIS
functionality. Using PostGIS effectively requires knowing what spatial functions are available, how to use them in queries, and
ensuring that appropriate indexes are in place to provide good performance.

5.1 Determining Spatial Relationships

Spatial relationships indicate how two geometries interact with one another. They are a fundamental capability for querying
geometry.

5.1.1 Dimensionally Extended 9-Intersection Model

According to the OpenGIS Simple Features Implementation Specification for SQL, "the basic approach to comparing two ge-
ometries is to make pair-wise tests of the intersections between the Interiors, Boundaries and Exteriors of the two geometries and
to classify the relationship between the two geometries based on the entries in the resulting “intersection’ matrix."

In the theory of point-set topology, the points in a geometry embedded in 2-dimensional space are categorized into three sets:

Boundary

The boundary of a geometry is the set of geometries of the next lower dimension. For POINTs, which have a dimension
of 0, the boundary is the empty set. The boundary of a LINESTRING is the two endpoints. For POLYGONSs, the boundary
is the linework of the exterior and interior rings.

Interior

The interior of a geometry are those points of a geometry that are not in the boundary. For POINTS, the interior is the point
itself. The interior of a LINESTRING is the set of points between the endpoints. For POLYGONs, the interior is the areal
surface inside the polygon.

Exterior

The exterior of a geometry is the rest of the space in which the geometry is embedded; in other words, all points not in the
interior or on the boundary of the geometry. It is a 2-dimensional non-closed surface.

The Dimensionally Extended 9-Intersection Model (DE-9IM) describes the spatial relationship between two geometries by spec-
ifying the dimensions of the 9 intersections between the above sets for each geometry. The intersection dimensions can be
formally represented in a 3x3 intersection matrix.

For a geometry g the Interior, Boundary, and Exterior are denoted using the notation I(g), B(g), and E(g). Also, dim(s) denotes
the dimension of a set s with the domain of {0,1,2,F}:

http://www.opengeospatial.org/standards/sfs
http://en.wikipedia.org/wiki/DE-9IM

PostGIS 3.3.0rc2 Manual 58 /896
e 0 => point
e 1 =>line
e 2 =>area
* F' =>empty set
Using this notation, the intersection matrix for two geometries a and b is:
Interior Boundary Exterior
Interior dim(I(a) N I(b)) dim(I(a) N B(b)) dim(I(a) N E(b))
Boundary dim(B(a) N I(b)) dim(B(a) N B(b)) dim(B(a) N E(b))
Exterior dim(E(a) N I(b)) dim(E(a) N B(b)) dim(E(a) N E(b))

Visually, for two overlapping polygonal geometries, this looks like:

PostGIS 3.3.0rc2 Manual

59 /896

Interior

Boundary

Exterior

Interior
dim(I(a)N1(b))=2 | dim(I(a) " B(b)=1 | dim(I(a)NE(b))=2
) D S O
Boundary
|
dim(Bla)N1(b)) =1 dim(B(a)(? B(b)) = dim(B(a)lﬂ ED))=
Exterior

dim(E(a) N 1I(b)) =2

~—/

dim(E(a) N B(b)) =
1

dim(E(a) N E(b) =2

Reading from left to right and top to bottom, the intersection matrix is represented as the text string *212101212’.

For more information, refer to:

* OpenGIS Simple Features Implementation Specification for SQL (version 1.1, section 2.1.13.2)

* Wikipedia: Dimensionally Extended Nine-Intersection Model (DE-9IM)

* GeoTools: Point Set Theory and the DE-9IM Matrix

5.1.2 Named Spatial Relationships

To make it easy to determine common spatial relationships, the OGC SFS defines a set of named spatial relationship predi-
cates. PostGIS provides these as the functions ST_Contains, ST_Crosses, ST_Disjoint, ST_Equals, ST_Intersects, ST_Overlaps,
ST_Touches, ST_Within. It also defines the non-standard relationship predicates ST_Covers, ST_CoveredBy, and ST_ContainsProperly.

http://www.opengeospatial.org/standards/sfs
https://en.wikipedia.org/wiki/DE-9IM
http://docs.geotools.org/latest/userguide/library/jts/dim9.html

PostGIS 3.3.0rc2 Manual 60/ 896

Spatial predicates are usually used as conditions in SQL WHERE or JOIN clauses. The named spatial predicates automatically
use a spatial index if one is available, so there is no need to use the bounding box operator & & as well. For example:

SELECT city.name, state.name, city.geom
FROM city JOIN state ON ST_Intersects(city.geom, state.geom);

For more details and illustrations, see the PostGIS Workshop.

5.1.3 General Spatial Relationships

In some cases the named spatial relationships are insufficient to provide a desired spatial filter condition.

For example, consider a linear dataset representing a road network. It may be required to identify all road segments that
cross each other, not at a point, but in a line (perhaps to validate some business rule). In this case ST_Crosses does not
provide the necessary spatial filter, since for linear features it returns t rue only where they cross at a point.

A two-step solution would be to first compute the actual intersection (ST_Intersection) of pairs of road lines that spatially
intersect (ST_Intersects), and then check if the intersection’s ST_GeometryType is 'LINESTRING’ (properly dealing
with cases that return GEOMETRYCOLLECTIONs of [MULTI]POINTs, [MULTI]LINESTRINGS, etc.).

Clearly, a simpler and faster solution is desirable.

https://postgis.net/workshops/postgis-intro/spatial_relationships.html

PostGIS 3.3.0rc2 Manual 61/896

A second example is locating wharves that intersect a lake’s boundary on a line and where one end of the wharf is up on
shore. In other words, where a wharf is within but not completely contained by a lake, intersects the boundary of a lake on
a line, and where exactly one of the wharf’s endpoints is within or on the boundary of the lake. It is possible to use a
combination of spatial predicates to find the required features:

e ST_Contains(lake, wharf) = TRUE
» ST_ContainsProperly(lake, wharf) = FALSE
e ST_GeometryType(ST_Intersection(wharf, lake)) = "LINESTRING’

ST_NumGeometries(ST_Multi(ST_Intersection(ST_Boundary(wharf), ST_Boundary(lake)))) = 1

... but needless to say, this is quite complicated.

These requirements can be met by computing the full DE-9IM intersection matrix. PostGIS provides the ST_Relate function to
do this:

SELECT ST_Relate('LINESTRING (1 1, 5 5)',
'"POLYGON ((3 3, 3 7, 7 7, 7 3, 3 3))"'");

st_relate

1010F0212

To test a particular spatial relationship, an intersection matrix pattern is used. This is the matrix representation augmented with
the additional symbols {T, x}:

e T => intersection dimension is non-empty; i.e. isin {0, 1,2}

e x =>don’t care

Using intersection matrix patterns, specific spatial relationships can be evaluated in a more succinct way. The ST_Relate and the
ST_RelateMatch functions can be used to test intersection matrix patterns. For the first example above, the intersection matrix
pattern specifying two lines intersecting in a line is *1¥1##*¥]%*°;

—-— Find road segments that intersect in a line
SELECT a.id
FROM roads a, roads b
WHERE a.id != b.id
AND a.geom && b.geom
AND ST_Relate(a.geom, b.geom, '"lxlxx*xlxx");

PostGIS 3.3.0rc2 Manual 62 /896

For the second example, the intersection matrix pattern specifying a line partly inside and partly outside a polygon is "102101FF2’:

—-— Find wharves partly on a lake's shoreline
SELECT a.lake_id, b.wharf_id
FROM lakes a, wharfs b
WHERE a.geom && b.geom
AND ST_Relate(a.geom, b.geom, '102101FF2");

5.2 Using Spatial Indexes

When constructing queries using spatial conditions, for best performance it is important to ensure that a spatial index is used, if
one exists (see Section 4.9). To do this, a spatial operator or index-aware function must be used in a WHERE or ON clause of the

query.

Spatial operators include the bounding box operators (of which the most commonly used is &&; see Section 8.10.1 for the full
list) and the distance operators used in nearest-neighbor queries (the most common being <->; see Section 8.10.2 for the full list.)

Index-aware functions automatically add a bounding box operator to the spatial condition. Index-aware functions include the
named spatial relationship predicates ST_Contains, ST_ContainsProperly, ST_CoveredBy, ST_Covers, ST_Crosses, ST_Intersects,
ST_Overlaps, ST_Touches, ST_Within, ST_Within, and ST_3DIntersects, and the distance predicates ST_DWithin, ST_DFullyWithin,
ST_3DDFullyWithin, and ST_3DDWithin .)

Functions such as ST_Distance do not use indexes to optimize their operation. For example, the following query would be quite
slow on a large table:

SELECT geom
FROM geom_table
WHERE ST_Distance(geom, 'SRID=312;POINT (100000 200000)") < 100

This query selects all the geometries in geom_table which are within 100 units of the point (100000, 200000). It will be
slow because it is calculating the distance between each point in the table and the specified point, ie. one ST_Distance ()
calculation is computed for every row in the table.

The number of rows processed can be reduced substantially by using the index-aware function ST_DWithin:

SELECT geom
FROM geom_table
WHERE ST_DWithin(geom, 'SRID=312;POINT (100000 200000)"', 100)

This query selects the same geometries, but it does it in a more efficient way. This is enabled by ST_DWithin () using the &&
operator internally on an expanded bounding box of the query geometry. If there is a spatial index on geom, the query planner
will recognize that it can use the index to reduce the number of rows scanned before calculating the distance. The spatial index
allows retrieving only records with geometries whose bounding boxes overlap the expanded extent and hence which might be
within the required distance. The actual distance is then computed to confirm whether to include the record in the result set.

For more information and examples see the PostGIS Workshop.

5.3 Examples of Spatial SQL

The examples in this section make use of a table of linear roads, and a table of polygonal municipality boundaries. The definition
of the bc__roads table is:

Column | Type | Description

__________ o

gid | integer | Unique ID

name | character varying | Road Name

geom | geometry | Location Geometry (Linestring)

https://postgis.net/workshops/postgis-intro/indexing.html

PostGIS 3.3.0rc2 Manual 63 /896

The definition of the bc_municipality table is:

Column | Type | Description

,,,,,,,,, SO

gid | integer | Unique ID

code | integer | Unique ID

name | character varying | City / Town Name

geom | geometry | Location Geometry (Polygon)

1. What is the total length of all roads, expressed in kilometers?

You can answer this question with a very simple piece of SQL:

SELECT sum(ST_Length (geom)) /1000 AS km_roads FROM bc_roads;

km_roads

70842.1243039643

2. How large is the city of Prince George, in hectares?

This query combines an attribute condition (on the municipality name) with a spatial calculation (of the polygon area):

SELECT

ST_Area (geom) /10000 AS hectares
FROM bc_municipality
WHERE name = 'PRINCE GEORGE';

hectares

32657.9103824927

3. What is the largest municipality in the province, by area?

This query uses a spatial measurement as an ordering value. There are several ways of approaching this problem, but the
most efficient is below:

SELECT

name,

ST_Area (geom) /10000 AS hectares
FROM bc_municipality
ORDER BY hectares DESC

LIMIT 1;

name | hectares
777777777777777 +77777777777777777
TUMBLER RIDGE | 155020.02556131

Note that in order to answer this query we have to calculate the area of every polygon. If we were doing this a lot it
would make sense to add an area column to the table that could be indexed for performance. By ordering the results in
a descending direction, and them using the PostgreSQL "LIMIT" command we can easily select just the largest value
without using an aggregate function like MAX().

4. What is the length of roads fully contained within each municipality?

This is an example of a "spatial join", which brings together data from two tables (with a join) using a spatial interaction
("contained") as the join condition (rather than the usual relational approach of joining on a common key):

SELECT

m.name,

sum (ST_Length (r.geom)) /1000 as roads_km
FROM bc_roads AS r
JOIN bc_municipality AS m

PostGIS 3.3.0rc2 Manual 64 / 896

ON ST_Contains (m.geom, r.geom)
GROUP BY m.name
ORDER BY roads_km;

name | roads_km

____________________________ +__________________

SURREY | 1539.47553551242

VANCOUVER | 1450.33093486576

LANGLEY DISTRICT | 833.793392535662

BURNABY | 773.769091404338
|

PRINCE GEORGE 694.37554369147

This query takes a while, because every road in the table is summarized into the final result (about 250K roads for the
example table). For smaller datsets (several thousand records on several hundred) the response can be very fast.

5. Create a new table with all the roads within the city of Prince George.

This is an example of an "overlay", which takes in two tables and outputs a new table that consists of spatially clipped
or cut resultants. Unlike the "spatial join" demonstrated above, this query creates new geometries. An overlay is like a
turbo-charged spatial join, and is useful for more exact analysis work:

CREATE TABLE pg_roads as
SELECT
ST_Intersection(r.geom, m.geom) AS intersection_geom,
ST_Length (r.geom) AS rd_orig_length,
r.*
FROM bc_roads AS r
JOIN bc_municipality AS m
ON ST_Intersects(r.geom, m.geom)
WHERE
m.name = 'PRINCE GEORGE';

6. What is the length in kilometers of "Douglas St" in Victoria?

SELECT

sum (ST_Length (r.geom)) /1000 AS kilometers
FROM bc_roads r
JOIN bc_municipality m

ON ST_Intersects(m.geom, r.geom

WHERE
r.name = 'Douglas St'
AND m.name = 'VICTORIA';
kilometers

4.89151904172838

7. What is the largest municipality polygon that has a hole?

SELECT gid, name, ST_Area(geom) AS area
FROM bc_municipality

WHERE ST_NRings (geom) > 1

ORDER BY area DESC LIMIT 1;

12 | SPALLUMCHEEN | 257374619.430216

PostGIS 3.3.0rc2 Manual 65 /896

Chapter 6

Performance Tips

6.1 Small tables of large geometries

6.1.1 Problem description

Current PostgreSQL versions (including 9.6) suffer from a query optimizer weakness regarding TOAST tables. TOAST tables
are a kind of "extension room" used to store large (in the sense of data size) values that do not fit into normal data pages (like long
texts, images or complex geometries with lots of vertices), see the PostgreSQL Documentation for TOAST for more information).

The problem appears if you happen to have a table with rather large geometries, but not too many rows of them (like a table
containing the boundaries of all European countries in high resolution). Then the table itself is small, but it uses lots of TOAST
space. In our example case, the table itself had about 80 rows and used only 3 data pages, but the TOAST table used 8225 pages.

Now issue a query where you use the geometry operator && to search for a bounding box that matches only very few of those
rows. Now the query optimizer sees that the table has only 3 pages and 80 rows. It estimates that a sequential scan on such a
small table is much faster than using an index. And so it decides to ignore the GIST index. Usually, this estimation is correct.
But in our case, the && operator has to fetch every geometry from disk to compare the bounding boxes, thus reading all TOAST
pages, too.

To see whether your suffer from this issue, use the "EXPLAIN ANALYZE" postgresql command. For more information and
the technical details, you can read the thread on the PostgreSQL performance mailing list: http://archives.postgresql.org/pgsql-
performance/2005-02/msg00030.php

and newer thread on PostGIS https://lists.osgeo.org/pipermail/postgis-devel/2017-June/026209.html

6.1.2 Workarounds

The PostgreSQL people are trying to solve this issue by making the query estimation TOAST-aware. For now, here are two
workarounds:

The first workaround is to force the query planner to use the index. Send "SET enable_seqscan TO off;" to the server before
issuing the query. This basically forces the query planner to avoid sequential scans whenever possible. So it uses the GIST index
as usual. But this flag has to be set on every connection, and it causes the query planner to make misestimations in other cases,
so you should "SET enable_seqscan TO on;" after the query.

The second workaround is to make the sequential scan as fast as the query planner thinks. This can be achieved by creating an
additional column that "caches" the bbox, and matching against this. In our example, the commands are like:

SELECT AddGeometryColumn ('myschema', 'mytable', '"bbox', '4326"', '"GEOMETRY"', '2");
UPDATE mytable SET bbox = ST_Envelope (ST_Force2D (geom)) ;

Now change your query to use the && operator against bbox instead of geom_column, like:

http://www.postgresql.org/docs/current/static/storage-toast.html
http://archives.postgresql.org/pgsql-performance/2005-02/msg00030.php
http://archives.postgresql.org/pgsql-performance/2005-02/msg00030.php
https://lists.osgeo.org/pipermail/postgis-devel/2017-June/026209.html

PostGIS 3.3.0rc2 Manual 66 / 896

SELECT geom_column
FROM mytable
WHERE bbox && ST_SetSRID('BOX3D(0 0,1 1)'::box3d,4326);

Of course, if you change or add rows to mytable, you have to keep the bbox "in sync". The most transparent way to do this would
be triggers, but you also can modify your application to keep the bbox column current or run the UPDATE query above after
every modification.

6.2 CLUSTERing on geometry indices

For tables that are mostly read-only, and where a single index is used for the majority of queries, PostgreSQL offers the CLUS-
TER command. This command physically reorders all the data rows in the same order as the index criteria, yielding two
performance advantages: First, for index range scans, the number of seeks on the data table is drastically reduced. Second, if
your working set concentrates to some small intervals on the indices, you have a more efficient caching because the data rows
are spread along fewer data pages. (Feel invited to read the CLUSTER command documentation from the PostgreSQL manual
at this point.)

However, currently PostgreSQL does not allow clustering on PostGIS GIST indices because GIST indices simply ignores NULL
values, you get an error message like:

lwgeom=# CLUSTER my_geom_index ON my_table;
ERROR: cannot cluster when index access method does not handle null values
HINT: You may be able to work around this by marking column "geom" NOT NULL.

As the HINT message tells you, one can work around this deficiency by adding a "not null" constraint to the table:

lwgeom=# ALTER TABLE my_table ALTER COLUMN geom SET not null;
ALTER TABLE

Of course, this will not work if you in fact need NULL values in your geometry column. Additionally, you must use the above
method to add the constraint, using a CHECK constraint like "ALTER TABLE blubb ADD CHECK (geometry is not null);" will
not work.

6.3 Avoiding dimension conversion

Sometimes, you happen to have 3D or 4D data in your table, but always access it using OpenGIS compliant ST_AsText() or
ST_AsBinary() functions that only output 2D geometries. They do this by internally calling the ST_Force2D() function, which
introduces a significant overhead for large geometries. To avoid this overhead, it may be feasible to pre-drop those additional
dimensions once and forever:

UPDATE mytable SET geom = ST_Force2D (geom) ;
VACUUM FULL ANALYZE mytable;

Note that if you added your geometry column using AddGeometryColumn() there’ll be a constraint on geometry dimension. To
bypass it you will need to drop the constraint. Remember to update the entry in the geometry_columns table and recreate the
constraint afterwards.

In case of large tables, it may be wise to divide this UPDATE into smaller portions by constraining the UPDATE to a part of the
table via a WHERE clause and your primary key or another feasible criteria, and running a simple "VACUUM;" between your
UPDATE:s. This drastically reduces the need for temporary disk space. Additionally, if you have mixed dimension geometries,
restricting the UPDATE by "WHERE dimension(geom)>2" skips re-writing of geometries that already are in 2D.

PostGIS 3.3.0rc2 Manual 67 /896

Chapter 7

Building Applications

7.1 Using MapServer

The Minnesota MapServer is an internet web-mapping server which conforms to the OpenGIS Web Map Service specification.

* The MapServer homepage is at http://mapserver.org.

* The OpenGIS Web Map Service specification is at http://www.opengeospatial.org/standards/wms.

7.1.1 Basic Usage

To use PostGIS with MapServer, you need to know how to configure MapServer, which is beyond the scope of this documentation.
This section covers specific PostGIS issues and configuration details.

To use PostGIS with MapServer, you will need:

e Version 0.6 or newer of PostGIS.

* Version 3.5 or newer of MapServer.

MapServer accesses PostGIS/PostgreSQL data like any other PostgreSQL client, using the 1ibpq interface. This means that
MapServer can be installed on any machine with network access to the PostGIS server, and use PostGIS as a source of data. The
faster the connection between the systems, the better.

1. Compile and install MapServer, with whatever options you desire, including the "--with-postgis" configuration option.

2. In your MapServer map file, add a PostGIS layer. For example:

LAYER
CONNECTIONTYPE postgis
NAME "widehighways"
Connect to a remote spatial database
CONNECTION "user=dbuser dbname=gisdatabase host=bigserver"
PROCESSING "CLOSE_CONNECTION=DEFER"
Get the lines from the 'geom' column of the 'roads' table
DATA "geom from roads using srid=4326 using unique gid"

STATUS ON

TYPE LINE

Of the lines in the extents, only render the wide highways
FILTER "type = 'highway' and numlanes >= 4"

CLASS

Make the superhighways brighter and 2 pixels wide

http://mapserver.org
http://www.opengeospatial.org/standards/wms

PostGIS 3.3.0rc2 Manual 68 /896

EXPRESSION ([numlanes] >= 6)
STYLE
COLOR 255 22 22
WIDTH 2
END
END
CLASS
All the rest are darker and only 1 pixel wide
EXPRESSION ([numlanes] < 6)
STYLE
COLOR 205 92 82
END
END
END

In the example above, the PostGIS-specific directives are as follows:

CONNECTIONTYPE For PostGIS layers, this is always "postgis".

CONNECTION The database connection is governed by the a ’connection string’ which is a standard set of keys and
values like this (with the default values in <>):
user=<username> password=<password> dbname=<username> hostname=<server> port=<5432>
An empty connection string is still valid, and any of the key/value pairs can be omitted. At a minimum you will
generally supply the database name and username to connect with.

DATA The form of this parameter is "<geocolumn> from <tablename> using srid=<srid> using unique <primary key>"
where the column is the spatial column to be rendered to the map, the SRID is SRID used by the column and the
primary key is the table primary key (or any other uniquely-valued column with an index).

You can omit the "using srid" and "using unique" clauses and MapServer will automatically determine the correct
values if possible, but at the cost of running a few extra queries on the server for each map draw.

PROCESSING Putting in a CLOSE_CONNECTION=DEFER if you have multiple layers reuses existing connections
instead of closing them. This improves speed. Refer to for MapServer PostGIS Performance Tips for a more detailed
explanation.

FILTER The filter must be a valid SQL string corresponding to the logic normally following the "WHERE" keyword in
a SQL query. So, for example, to render only roads with 6 or more lanes, use a filter of "num_lanes >= 6".

. In your spatial database, ensure you have spatial (GiST) indexes built for any the layers you will be drawing.

CREATE INDEX [indexname] ON [tablename] USING GIST ([geometrycolumn]);

. If you will be querying your layers using MapServer you will also need to use the "using unique" clause in your DATA
statement.

MapServer requires unique identifiers for each spatial record when doing queries, and the PostGIS module of MapServer
uses the unique value you specify in order to provide these unique identifiers. Using the table primary key is the best
practice.

7.1.2 Frequently Asked Questions

1. When I use an EXPRESSION in my map file, the condition never returns as true, even though I know the values exist in

my table.
Unlike shape files, PostGIS field names have to be referenced in EXPRESSIONS using lower case.

EXPRESSION ([numlanes] >= 6)

. The FILTER I use for my Shapefiles is not working for my PostGIS table of the same data.

Unlike shape files, filters for PostGIS layers use SQL syntax (they are appended to the SQL statement the PostGIS con-
nector generates for drawing layers in MapServer).

http://blog.cleverelephant.ca/2008/10/mapserverpostgis-performance-tips.html

PostGIS 3.3.0rc2 Manual 69 /896

FILTER "type = 'highway' and numlanes >= 4"

3. My PostGIS layer draws much slower than my Shapefile layer, is this normal?

In general, the more features you are drawing into a given map, the more likely it is that PostGIS will be slower than
Shapefiles. For maps with relatively few features (100s), PostGIS will often be faster. For maps with high feature density
(1000s), PostGIS will always be slower. If you are finding substantial draw performance problems, it is possible that you
have not built a spatial index on your table.

postgis# CREATE INDEX geotable_gix ON geotable USING GIST (geocolumn);
postgis# VACUUM ANALYZE;

4. My PostGIS layer draws fine, but queries are really slow. What is wrong?

For queries to be fast, you must have a unique key for your spatial table and you must have an index on that unique key.You
can specify what unique key for mapserver to use with the USING UNIQUE clause in your DATA line:

DATA "geom FROM geotable USING UNIQUE gid"

5. Can I use "geography" columns (new in PostGIS 1.5) as a source for MapServer layers?

Yes! MapServer understands geography columns as being the same as geometry columns, but always using an SRID of
4326. Just make sure to include a "using srid=4326" clause in your DATA statement. Everything else works exactly the
same as with geometry.

DATA "geog FROM geogtable USING SRID=4326 USING UNIQUE gid"

7.1.3 Advanced Usage

The USING pseudo-SQL clause is used to add some information to help mapserver understand the results of more complex
queries. More specifically, when either a view or a subselect is used as the source table (the thing to the right of "FROM" in a
DATA definition) it is more difficult for mapserver to automatically determine a unique identifier for each row and also the SRID
for the table. The USING clause can provide mapserver with these two pieces of information as follows:

DATA "geom FROM (
SELECT
tablel.geom AS geom,
tablel.gid AS gid,
table2.data AS data
FROM tablel
LEFT JOIN table2
ON tablel.id = table2.id
) AS new_table USING UNIQUE gid USING SRID=4326"

USING UNIQUE <uniqueid> MapServer requires a unique id for each row in order to identify the row when doing map
queries. Normally it identifies the primary key from the system tables. However, views and subselects don’t automatically
have an known unique column. If you want to use MapServer’s query functionality, you need to ensure your view or
subselect includes a uniquely valued column, and declare it with USING UNIQUE. For example, you could explicitly
select nee of the table’s primary key values for this purpose, or any other column which is guaranteed to be unique for the
result set.

N;‘“’! Note

"Querying a Map" is the action of clicking on a map to ask for information about the map features in that location.
Don’t confuse "map queries" with the SQL query in a DATA definition.

USING SRID=<srid> PostGIS needs to know which spatial referencing system is being used by the geometries in order to
return the correct data back to MapServer. Normally it is possible to find this information in the "geometry_columns" table
in the PostGIS database, however, this is not possible for tables which are created on the fly such as subselects and views.
So the USING SRID= option allows the correct SRID to be specified in the DATA definition.

PostGIS 3.3.0rc2 Manual 70/ 896

7.1.4 Examples

Lets start with a simple example and work our way up. Consider the following MapServer layer definition:

LAYER
CONNECTIONTYPE postgis
NAME "roads"
CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
DATA "geom from roads"
STATUS ON
TYPE LINE
CLASS
STYLE
COLOR 0 0 O
END
END
END

This layer will display all the road geometries in the roads table as black lines.

Now lets say we want to show only the highways until we get zoomed in to at least a 1:100000 scale - the next two layers will
achieve this effect:

LAYER
CONNECTIONTYPE postgis
CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
PROCESSING "CLOSE_CONNECTION=DEFER"
DATA "geom from roads"
MINSCALE 100000

STATUS ON
TYPE LINE
FILTER "road_type = 'highway'"
CLASS
COLOR 0 0 O
END
END
LAYER

CONNECTIONTYPE postgis
CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
PROCESSING "CLOSE_CONNECTION=DEFER"
DATA "geom from roads"
MAXSCALE 100000
STATUS ON
TYPE LINE
CLASSITEM road_type
CLASS
EXPRESSION "highway"
STYLE
WIDTH 2
COLOR 255 0 0
END
END
CLASS
STYLE
COLOR 0 0 O
END
END
END

The first layer is used when the scale is greater than 1:100000, and displays only the roads of type "highway" as black lines. The
FILTER option causes only roads of type "highway" to be displayed.

PostGIS 3.3.0rc2 Manual 71/896

The second layer is used when the scale is less than 1:100000, and will display highways as double-thick red lines, and other
roads as regular black lines.

So, we have done a couple of interesting things using only MapServer functionality, but our DATA SQL statement has remained
simple. Suppose that the name of the road is stored in another table (for whatever reason) and we need to do a join to get it and
label our roads.

LAYER
CONNECTIONTYPE postgis
CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
DATA "geom FROM (SELECT roads.gid AS gid, roads.geom AS geom,
road_names.name as name FROM roads LEFT JOIN road_names ON
roads.road_name_id = road_names.road_name_id)
AS named_roads USING UNIQUE gid USING SRID=4326"
MAXSCALE 20000
STATUS ON
TYPE ANNOTATION
LABELITEM name
CLASS
LABEL
ANGLE auto
SIZE 8
COLOR 0 192 0
TYPE truetype
FONT arial
END
END
END

This annotation layer adds green labels to all the roads when the scale gets down to 1:20000 or less. It also demonstrates how to
use an SQL join in a DATA definition.

7.2 Java Clients (JDBC)

Java clients can access PostGIS "geometry" objects in the PostgreSQL database either directly as text representations or using
the JDBC extension objects bundled with PostGIS. In order to use the extension objects, the "postgis.jar" file must be in your
CLASSPATH along with the "postgresql.jar" JDBC driver package.

import java.sqgl.x;
import java.util.x;
import java.lang.x;
import org.postgis.x;
public class JavaGIS {

public static void main (String[] args) {

java.sqgl.Connection conn;

try {
/ *
* Load the JDBC driver and establish a connection.
*/
Class.forName ("org.postgresqgl.Driver") ;
String url = "jdbc:postgresqgl://localhost:5432/database";
conn = DriverManager.getConnection (url, "postgres", "");
/ *

* Add the geometry types to the connection. Note that you
* must cast the connection to the pgsgl-specific connection
* implementation before calling the addDataType () method.

PostGIS 3.3.0rc2 Manual 72 /896

*/
((org.postgresqgl .PGConnection) conn) .addDataType ("geometry",Class.forName ("org.postgis. ¢

PGgeometry"));
((org.postgresgl .PGConnection) conn) .addDataType ("box3d",Class.forName ("org.postgis. <«

PGbox3d")) ;

/ *
* Create a statement and execute a select query.
*/
Statement s = conn.createStatement () ;
ResultSet r = s.executeQuery ("select geom,id from geomtable");
while(r.next ()) {
/ *

* Retrieve the geometry as an object then cast it to the geometry type.
* Print things out.

*/

PGgeometry geom = (PGgeometry)r.getObject (1);
int id = r.getInt(2);

System.out.println("Row " + id + ":");

System.out.println (geom.toString()) ;
}
s.close();
conn.close();
}
catch(Exception e) {
e.printStackTrace () ;

}

The "PGgeometry" object is a wrapper object which contains a specific topological geometry object (subclasses of the abstract
class "Geometry") depending on the type: Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon.

PGgeometry geom = (PGgeometry)r.getObject (1) ;
if (geom.getType () == Geometry.POLYGON) {
Polygon pl = (Polygon)geom.getGeometry () ;
for(int r = 0; r < pl.numRings(); r++) {
LinearRing rng = pl.getRing(r);
System.out.println ("Ring: " + r);
for(int p = 0; p < rng.numPoints(); p++) {
Point pt = rng.getPoint (p);
System.out.println ("Point: " + p);
System.out.println(pt.toString());

The JavaDoc for the extension objects provides a reference for the various data accessor functions in the geometric objects.

7.3 C Clients (libpq)

7.3.1 Text Cursors

7.3.2 Binary Cursors

PostGIS 3.3.0rc2 Manual 73 /896

Chapter 8

PostGIS Reference

The functions given below are the ones which a user of PostGIS is likely to need. There are other functions which are required
support functions to the PostGIS objects which are not of use to a general user.

Note
B PostGIS has begun a transition from the existing naming convention to an SQL-MM-centric convention. As a result,
N"'M most of the functions that you know and love have been renamed using the standard spatial type (ST) prefix. Previous
functions are still available, though are not listed in this document where updated functions are equivalent. The non
ST_ functions not listed in this documentation are deprecated and will be removed in a future release so STOP USING
THEM.

8.1 PostGIS Geometry/Geography/Box Data Types

8.1.1 box2d

box2d — The type representing a 2-dimensional bounding box.

Description

box2d is a spatial data type used to represent the two-dimensional bounding box enclosing a geometry or collection of geome-
tries. For example, the ST_Extent aggregate function returns a box2d object.

The representation contains the values xmin, ymin, xmax, ymax. These are the minimum and maximum values of the X
and Y extents.

box2d objects have a text representation which looks like BOX (1 2,5 6).

Casting Behavior

This table lists the automatic and explicit casts allowed for this data type:

Cast To Behavior
box3d automatic
geometry automatic

PostGIS 3.3.0rc2 Manual 74 / 896

See Also

Section 15.7

8.1.2 box3d

box3d — The type representing a 3-dimensional bounding box.

Description

box3d is a PostGIS spatial data type used to represent the three-dimensional bounding box enclosing a geometry or collection
of geometries. For example, the ST_3DExtent aggregate function returns a box3d object.

The representation contains the values xmin, ymin, zmin, xmax, ymax, zmax. These arethe minimum and maxium
values of the X, Y and Z extents.

box3d objects have a text representation which looks like BOX3D (1 2 3,5 6 5).

Casting Behavior

This table lists the automatic and explicit casts allowed for this data type:

Cast To Behavior

box automatic

box2d automatic

geometry automatic
See Also

Section 15.7

8.1.3 geometry

geometry — The type representing spatial features with planar coordinate systems.

Description

geometry is a fundamental PostGIS spatial data type used to represent a feature in planar (Euclidean) coordinate systems.

All spatial operations on geometry use the units of the Spatial Reference System the geometry is in.

Casting Behavior

This table lists the automatic and explicit casts allowed for this data type:

Cast To Behavior

box automatic
box2d automatic
box3d automatic
bytea automatic
geography automatic
text automatic

PostGIS 3.3.0rc2 Manual 75 /896

See Also

Section 4.1, Section 15.3

8.1.4 geometry_dump

geometry_dump — A composite type used to describe the parts of complex geometry.

Description

geometry_dump is a composite data type containing the fields:

* geom - a geometry representing a component of the dumped geometry. The geometry type depends on the originating function.

e path[] - an integer array that defines the navigation path within the dumped geometry to the geom component. The path
array is 1-based (i.e. path[1] is the first element.)

It is used by the ST_Dump* family of functions as an output type to explode a complex geometry into its constituent parts.

See Also

Section 15.6

8.1.5 geography

geography — The type representing spatial features with geodetic (ellipsoidal) coordinate systems.

Description

geography is a spatial data type used to represent a feature in geodetic coordinate systems. Geodetic coordinate systems model
the earth using an ellipsoid.

Spatial operations on the geography type provide more accurate results by taking the ellipsoidal model into account.

Casting Behavior

This table lists the automatic and explicit casts allowed for this data type:

Cast To Behavior
geometry explicit
See Also

Section 4.3, Section 15.4

8.2 Table Management Functions

8.2.1 AddGeometryColumn

AddGeometryColumn — Adds a geometry column to an existing table.

https://www.postgresql.org/docs/current/rowtypes.html

PostGIS 3.3.0rc2 Manual 76 / 896

Synopsis

text AddGeometryColumn(varchar table_name, varchar column_name, integer srid, varchar type, integer dimension, boolean
use_typmod=true);

text AddGeometryColumn(varchar schema_name, varchar table_name, varchar column_name, integer srid, varchar type, inte-
ger dimension, boolean use_typmod=true);

text AddGeometryColumn(varchar catalog_name, varchar schema_name, varchar table_name, varchar column_name, integer
srid, varchar type, integer dimension, boolean use_typmod=true);

Description

Adds a geometry column to an existing table of attributes. The schema_name is the name of the table schema. The srid
must be an integer value reference to an entry in the SPATIAL_REF_SYS table. The t ype must be a string corresponding to the
geometry type, eg, 'POLYGON’ or 'MULTILINESTRING’ . An error is thrown if the schemaname doesn’t exist (or not visible
in the current search_path) or the specified SRID, geometry type, or dimension is invalid.

Note
. Changed: 2.0.0 This function no longer updates geometry_columns since geometry_columns is a view that reads from
Nf’l"! system catalogs. It by default also does not create constraints, but instead uses the built in type modifier behavior of
PostgreSQL. So for example building a wgs84 POINT column with this function is now equivalent to: ALTER TABLE
some_table ADD COLUMN geom geometry (Point,4326);
Changed: 2.0.0 If you require the old behavior of constraints use the default use_t ypmod, but set it to false.

Note
= Changed: 2.0.0 Views can no longer be manually registered in geometry_columns, however views built against geome-
N"'ld try typmod tables geometries and used without wrapper functions will register themselves correctly because they inherit
the typmod behavior of their parent table column. Views that use geometry functions that output other geometries will
need to be cast to typmod geometries for these view geometry columns to be registered correctly in geometry_columns.
Refer to Section 4.6.3.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Enhanced: 2.0.0 use_typmod argument introduced. Defaults to creating typmod geometry column instead of constraint-based.

Examples

—-— Create schema to hold data

CREATE SCHEMA my_schema;

—— Create a new simple PostgreSQL table

CREATE TABLE my_schema.my_spatial_table (id serial);

—— Describing the table shows a simple table with a single "id" column.
postgis=# \d my_schema.my_spatial_table
Table "my_schema.my_spatial_table"
Column | Type | Modifiers

id | integer | not null default nextval ('my_schema.my_spatial_table_id_seq'::regclass)

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 77 /1 896

—-— Add a spatial column to the table
SELECT AddGeometryColumn ('my_schema', 'my_spatial_table', 'geom',6 4326, 'POINT', 2);

—-— Add a point using the old constraint based behavior
SELECT AddGeometryColumn ('my_schema', 'my_spatial_table', 'geom_c',4326, 'POINT',2, false);

—--Add a curvepolygon using old constraint behavior
SELECT AddGeometryColumn ('my_schema', 'my_spatial_table', 'geomcp_c',4326, 'CURVEPOLYGON',2, <=
false);

—— Describe the table again reveals the addition of a new geometry columns.
\d my_schema.my_spatial_table
addgeometrycolumn

my_schema.my_spatial_table.geomcp_c SRID:4326 TYPE:CURVEPOLYGON DIMS:2

(1 row)
Table "my_schema.my_spatial_table"
Column | Type | Modifiers
__________ e
id | integer | not null default nextval ('my_schema.
my_spatial_table_id_seq'::regclass)
geom | geometry (Point, 4326) |
geom_c | geometry |
geomcp_c | geometry |
Check constraints:
"enforce_dims_geom_c" CHECK (st_ndims (geom_c) = 2)
"enforce_dims_geomcp_c" CHECK (st_ndims (geomcp_c) = 2)
"enforce_geotype_geom_c" CHECK (geometrytype (geom_c) = 'POINT'::text OR geom_c IS NULL)
"enforce_geotype_geomcp_c" CHECK (geometrytype (geomcp_c) = 'CURVEPOLYGON'::text OR <>
geomcp_c IS NULL)
"enforce_srid_geom_c" CHECK (st_srid(geom_c) = 4326)
"enforce_srid_geomcp_c" CHECK (st_srid(geomcp_c) = 4326)

—-— geometry_columns view also registers the new columns —-—
SELECT f_geometry_column As col_name, type, srid, coord_dimension As ndims
FROM geometry_columns

WHERE f_table_name = 'my_spatial_table' AND f_table_schema = 'my_schema';
col_name | type | srid | ndims
7777777777 B e et
geom | Point | 4326 | 2
geom_cC | Point | 4326 | 2
geomcp_c | CurvePolygon | 4326 | 2
See Also

DropGeometryColumn, DropGeometryTable, Section 4.6.2, Section 4.6.3

8.2.2 DropGeometryColumn

DropGeometryColumn — Removes a geometry column from a spatial table.

Synopsis

text DropGeometryColumn(varchar table_name, varchar column_name);
text DropGeometryColumn(varchar schema_name, varchar table_name, varchar column_name);
text DropGeometryColumn(varchar catalog_name, varchar schema_name, varchar table_name, varchar column_name);

PostGIS 3.3.0rc2 Manual 78 /896

Description

Removes a geometry column from a spatial table. Note that schema_name will need to match the f_table_schema field of the
table’s row in the geometry_columns table.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

st¢} Note
N Changed: 2.0.0 This function is provided for backward compatibility. Now that since geometry_columns is now a view
against the system catalogs, you can drop a geometry column like any other table column using ALTER TABRLE

Examples
SELECT DropGeometryColumn ('my_schema', 'my_spatial_table', 'geom');

———INHSUIHIL Eblicjobls, ———
dropgeometrycolumn

my_schema.my_spatial_table.geom effectively removed.

—— In PostGIS 2.0+ the above is also equivalent to the standard
—— the standard alter table. Both will deregister from geometry_columns
ALTER TABLE my_schema.my_spatial_table DROP column geom;

See Also

AddGeometryColumn, DropGeometryTable, Section 4.6.2

8.2.3 DropGeometryTable

DropGeometryTable — Drops a table and all its references in geometry_columns.

Synopsis
boolean DropGeometryTable(varchar table_name);

boolean DropGeometryTable(varchar schema_name, varchar table_name);
boolean DropGeometryTable(varchar catalog_name, varchar schema_name, varchar table_name);

Description

Drops a table and all its references in geometry_columns. Note: uses current_schema() on schema-aware pgsql installations if
schema is not provided.

et Note
N Changed: 2.0.0 This function is provided for backward compatibility. Now that since geometry_columns is now a view
against the system catalogs, you can drop a table with geometry columns like any other table using DROP TABLE

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 79 /896

Examples

SELECT DropGeometryTable ('my_schema', 'my_spatial_table');
—-———RESULT output ---
my_schema.my_spatial_table dropped.

—— The above is now equivalent to —--—
DROP TABLE my_schema.my_spatial_table;

See Also

AddGeometryColumn, DropGeometryColumn, Section 4.6.2

8.2.4 Find_SRID

Find_SRID — Returns the SRID defined for a geometry column.

Synopsis

integer Find_SRID(varchar a_schema_name, varchar a_table_name, varchar a_geomfield_name);

Description

Returns the integer SRID of the specified geometry column by searching through the GEOMETRY_COLUMNS table. If the
geometry column has not been properly added (e.g. with the AddGeometryColumn function), this function will not work.

Examples

SELECT Find_SRID('public', 'tiger_us_state_2007', 'geom_4269"'");
find_srid

See Also

ST_SRID

8.2.5 Populate_Geometry_Columns

Populate_Geometry_Columns — Ensures geometry columns are defined with type modifiers or have appropriate spatial con-
straints.

Synopsis

text Populate_Geometry_Columns(boolean use_typmod=true);
int Populate_Geometry_Columns(oid relation_oid, boolean use_typmod=true);

PostGIS 3.3.0rc2 Manual 80 /896

Description

Ensures geometry columns have appropriate type modifiers or spatial constraints to ensure they are registered correctly in the
geometry_columns view. By default will convert all geometry columns with no type modifier to ones with type modifiers.

For backwards compatibility and for spatial needs such as table inheritance where each child table may have different geometry
type, the old check constraint behavior is still supported. If you need the old behavior, you need to pass in the new optional
argument as false use_typmod=false. When this is done geometry columns will be created with no type modifiers but will
have 3 constraints defined. In particular, this means that every geometry column belonging to a table has at least three constraints:

* enforce_dims_geom - ensures every geometry has the same dimension (see ST_NDims)
* enforce_geotype_geom - ensures every geometry is of the same type (see GeometryType)

* enforce_srid_geom - ensures every geometry is in the same projection (see ST_SRID)

If a table oid is provided, this function tries to determine the srid, dimension, and geometry type of all geometry columns in the
table, adding constraints as necessary. If successful, an appropriate row is inserted into the geometry_columns table, otherwise,
the exception is caught and an error notice is raised describing the problem.

If the oid of a view is provided, as with a table oid, this function tries to determine the srid, dimension, and type of all
the geometries in the view, inserting appropriate entries into the geometry_columns table, but nothing is done to enforce
constraints.

The parameterless variant is a simple wrapper for the parameterized variant that first truncates and repopulates the geome-
try_columns table for every spatial table and view in the database, adding spatial constraints to tables where appropriate. It
returns a summary of the number of geometry columns detected in the database and the number that were inserted into the
geometry_columns table. The parameterized version simply returns the number of rows inserted into the geometry_columns
table.

Auwailability: 1.4.0

Changed: 2.0.0 By default, now uses type modifiers instead of check constraints to constrain geometry types. You can still use
check constraint behavior instead by using the new use_typmod and setting it to false.

Enhanced: 2.0.0 use_typmod optional argument was introduced that allows controlling if columns are created with typmodi-
fiers or with check constraints.

Examples

CREATE TABLE public.myspatial_table(gid serial, geom geometry);

INSERT INTO myspatial_table (geom) VALUES (ST_GeomFromText ('LINESTRING(1 2, 3 4)',4326));
—— This will now use typ modifiers. For this to work, there must exist data

SELECT Populate_Geometry_Columns ('public.myspatial_table'::regclass);

populate_geometry_columns

1
\d myspatial_table
Table "public.myspatial_table"
Column | Type | Modifiers
________ +___________________________+___
gid | integer | not null default nextval ('myspatial_table_gid_seqg'::

regclass)
geom | geometry (LineString,4326) |

PostGIS 3.3.0rc2 Manual 81/896

—— This will change the geometry columns to use constraints if they are not typmod or have <+
constraints already.

—-—For this to work, there must exist data

CREATE TABLE public.myspatial_table_cs(gid serial, geom geometry) ;

INSERT INTO myspatial_table_cs (geom) VALUES (ST_GeomFromText ('LINESTRING(1 2, 3 4)',4326));

SELECT Populate_Geometry_Columns ('public.myspatial_table_cs'::regclass, false);

populate_geometry_columns

Table "public.myspatial_table_cs"

Column | Type | Modifiers
________ o
gid | integer | not null default nextval ('myspatial_table_cs_gid_seq'::regclass)
geom | geometry |
Check constraints:
"enforce_dims_geom" CHECK (st_ndims(geom) = 2)
"enforce_geotype_geom" CHECK (geometrytype (geom) = 'LINESTRING'::text OR geom IS NULL)
"enforce_srid_geom" CHECK (st_srid(geom) = 4326)

8.2.6 UpdateGeometrySRID

UpdateGeometrySRID — Updates the SRID of all features in a geometry column, and the table metadata.

Synopsis

text UpdateGeometrySRID(varchar table_name, varchar column_name, integer srid);

text UpdateGeometrySRID(varchar schema_name, varchar table_name, varchar column_name, integer srid);

text UpdateGeometrySRID(varchar catalog_name, varchar schema_name, varchar table_name, varchar column_name, integer
srid);

Description

Updates the SRID of all features in a geometry column, updating constraints and reference in geometry_columns. If the column
was enforced by a type definition, the type definition will be changed. Note: uses current_schema() on schema-aware pgsql
installations if schema is not provided.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Examples

Insert geometries into roads table with a SRID set already using EWKT format:

COPY roads (geom) FROM STDIN;
SRID=4326; LINESTRING(0O 0, 10 10)
SRID=4326; LINESTRING (10 10, 15 0)
\.

This will change the srid of the roads table to 4326 from whatever it was before:

SELECT UpdateGeometrySRID ('roads', 'geom',4326);

PostGIS 3.3.0rc2 Manual 82 /896

The prior example is equivalent to this DDL statement:

ALTER TABLE roads
ALTER COLUMN geom TYPE geometry (MULTILINESTRING, 4326)
USING ST_SetSRID (geom,4326);

If you got the projection wrong (or brought it in as unknown) in load and you wanted to transform to web mercator all in one
shot you can do this with DDL but there is no equivalent PostGIS management function to do so in one go.

ALTER TABLE roads
ALTER COLUMN geom TYPE geometry (MULTILINESTRING, 3857) USING ST_Transform(ST_SetSRID (geom <
,4326),3857) ;

See Also

UpdateRasterSRID, ST_SetSRID, ST_Transform, ST_GeomFromEWKT

8.3 Geometry Constructors

8.3.1 ST Collect

ST_Collect — Creates a GeometryCollection or Multi* geometry from a set of geometries.

Synopsis

geometry ST_Collect(geometry g1, geometry g2);
geometry ST_Collect(geometry[] gl_array);
geometry ST_Collect(geometry set glfield);

Description

Collects geometries into a geometry collection. The result is either a Multi* or a GeometryCollection, depending on whether
the input geometries have the same or different types (homogeneous or heterogeneous). The input geometries are left unchanged
within the collection.

Variant 1: accepts two input geometries
Variant 2: accepts an array of geometries

Variant 3: aggregate function accepting a rowset of geometries.

. Note
N"‘R’! If any of the input geometries are collections (Multi* or GeometryCollection) ST_Collect returns a GeometryCollection
(since that is the only type which can contain nested collections). To prevent this, use ST_Dump in a subquery to
expand the input collections to their atomic elements (see example below).

. Note
Nf"""! ST_Collect and ST_Union appear similar, but in fact operate quite differently. ST_Collect aggregates geometries into
a collection without changing them in any way. ST_Union geometrically merges geometries where they overlap, and
splits linestrings at intersections. It may return single geometries when it dissolves boundaries.

Availability: 1.4.0 - ST_Collect(geomarray) was introduced. ST_Collect was enhanced to handle more geometries faster.
This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

PostGIS 3.3.0rc2 Manual

83 /896

Examples - Two-input variant

Collect 2D points.
SELECT ST_AsText (ST_Collect (ST_GeomFromText ('POINT(1 2)"'),
ST_GeomFromText ('POINT (-2 3)')));

st_astext

MULTIPOINT ((1 2), (=2 3))

Collect 3D points.

SELECT ST_ASEWKT(ST_Collect (ST_GeomFromEWKT ('POINT(1 2 3)"),
ST_GeomFromEWKT ('"POINT (1 2 4)")));

st_asewkt

MULTIPOINT (1 2 3,1 2 4)

Collect curves.

SELECT ST_AsText (ST_Collect ('CIRCULARSTRING (220268 150415,220227 150505,220227

'CIRCULARSTRING (220227 150406,2220227 150407,220227 150406) ")) ;

st_astext

MULTICURVE (CIRCULARSTRING (220268 150415,220227 150505,220227 150406),
CIRCULARSTRING (220227 150406,2220227 150407,220227 150406))

Examples - Array variant

Using an array constructor for a subquery.

SELECT ST_Collect (ARRAY(SELECT geom FROM sometable));

Using an array constructor for values.

SELECT ST_AsText (ST_Collect (
ARRAY [ST_GeomFromText ('LINESTRING(1 2, 3 4)"'),
ST_GeomFromText ('LINESTRING(3 4, 4 5)')])) As wktcollect;

--wkt collect —--—
MULTILINESTRING((1 2,3 4), (3 4,4 5))

Examples - Aggregate variant

Creating multiple collections by grouping geometries in a table.

SELECT stusps, ST_Collect (f.geom) as geom
FROM (SELECT stusps, (ST_Dump (geom)) .geom As geom
FROM
somestatetable) As f
GROUP BY stusps

See Also

ST_Dump, ST_Union

150406) ',

PostGIS 3.3.0rc2 Manual

84 /896

8.3.2 ST _LineFromMultiPoint

ST_LineFromMultiPoint — Creates a LineString from a MultiPoint geometry.

Synopsis

geometry ST_LineFromMultiPoint(geometry aMultiPoint);

Description

Creates a LineString from a MultiPoint geometry.

Use ST_MakeLine to create lines from Point or LineString inputs.

This function supports 3d and will not drop the z-index.

Examples

Create a 3D line string from a 3D MultiPoint

SELECT ST_ASEWKT(ST_LineFromMultiPoint ('MULTIPOINT(1 2 3, 4 5 6, 7 8 9)"'))) s

——result—-
LINESTRING(1 2 3,4 5 6,7 8 9)

See Also

ST_ASEWKT, ST_MakeLine

8.3.3 ST_MakeEnvelope

ST_MakeEnvelope — Creates a rectangular Polygon from minimum and maximum coordinates.

Synopsis

geometry ST_MakeEnvelope(float xmin, float ymin, float xmax, float ymax, integer srid=unknown);

Description

Creates a rectangular Polygon from the minimum and maximum values for X and Y. Input values must be in the spatial reference

system specified by the SRID. If no SRID is specified the unknown spatial reference system (SRID 0) is used.

Auvailability: 1.5

Enhanced: 2.0: Ability to specify an envelope without specifying an SRID was introduced.

Example: Building a bounding box polygon

SELECT ST_AsText (ST_MakeEnvelope (10, 10, 11, 11, 4326));

st_asewkt

POLYGON ((10 10, 10 11, 11 11, 11 10, 10 10))

PostGIS 3.3.0rc2 Manual 85 /896

See Also

ST_MakePoint, ST_MakeLine, ST_MakePolygon, ST_TileEnvelope

8.3.4 ST_MakelLine

ST_MakeLine — Creates a LineString from Point, MultiPoint, or LineString geometries.

Synopsis

geometry ST_MakeLine(geometry geoml, geometry geom?2);
geometry ST_MakeLine(geometry[] geoms_array);
geometry ST_MakeLine(geometry set geoms);

Description

Creates a LineString containing the points of Point, MultiPoint, or LineString geometries. Other geometry types cause an error.
Variant 1: accepts two input geometries
Variant 2: accepts an array of geometries

Variant 3: aggregate function accepting a rowset of geometries. To ensure the order of the input geometries use ORDER BY in
the function call, or a subquery with an ORDER BY clause.

Repeated nodes at the beginning of input LineStrings are collapsed to a single point. Repeated points in Point and MultiPoint
inputs are not collapsed. ST_RemoveRepeatedPoints can be used to collapse repeated points from the output LineString.

This function supports 3d and will not drop the z-index.
Auvailability: 2.3.0 - Support for MultiPoint input elements was introduced
Awailability: 2.0.0 - Support for LineString input elements was introduced

Auvailability: 1.4.0 - ST_MakeLine(geomarray) was introduced. ST_MakeLine aggregate functions was enhanced to handle more
points faster.

Examples: Two-input variant

Create a line composed of two points.

SELECT ST_AsText (ST_MakeLine (ST _Point(1,2), ST _Point(3,4)));

st_astext

LINESTRING(1 2,3 4)

Create a 3D line from two 3D points.

SELECT ST_ASEWKT (ST_MakeLine (ST_MakePoint (1,2,3), ST_MakePoint (3,4,5)));

st_asewkt

LINESTRING(1 2 3,3 4 5)

Create a line from two disjoint LineStrings.

select ST_AsText (ST_MakeLine('LINESTRING(O 0, 1 1)', 'LINESTRING(2 2, 3 3)'"));

st_astext

LINESTRING(O 0,1 1,2 2,3 3)

PostGIS 3.3.0rc2 Manual 86 /896

Examples: Array variant

Create a line from an array formed by a subquery with ordering.

SELECT ST_MakeLine(ARRAY(SELECT ST_Centroid(geom) FROM visit_locations ORDER BY <>
visit_time));

Create a 3D line from an array of 3D points

SELECT ST_ASEWKT (ST_MakeLine (
ARRAY[ST_MakePoint (1,2,3), ST_MakePoint (3,4,5), ST_MakePoint (6,6,6)]));

st_asewkt

LINESTRING(1 2 3,3 4 5,6 6 6)

Examples: Aggregate variant

This example queries time-based sequences of GPS points from a set of tracks and creates one record for each track. The result
geometries are LineStrings composed of the GPS track points in the order of travel.

Using aggregate ORDER BY provides a correctly-ordered LineString.

SELECT gps.track_id, ST_MakeLine (gps.geom ORDER BY gps_time) As geom
FROM gps_points As gps
GROUP BY track_id;

Prior to PostgreSQL 9, ordering in a subquery can be used. However, sometimes the query plan may not respect the order of the
subquery.

SELECT gps.track_id, ST_MakelLine (gps.geom) As geom
FROM (SELECT track_id, gps_time, geom
FROM gps_points ORDER BY track_id, gps_time) As gps
GROUP BY track_id;

See Also

ST_RemoveRepeatedPoints, ST_ASEWKT, ST_AsText, ST_GeomFromText, ST_MakePoint, ST_Point

8.3.5 ST MakePoint

ST_MakePoint — Creates a 2D, 3DZ or 4D Point.

Synopsis

geometry ST_MakePoint(float x, float y);
geometry ST _MakePoint(float x, float y, float z);

geometry ST_MakePoint(float x, float y, float z, float m);

PostGIS 3.3.0rc2 Manual

87 /896

Description

Creates a 2D, 3D Z or 4D ZM Point geometry.
Use ST_MakePointM to make points with XYM coordinates.

While not OGC-compliant, ST_MakePoint is faster and more precise than ST_GeomFromText and ST_PointFromText. It is

also easier to use for numeric coordinate values.

N;‘l"! Note

For geodetic coordinates, X is longitude and Y is latitude

ﬂ This function supports 3d and will not drop the z-index.

Examples

—-—Return point with unknown SRID
SELECT ST_MakePoint (-71.1043443253471, 42.3150676015829) ;

—-—Return point marked as WGS 84 long lat
SELECT ST_SetSRID (ST_MakePoint (-71.1043443253471, 42.3150676015829),4326);

—-—Return a 3D point (e.g. has altitude)
SELECT ST_MakePoint (1, 2,1.5);

—-—Get z of point
SELECT ST_Z (ST_MakePoint (1, 2,1.5));
result

See Also

ST_GeomFromText, ST_PointFromText, ST_SetSRID, ST MakePointM

8.3.6 ST _MakePointM

ST MakePointM — Creates a Point from X, Y and M values.

Synopsis

geometry ST_MakePointM(float x, float y, float m);

Description

Creates a point with X, Y and M (measure) coordinates.

Use ST_MakePoint to make points with XY, XYZ, or XYZM coordinates.

N;’*"! Note

For geodetic coordinates, X is longitude and Y is latitude

PostGIS 3.3.0rc2 Manual 88 /896

Examples

Not Note
ST_AsEWKT is used for text output because ST_AsText does not support M values.

Create point with unknown SRID.

SELECT ST_ASEWKT(ST _MakePointM(-71.1043443253471, 42.3150676015829, 10)) g
st_asewkt

POINTM(-71.1043443253471 42.3150676015829 10)

Create point with a measure in the WGS 84 geodetic coordinate system.

SELECT ST_ASEWKT(ST_SetSRID(ST_MakePointM(-71.104, 42.315, 10), 4326));

st_asewkt

SRID=4326;POINTM(-71.104 42.315 10)

Get measure of created point.

SELECT ST_M(ST _MakePointM(-71.104, 42.315, 10)) g

result

See Also

ST _AsEWKT, ST MakePoint, ST_SetSRID

8.3.7 ST_MakePolygon

ST_MakePolygon — Creates a Polygon from a shell and optional list of holes.

Synopsis

geometry ST_MakePolygon(geometry linestring);

geometry ST _MakePolygon(geometry outerlinestring, geometry[] interiorlinestrings);

Description

Creates a Polygon formed by the given shell and optional array of holes. Input geometries must be closed LineStrings (rings).
Variant 1: Accepts one shell LineString.

Variant 2: Accepts a shell LineString and an array of inner (hole) LineStrings. A geometry array can be constructed using the
PostgreSQL array_agg(), ARRAY[] or ARRAY() constructs.

PostGIS 3.3.0rc2 Manual 89 /896

otet Note
N This function does not accept MultiLineStrings. Use ST_LineMerge to generate a LineString, or ST_Dump to extract
LineStrings.

This function supports 3d and will not drop the z-index.

Examples: Single input variant

Create a Polygon from a 2D LineString.

SELECT ST_MakePolygon(ST_GeomFromText ('LINESTRING (75 29,77 29,77 29, 75 29)"'));

Create a Polygon from an open LineString, using ST_StartPoint and ST_AddPoint to close it.

SELECT ST_MakePolygon (ST_AddPoint (foo.open_line, ST_StartPoint (foo.open_line)))
FROM (
SELECT ST_GeomFromText ('LINESTRING (75 29,77 29,77 29, 75 29)') As open_line) As foo;

Create a Polygon from a 3D LineString

SELECT ST_ASEWKT (ST_MakePolygon('LINESTRING(75.15 29.53 1,77 29 1,77.6 29.5 1, 75.15 <+
29.53 1)"));

st_asewkt

POLYGON ((75.15 29.53 1,77 29 1,77.6 29.5 1,75.15 29.53 1))

Create a Polygon from a LineString with measures

SELECT ST_ASEWKT (ST_MakePolygon('LINESTRINGM(75.15 29.53 1,77 29 1,77.6 29.5 2, 75.15 <«
29.53 2)"));

st_asewkt

POLYGONM ((75.15 29.53 1,77 29 1,77.6 29.5 2,75.15 29.53 2))

Examples: Outer shell with inner holes variant

Create a donut Polygon with an extra hole

SELECT ST_MakePolygon(ST_ExteriorRing(ST_Buffer(ring.line,10)),
ARRAY[ST_Translate(ring.line, 1, 1),
ST_ExteriorRing (ST_Buffer (ST_Point (20,20),1)) 1

)
FROM (SELECT ST_ExteriorRing (
ST_Buffer (ST_Point (10,10),10,10)) AS line) AS ring;

Create a set of province boundaries with holes representing lakes. The input is a table of province Polygons/MultiPolygons and a
table of water linestrings. Lines forming lakes are determined by using ST_IsClosed. The province linework is extracted by using
ST_Boundary. As required by ST_MakePolygon, the boundary is forced to be a single LineString by using ST_LineMerge.
(However, note that if a province has more than one region or has islands this will produce an invalid polygon.) Using a LEFT
JOIN ensures all provinces are included even if they have no lakes.

N;ﬂ"’! Note

The CASE construct is used because passing a null array into ST_MakePolygon results in a NULL return value.

PostGIS 3.3.0rc2 Manual 90 /896

SELECT p.gid, p.province_name,

CASE WHEN array_agg(w.geom) IS NULL

THEN p.geom

ELSE ST_MakePolygon(ST_LineMerge (ST_Boundary (p.geom)),

array_agg (w.geom)) END

FROM

provinces p LEFT JOIN waterlines w

ON (ST_Within(w.geom, p.geom) AND ST_IsClosed(w.geom))

GROUP BY p.gid, p.province_name, p.geom;

Another technique is to utilize a correlated subquery and the ARRAY () constructor that converts a row set to an array.

SELECT p.gid, p.province_name,
CASE WHEN EXISTS(SELECT w.geom
FROM waterlines w
WHERE ST_Within(w.geom, p.geom)
AND ST_IsClosed(w.geom))
THEN ST_MakePolygon (
ST_LineMerge (ST_Boundary (p.geom)),
ARRAY (SELECT w.geom
FROM waterlines w
WHERE ST_Within(w.geom, p.geom)
AND ST_IsClosed(w.geom)))
ELSE p.geom
END AS geom
FROM provinces p;

See Also

ST_BuildArea ST_Polygon

8.3.8 ST Point

ST Point — Creates a Point with X, Y and SRID values.

Synopsis

geometry ST_Point(float x, float y);

geometry ST_Point(float x, float y, integer srid=unknown);
Description

Returns a Point with the given X and Y coordinate values. This is the SQL-MM equivalent for ST_MakePoint that takes just X
and Y.

N;’""! Note

For geodetic coordinates, X is longitude and Y is latitude

Enhanced: 3.2.0 srid as an extra optional argument was added. Older installs require combining with ST_SetSRID to mark the
srid on the geometry.

This method implements the SQL/MM specification. SQL-MM 3: 6.1.2

PostGIS 3.3.0rc2 Manual 91/896

Examples: Geometry
SELECT ST_Point(-71.104, 42.315);
SELECT ST_SetSRID (ST_Point(—-71.104, 42.315),4326);

New in 3.2.0: With SRID specified

SELECT ST_Point (—-71.104, 42.315, 4326);

Examples: Geography

Pre-PostGIS 3.2 syntax

SELECT CAST(ST_SetSRID(ST_Point (-71.104, 42.315), 4326) AS geography);

3.2 and on you can include the srid

SELECT CAST(ST_Point(-71.104, 42.315, 4326) AS geography);

PostgreSQL also provides the : : short-hand for casting

SELECT ST_Point(-71.104, 42.315, 4326) ::geography;

If the point coordinates are not in a geodetic coordinate system (such as WGS84), then they must be reprojected before casting
to a geography. In this example a point in Pennsylvania State Plane feet (SRID 2273) is projected to WGS84 (SRID 4326).

SELECT ST_Transform(ST_SetSRID(ST _Point(3637510, 3014852), 2273), 4326) ::geography;

See Also

Section 4.3, ST_MakePoint, ST_SetSRID, ST_Transform, ST_PointZ, ST_PointM, ST_PointZM

8.3.9 ST _Pointz

ST PointZ — Creates a Point with X, Y, Z and SRID values.

Synopsis

geometry ST_PointZ(float x, float y, float z, integer srid=unknown);

Description

Returns an Point with the given X, Y and Z coordinate values, and optionally an SRID number.

Enhanced: 3.2.0 srid as an extra optional argument was added. Older installs require combining with ST_SetSRID to mark the
srid on the geometry.

Examples

SELECT ST_PointZ(-71.104, 42.315, 3.4, 4326)
SELECT ST _PointZ(-71.104, 42.315, 3.4, srid => 4326)

SELECT ST _PointZ(-71.104, 42.315, 3.4)

PostGIS 3.3.0rc2 Manual 92 /896

See Also

ST _MakePoint, ST_Point, ST_PointM, ST_PointZM

8.3.10 ST_PointM

ST PointM — Creates a Point with X, Y, M and SRID values.

Synopsis

geometry ST_PointM(float x, float y, float m, integer srid=unknown);

Description

Returns an Point with the given X, Y and M coordinate values, and optionally an SRID number.

Enhanced: 3.2.0 srid as an extra optional argument was added. Older installs require combining with ST_SetSRID to mark the
srid on the geometry.

Examples
SELECT ST_PointM(-71.104, 42.315, 3.4, 4326)
SELECT ST_PointM(-71.104, 42.315, 3.4, srid => 4326)

SELECT ST_PointM(-71.104, 42.315, 3.4)

See Also

ST_MakePoint, ST_Point, ST_PointZ, ST_PointZM

8.3.11 ST_PointZM

ST PointZM — Creates a Point with X, Y, Z, M and SRID values.

Synopsis

geometry ST_PointZM(float x, float y, float z, float m, integer srid=unknown);

Description

Returns an Point with the given X, Y, Z and M coordinate values, and optionally an SRID number.

Enhanced: 3.2.0 srid as an extra optional argument was added. Older installs require combining with ST_SetSRID to mark the
srid on the geometry.

Examples
SELECT ST_PointzM(-71.104, 42.315, 3.4, 4.5, 4326)
SELECT ST_PointzZM(-71.104, 42.315, 3.4, 4.5, srid => 4326)

SELECT ST_PointZM(-71.104, 42.315, 3.4, 4.5)

PostGIS 3.3.0rc2 Manual 93 /896

See Also

ST _MakePoint, ST_Point, ST_PointM, ST_PointZ, ST_SetSRID

8.3.12 ST_Polygon

ST_Polygon — Creates a Polygon from a LineString with a specified SRID.

Synopsis

geometry ST_Polygon(geometry lineString, integer srid);

Description

Returns a polygon built from the given LineString and sets the spatial reference system from the srid.
ST_Polygon is similar to ST_MakePolygon Variant 1 with the addition of setting the SRID.
To create polygons with holes use ST_MakePolygon Variant 2 and then ST_SetSRID.

o4 Note
This function does not accept MultiLineStrings. Use ST_LineMerge to generate a LineString, or ST_Dump to extract
LineStrings.

ﬁ This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
ﬁ This method implements the SQL/MM specification. SQL-MM 3: 8.3.2

ﬂ This function supports 3d and will not drop the z-index.

Examples

Create a 2D polygon.

SELECT ST_AsText (ST_Polygon ('LINESTRING(75 29, 77 29, 77 29, 75 29)'::geometry, 4326));

-— result —-—
POLYGON ((75 29, 77 29, 77 29, 75 29))

Create a 3D polygon.

SELECT ST_ASEWKT (ST_Polygon(ST_GeomFromEWKT ('LINESTRING(75 29 1, 77 29 2, 77 29 3, 75 29
1)'), 4326));

-— result —-
SRID=4326; POLYGON ((75 29 1, 77 29 2, 77 29 3, 75 29 1))

See Also

ST_AsEWKT, ST_AsText, ST_GeomFromEWKT, ST_GeomFromText, ST_LineMerge, ST_MakePolygon

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 94 / 896

8.3.13 ST_TileEnvelope

ST_TileEnvelope — Creates a rectangular Polygon in Web Mercator (SRID:3857) using the XYZ tile system.

Synopsis

geometry ST_TileEnvelope(integer tileZoom, integer tileX, integer tileY, geometry bounds=SRID=3857;LINESTRING(-20037508.342
-20037508.342789,20037508.342789 20037508.342789), float margin=0.0);

Description

Creates a rectangular Polygon in Web Mercator (SRID:3857) using the XYZ tile system. By default, the bounds are the in
EPSG:3857 using the standard range of the Web Mercator system (-20037508.342789, 20037508.342789). The optional bounds
parameter can be used to generate envelopes for any tiling scheme: provide a geometry that has the SRID and extent of the initial
"zoom level zero" square within which the tile system is to be inscribed.

The optional margin parameter can be used to grow a tile by the given percentage, e.g. margin=0.125 grows the tile by 12.5%,
which is equivalent to buffer=512 when extent is 4096, as used in ST_AsMVTGeom. This is useful to create a tile buffer -- to
include data lying outside of the tile’s visible area, but whose existence affects current tile’s rendering. For example, a city name
(a geopoint) could be near an edge of a tile, but the text would need to render on two tiles, even though the geopoint is located in
the visible area of just one tile. Using an expanded tile in a search would include the city geopoint for both tiles. Use negative
value to shrink the tile instead. Values less than -0.5 are prohibited because that would eliminate the tile completely. Do not use
margin with ST_AsMVTGeom(). See example in ST_AsMVT.

Enhanced: 3.1.0 Added margin parameter.
Availability: 3.0.0

Example: Building a tile envelope

SELECT ST_AsText (ST_TileEnvelope (2, 1, 1));
st_astext

POLYGON ((-10018754.1713945 0,-10018754.1713945 10018754.1713945,0 10018754.1713945,0 <«
0,-10018754.1713945 0))

SELECT ST_AsText (ST_TileEnvelope (3, 1, 1, ST_MakeEnvelope (-180, -90, 180, 90, 4326)));

st_astext

POLYGON ((=135 45,-135 67.5,-90 67.5,-90 45,-135 45))

See Also

ST_MakeEnvelope

8.3.14 ST_HexagonGrid

ST_HexagonGrid — Returns a set of hexagons and cell indices that completely cover the bounds of the geometry argument.

Synopsis

setof record ST_HexagonGrid(float8 size, geometry bounds);

https://en.wikipedia.org/wiki/Web_Mercator_projection
https://en.wikipedia.org/wiki/Tiled_web_map
https://en.wikipedia.org/wiki/Web_Mercator_projection
https://en.wikipedia.org/wiki/Tiled_web_map

PostGIS 3.3.0rc2 Manual 95 /896

Description

Starts with the concept of a hexagon tiling of the plane. (Not a hexagon tiling of the globe, this is not the H3 tiling scheme.) For
a given planar SRS, and a given edge size, starting at the origin of the SRS, there is one unique hexagonal tiling of the plane,
Tiling(SRS, Size). This function answers the question: what hexagons in a given Tiling(SRS, Size) overlap with a given bounds.

1.4 1,4 3.4 5.4 7.4

-1 '3 G é Q ?*3

‘1 ,.2 r 1 ?:-2
‘ P q F

= 1 ¥ 1 -n- ?:- 1

-1 'ﬂ Q ?*D

-1,-1 1,-1 3,-1 5,-1 7,-1

The SRS for the output hexagons is the SRS provided by the bounds geometry.

Doubling or tripling the edge size of the hexagon generates a new parent tiling that fits with the origin tiling. Unfortunately, it is
not possible to generate parent hexagon tilings that the child tiles perfectly fit inside.

https://github.com/uber/h3

PostGIS 3.3.0rc2 Manual 96 / 896

N =N20
=N O=N
==

Availability: 3.1.0

Example: Counting points in hexagons

To do a point summary against a hexagonal tiling, generate a hexagon grid using the extent of the points as the bounds, then
spatially join to that grid.

SELECT COUNT (*), hexes.geom
FROM
ST_HexagonGrid (
10000,
ST_SetSRID (ST_EstimatedExtent ('pointtable', 'geom'), 3857)
) AS hexes
INNER JOIN
pointtable AS pts
ON ST_Intersects (pts.geom, hexes.geom)
GROUP BY hexes.geom;

Example: Generating hex coverage of polygons

If we generate a set of hexagons for each polygon boundary and filter out those that do not intersect their hexagons, we end up
with a tiling for each polygon.

PostGIS 3.3.0rc2 Manual 97 / 896

MEXICO

ViAo

Tiling states results in a hexagon coverage of each state, and multiple hexagons overlapping at the borders between states.

N:"d Note
The LATERAL keyword is implied for set-returning functions when referring to a prior table in the FROM list. So CROSS
JOIN LATERAL, CROSS JOIN, or just plain , are equivalent constructs for this example.

SELECT adminl.gid, hex.geom
FROM

adminl

CROSS JOIN

ST_HexagonGrid (100000, adminl.geom) AS hex
WHERE

admO0_a3 = 'USA'

AND

ST_Intersects (adminl.geom, hex.geom)

See Also

ST_EstimatedExtent, ST_SetSRID, ST_SquareGrid, ST_TileEnvelope

8.3.15 ST_Hexagon

ST_Hexagon — Returns a single hexagon, using the provided edge size and cell coordinate within the hexagon grid space.

Synopsis

geometry ST_Hexagon(float8 size, integer cell_i, integer cell_j, geometry origin);

PostGIS 3.3.0rc2 Manual 98 /896

Description

Uses the same hexagon tiling concept as ST_HexagonGrid, but generates just one hexagon at the desired cell coordinate. Op-
tionally, can adjust origin coordinate of the tiling, the default origin is at 0,0.

Hexagons are generated with no SRID set, so use ST_SetSRID to set the SRID to the one you expect.

Availability: 3.1.0

Example: Creating a hexagon at the origin

SELECT ST_AsText (ST_SetSRID(ST_Hexagon (1.0, 0, 0), 3857));

POLYGON ((-1 0,-0.5
-0.866025403784439,0.5
-0.866025403784439,1
0,08
0.866025403784439,-0.5
0.866025403784439,-1 0))

See Also

ST_TileEnvelope, ST_HexagonGrid, ST_Square

8.3.16 ST_SquareGrid

ST_SquareGrid — Returns a set of grid squares and cell indices that completely cover the bounds of the geometry argument.

Synopsis

setof record ST_SquareGrid(float8 size, geometry bounds);

Description

Starts with the concept of a square tiling of the plane. For a given planar SRS, and a given edge size, starting at the origin of the
SRS, there is one unique square tiling of the plane, Tiling(SRS, Size). This function answers the question: what grids in a given
Tiling(SRS, Size) overlap with a given bounds.

The SRS for the output squares is the SRS provided by the bounds geometry.

Doubling or edge size of the square generates a new parent tiling that perfectly fits with the original tiling. Standard web map
tilings in mercator are just powers-of-two square grids in the mercator plane.

Availability: 3.1.0

Example: Generating a 1 degree grid for a country

The grid will fill the whole bounds of the country, so if you want just squares that touch the country you will have to filter
afterwards with ST _Intersects.

WITH grid AS (
SELECT (ST_SquareGrid(l, ST_Transform(geom,4326))) .x%
FROM adminO WHERE name = 'Canada'
)
SELEcT ST_AsText (geom)
FROM grid

PostGIS 3.3.0rc2 Manual 99 /896

Example: Counting points in squares (using single chopped grid)

To do a point summary against a square tiling, generate a square grid using the extent of the points as the bounds, then spatially
join to that grid. Note the estimated extent might be off from actual extent, so be cautious and at very least make sure you’ve
analyzed your table.

SELECT COUNT (%), squares.geom
FROM
pointtable AS pts
INNER JOIN
ST_SquareGrid (
1000,
ST_SetSRID (ST_EstimatedExtent ('pointtable', 'geom'), 3857)
) AS sqguares
ON ST_Intersects (pts.geom, squares.geom)
GROUP BY squares.geom

Example: Counting points in squares using set of grid per point

This yields the same result as the first example but will be slower for a large number of points

SELECT COUNT (*), squares.geom
FROM
pointtable AS pts
INNER JOIN
ST_SquareGrid (
1000,

pts.geom
) AS squares
ON ST_Intersects (pts.geom, squares.geom)
GROUP BY squares.geom

See Also

ST_TileEnvelope, ST_HexagonGrid , ST_EstimatedExtent , ST_SetSRID

8.3.17 ST_Square

ST_Square — Returns a single square, using the provided edge size and cell coordinate within the square grid space.

Synopsis

geometry ST_Square(float8 size, integer cell_i, integer cell_j, geometry origin);

Description

Uses the same square tiling concept as ST_SquareGrid, but generates just one square at the desired cell coordinate. Optionally,
can adjust origin coordinate of the tiling, the default origin is at 0,0.

Squares are generated with no SRID set, so use ST_SetSRID to set the SRID to the one you expect.

Availability: 3.1.0

PostGIS 3.3.0rc2 Manual 100/ 896

Example: Creating a square at the origin

SELECT ST_AsText (ST_SetSRID(ST_Square(l1.0, 0, 0), 3857));

POLYGON((O 0,0 1,1 1,1 0,0 0))

See Also

ST_TileEnvelope, ST_SquareGrid, ST_Hexagon

8.3.18 ST Letters

ST_Letters — Returns the input letters rendered as geometry with a default start position at the origin and default text height of
100.

Synopsis

geometry ST_Letters(text letters, json font);

Description

Uses a built-in font to render out a string as a multipolygon geometry. The default text height is 100.0, the distance from the
bottom of a descender to the top of a capital. The default start position places the start of the baseline at the origin. Over-riding
the font involves passing in a json map, with a character as the key, and base64 encoded TWKB for the font shape, with the fonts
having a height of 1000 units from the bottom of the descenders to the tops of the capitals.

The text is generated at the origin by default, so to reposition and resize the text, first apply the ST_Scale function and then
apply the ST_Translate function.

Availability: 3.3.0

Example: Generating the word ’Yo’

SELECT ST_AsText (ST_Letters('Yo'), 1);

Letters generated by ST_Letters

PostGIS 3.3.0rc2 Manual 101/ 896

Example: Scaling and moving words

SELECT ST_Translate(ST_Scale(ST_Letters('Yo'), 10, 10), 100,100);

See Also

ST_AsTWKB, ST_Scale, ST _Translate

8.4 Geometry Accessors

8.4.1 GeometryType

GeometryType — Returns the type of a geometry as text.

Synopsis

text GeometryType(geometry geomA);

Description

Returns the type of the geometry as a string. Eg: "LINESTRING’, "’POLYGON’, "MULTIPOINT”, etc.

OGC SPEC s2.1.1.1 - Returns the name of the instantiable subtype of Geometry of which this Geometry instance is a member.
The name of the instantiable subtype of Geometry is returned as a string.

N;ﬂ"’! Note

This function also indicates if the geometry is measured, by returning a string of the form 'POINTM’.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
This method supports Circular Strings and Curves
This function supports 3d and will not drop the z-index.
This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

SELECT GeometryType (ST_GeomFromText ('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 <+
29.07)"));
geometrytype

LINESTRING

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 102/ 896

SELECT ST_GeometryType (ST_GeomFromEWKT ('POLYHEDRALSURFACE(((O0 0 0, 0 0 1, 01 1, 01 0, 0 <
0 0)),
((<0 00, 010, 110,100, 00O0)), (COOO0CG, 100, 201, 001, 000,
(¢(z10, 111, 101, 100, 11 0)),
(¢0 2 0,011, 111, 110, 010)), ((OO0OC1I, 101, 211, 01T 1, 001)Y"));
—-—result
POLYHEDRALSURFACE

SELECT GeometryType (geom) as result

FROM
(SELECT
ST_GeomFromEWKT ("TIN (((
00 O,
001,
01 0,
00O
)) ., ((
00 O,
010,
110,
00O
))
)') AS geom
) AS g;
result
TIN
See Also

ST_GeometryType

8.4.2 ST_Boundary

ST_Boundary — Returns the boundary of a geometry.

Synopsis

geometry ST_Boundary(geometry geomA);

Description

Returns the closure of the combinatorial boundary of this Geometry. The combinatorial boundary is defined as described in
section 3.12.3.2 of the OGC SPEC. Because the result of this function is a closure, and hence topologically closed, the resulting
boundary can be represented using representational geometry primitives as discussed in the OGC SPEC, section 3.12.2.

Performed by the GEOS module

N:rld Note

Prior to 2.0.0, this function throws an exception if used with GEOMETRYCOLLECTION. From 2.0.0 up it will return
NULL instead (unsupported input).

PostGIS 3.3.0rc2 Manual

103 /896

ﬁ This method implements the OGC Simple Features Implementation Specification for SQL 1.1. OGC SPEC s2.1.1.1

ﬂ This method implements the SQL/MM specification. SQL-MM IEC 13249-3: 5.1.17

ﬂ This function supports 3d and will not drop the z-index.

Enhanced: 2.1.0 support for Triangle was introduced

Changed: 3.2.0 support for TIN, does not use geos, does not linearize curves

Examples

Linestring with boundary points overlaid

SELECT ST_Boundary (geom)
FROM (SELECT 'LINESTRING (100 150,50 60, —

—-— ST_AsText output
MULTIPOINT ((100 150), (160 170))

70 80, 160 170)'::geometry As geom) As f

polygon holes with boundary multilinestring

SELECT ST_Boundary (geom)
FROM (SELECT
'POLYGON ((10 130, 50 190, 110 190, 140 <«
150, 150 80, 100 10, 20 40, 10 130),
(70 40, 100 50, 120 80, 80 110, <«
50 90, 70 40))'::geometry As geom) As f

—-— ST_AsText output
MULTILINESTRING((10 130,50 190,110 <
190,140 150,150 80,100 10,20 40,10 130),
(70 40,100 50,120 80,80 110,50 <>
90,70 40))

SELECT ST_AsText (ST_Boundary (ST_GeomFromText ('LINESTRING(1 1,0 0, -1 1)"')));

st_astext

MULTIPOINT ((1 1), (-1 1))

SELECT ST_AsText (ST_Boundary (ST_GeomFromText ('POLYGON((1 1,0 0, -1 1, 1 1))")));

st_astext

LINESTRING(1 1,0 O0,-1 1,1 1)

--Using a 3d polygon

SELECT ST_ASEWKT (ST_Boundary (ST_GeomFromEWKT ('POLYGON((1 1 1,0 0 1, -1 1 1, 1 1 1))"'")));

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 104 / 896

st_asewkt

LINESTRING(1 1 1,0 0 1,-1 1 1,1 1 1)
—-Using a 3d multilinestring

SELECT ST_ASEWKT (ST_Boundary (ST_GeomFromEWKT ('MULTILINESTRING((1 1 1,0 0 0.5, -1 1 1), (1 1 <>
0.5,0 0 0.5, =1 1 0.5, 11 0.5))")));

st_asewkt

MULTIPOINT ((-1 1 1), (1 1 0.75))

See Also

ST_AsText, ST_ExteriorRing, ST_MakePolygon

8.4.3 ST_BoundingDiagonal

ST_BoundingDiagonal — Returns the diagonal of a geometry’s bounding box.

Synopsis

geometry ST_BoundingDiagonal(geometry geom, boolean fits=false);

Description

Returns the diagonal of the supplied geometry’s bounding box as a LineString. The diagonal is a 2-point LineString with the
minimum values of each dimension in its start point and the maximum values in its end point. If the input geometry is empty, the
diagonal line is a LINESTRING EMPTY.

The optional f£its parameter specifies if the best fit is needed. If false, the diagonal of a somewhat larger bounding box can
be accepted (which is faster to compute for geometries with many vertices). In either case, the bounding box of the returned
diagonal line always covers the input geometry.

The returned geometry retains the SRID and dimensionality (Z and M presence) of the input geometry.

N:rld Note

In degenerate cases (i.e. a single vertex in input) the returned linestring will be formally invalid (no interior). The result
is still topologically valid.

Availability: 2.2.0
This function supports 3d and will not drop the z-index.

This function supports M coordinates.

PostGIS 3.3.0rc2 Manual

105/ 896

Examples

—— Get the minimum X in a buffer around a point

SELECT ST_X(ST_StartPoint (ST_BoundingDiagonal (
ST_Buffer (ST_Point (0,0),10)

))) i

See Also

ST_StartPoint, ST_EndPoint, ST_X, ST_Y, ST_Z, ST_M, ST_Envelope

8.4.4 ST CoordDim

ST_CoordDim — Return the coordinate dimension of a geometry.

Synopsis

integer ST_CoordDim(geometry geomA);

Description

Return the coordinate dimension of the ST_Geometry value.

This is the MM compliant alias name for ST_NDims

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
ﬂ This method implements the SQL/MM specification. SQL-MM 3: 5.1.3

ﬂ This method supports Circular Strings and Curves

ﬂ This function supports 3d and will not drop the z-index.

ﬂ This function supports Polyhedral surfaces.

ﬂ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
SELECT ST_CoordDim('CIRCULARSTRING(1 2 3, 1 3 4, 56 7, 8 9 10, 11 12 13)");
———result—--—
3
SELECT ST_CoordDim(ST_Point (1,2));

——result—-
2

See Also

ST NDims

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 106 / 896

8.4.5 ST Dimension

ST_Dimension — Returns the topological dimension of a geometry.

Synopsis

integer ST_Dimension(geometry g);

Description

Return the topological dimension of this Geometry object, which must be less than or equal to the coordinate dimension. OGC
SPEC s2.1.1.1 - returns O for POINT, 1 for LINESTRING, 2 for POLYGON, and the largest dimension of the components of a
GEOMETRYCOLLECTION. If the dimension is unknown (e.g. for an empty GEOMETRYCOLLECTION) O is returned.

This method implements the SQL/MM specification. SQL-MM 3: 5.1.2

Enhanced: 2.0.0 support for Polyhedral surfaces and TINs was introduced. No longer throws an exception if given empty
geometry.

N;ﬂ"! Note

Prior to 2.0.0, this function throws an exception if used with empty geometry.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

SELECT ST_Dimension ('GEOMETRYCOLLECTION (LINESTRING(1 1,0 0),POINT (0 0))"');
ST_Dimension

See Also

ST_NDims

8.4.6 ST_Dump

ST_Dump — Returns a set of geometry_dump rows for the components of a geometry.

Synopsis

geometry_dump[] ST_Dump(geometry gl);

PostGIS 3.3.0rc2 Manual 107 / 896

Description

A set-returning function (SRF) that extracts the components of a geometry. It returns a set of geometry_dump rows, each
containing a geometry (geom field) and an array of integers (path field).

For an atomic geometry type (POINT,LINESTRING,POLYGON) a single record is returned with an empty path array and the
input geometry as geom. For a collection or multi-geometry a record is returned for each of the collection components, and the
path denotes the position of the component inside the collection.

ST_Dump is useful for expanding geometries. It is the inverse of a ST_Collect / GROUP BY, in that it creates new rows. For
example it can be use to expand MULTIPOLY GONS into POLY GONS.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Auvailability: PostGIS 1.0.0RC1. Requires PostgreSQL 7.3 or higher.

N;’""! Note

Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

This function supports 3d and will not drop the z-index.

Standard Examples

SELECT sometable.fieldl, sometable.fieldl,

(ST_Dump (sometable.geom)) .geom AS geom
FROM sometable;

—-— Break a compound curve into its constituent linestrings and circularstrings
SELECT ST_ASEWKT (a.geom), ST_HasArc (a.geom)
FROM (SELECT (ST_Dump (p_geom)) .geom AS geom
FROM (SELECT ST_GeomFromEWKT ('COMPOUNDCURVE (CIRCULARSTRING(O 0O, 1 1, 1 0), (1 0, 0 <
1))') AS p_geom) AS b
) AS a;
st_asewkt

CIRCULARSTRING(O 0,1 1,1 0)
LINESTRING(1 0,0 1)
(2 rows)

Polyhedral Surfaces, TIN and Triangle Examples

—— Polyhedral surface example

—-— Break a Polyhedral surface into its faces

SELECT (a.p_geom) .path[l] As path, ST_ASEWKT ((a.p_geom).geom) As geom_ewkt

FROM (SELECT ST_Dump (ST_GeomFromEWKT ('POLYHEDRALSURFACE (

((<0o o0, 001, 011, 01 00 0)),

((0 00, 010, 110, 10O oo0®0)), (¢<0O000, 1200, 101, 001, 00 0)), ((1 10, 1 1 ¢«
i, 101, 100, 110)),

(¢0 2 0,011, 111, 110, 010, ((<0 01, 101, 111, 011, 00 1))

0,
0,

PostGIS 3.3.0rc2 Manual

108 / 896

)')) AS p_geom) AS a;

path
1 POLYGON ((0 0 O
2 POLYGON ((0O O O
3 POLYGON ((0 0 O
4 POLYGON((1 1 0
5 POLYGON ((0 1 O
6 POLYGON ((0 0 1

-— TIN —-

SELECT (g.gdump) .path,
FROM

(SELECT
ST_Dump (ST_GeomFromEWKT ("TIN (((
0 0 O,
00 1,
010,
000
)) .
0 0 O,
010,
110,
00O
))
)')) AS gdump
) AS g;
-— result —-
path | wkt
______ +_____________________________________
{1} | TRIANGLE((O O 0,0 0 1,0 1 0,0 0 0))
{2} | TRIANGLE((O O 0,0 1 0,1 1 0,0 0 0))

See Also

geom_ewkt

|
777777 +77
|
|
|
|
|
|

ST_ASEWKT ((g.gdump) .

geom) as wkt

geometry_dump, Section 15.6, ST_Collect, ST_GeometryN

8.4.7 ST_DumpPoints

ST_DumpPoints — Returns a set of geomet ry_dump rows for the coordinates in a geometry.

Synopsis

geometry_dump[] ST_DumpPoints(geometry geom);

Description

A set-returning function (SRF) that extracts the coordinates (vertices) of a geometry. It returns a set of geometry_dump rows,

each containing a geometry (geom field) and an array of integers (path field).

* the geom field POINTSs represent the coordinates of the supplied geometry.

* the pathfield (an integer [])is an index enumerating the coordinate positions in the elements of the supplied geometry. The
indices are 1-based. For example, for a LINESTRING the paths are { 1} where i is the nth coordinate in the LINESTRING.
For a POLYGON the paths are {1, j} where i is the ring number (1 is outer; inner rings follow) and 7j is the coordinate position

in the ring.

PostGIS 3.3.0rc2 Manual 109/ 896

To obtain a single geometry containing the coordinates use ST_Points.

Enhanced: 2.1.0 Faster speed. Reimplemented as native-C.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Availability: 1.5.0

G This method supports Circular Strings and Curves
ﬁ This function supports Polyhedral surfaces.
G This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

G This function supports 3d and will not drop the z-index.

Classic Explode a Table of LineStrings into nodes

SELECT edge_id, (dp).path[l] As index, ST_AsText ((dp).geom) As wktnode
FROM (SELECT 1 As edge_id

, ST_DumpPoints (ST_GeomFromText ('LINESTRING(1 2, 3 4, 10 10)')) AS dp
UNION ALL
SELECT 2 As edge_id
, ST_DumpPoints (ST_GeomFromText ('LINESTRING(3 5, 5 6, 9 10)')) AS dp
) As foo;
edge_id | index | wktnode
_________ +_______+______________
1 1 | POINT(1 2)
1] 2 | POINT(3 4)
1 | 3 | POINT (10 10)
2 | 1 | POINT (3 5)
2 2 | POINT (5 6)
2| 3 | POINT(9 10)

Standard Geometry Examples

AN
_—

SELECT path, ST_AsText (geom)

FROM (
SELECT (ST_DumpPoints (g.geom)) .x*
FROM

PostGIS 3.3.0rc2 Manual 110/ 896

(SELECT
' GEOMETRYCOLLECTION (

POINT (0 1),

LINESTRING (0 3, 3 4),

POLYGON ((2 0, 2 3, 0 2, 2 0)),

POLYGON ((3 0, 3 3, 6 3, 6 0, 3 0),
(51, 42, 52, 51)),

MULTIPOLYGON (
(¢05 08, 48, 45, 05),
(16, 36, 27, 16)),
((54, 58, 617, 4)

)
) '::geometry AS geom

) AS g
) Ji
path | st_astext
,,,,,,,,,,, [,
{1,1} | POINT (0 1)
{2,1} | POINT (0 3)
{2,2} | POINT (3 4)
{3,1,1} | POINT (2 0)
{3,1,2} | POINT (2 3)
3,1,3} | POINT (0 2)
{3,1,4} | POINT (2 0)
{4,1,1} | POINT (3 0)
{4,1,2} | POINT (3 3)
{4,1,3} | POINT (6 3)
{4,1,4} | POINT (6 0)
{4,1,5} | POINT (3 0)
{4,2,1} | POINT (5 1)
{4,2,2} | POINT (4 2)
{4,2,3} | POINT (5 2)
{4,2,4} | POINT (5 1)
{5,1,1,1} | POINT (0 5)
{5,1,1,2} | POINT (0 8)
{5,1,1,3} | POINT (4 8)
{5,1,1,4} | POINT (4 5)
{5,1,1,5} | POINT (0 5)
{5,1,2,1} | POINT(1l 6)
{5,1,2,2} | POINT(3 6)
{5,1,2,3} | POINT (2 7)
{5,1,2,4} | POINT(1l 6)
{5,2,1,1} | POINT(5 4)
{5,2,1,2} | POINT(5 8)
{5,2,1,3} | POINT(6 7)
{5,2,1,4} | POINT (5 4)
(29 rows)

Polyhedral Surfaces, TIN and Triangle Examples

—— Polyhedral surface cube —-
SELECT (g.gdump) .path, ST_ASEWKT ((g.gdump) .geom) as wkt

FROM
(SELECT
ST_DumpPoints (ST_GeomFromEWKT ('POLYHEDRALSURFACE(((0 0 0, 0 01, 011, 010, 00 <
0)),
(¢<0o o0, 010, 110, 100, 00O0)), ((OOCO0B, 200, 101, 001, 00 0),
((110, 111,101, 100, 110)),
(010,011, 111, 110, 010)), ((0p01, 101, 111, 011, 00 1)))')) AS gdump

PostGIS 3.3.0rc2 Manual 111/896

) AS g;
-— result —-
path | wkt
,,,,,,,,, O,
{1,1,1} | POINT(O O 0)
{1,1,2} | POINT(O O 1)
{1,1,3} | POINT(O 1 1)
{1,1,4} | POINT(0 1 0)
{1,1,5} | POINT(O O 0)
{2,1,1} | POINT(O O 0)
{2,1,2} | POINT(O 1 0)
{2,1,3} | POINT(1 1 0)
{2,1,4} | POINT(1 O 0)
{2,1,5} | POINT (O O 0)
{3,1,1} | POINT(O O 0)
{3,1,2} | POINT(1 O 0)
{3,1,3} | POINT(1 0 1)
{3,1,4} | POINT(O O 1)
{3,1,5} | POINT(O O 0)
{4,1,1} | POINT(1 1 0)
{4,1,2} | POINT(1 1 1)
{4,1,3} | POINT(1 O 1)
{4,1,4} | POINT(1 0O 0)
{4,1,5} | POINT(1 1 0)
{5,1,1} | POINT(O 1 0)
{5,1,2} | POINT(0 1 1)
{5,1,3} | POINT(1 1 1)
{5,1,4} | POINT(1 1 0)
{5,1,5} | POINT(0 1 0)
{6,1,1} | POINT(O O 1)
{6,1,2} | POINT(1 O 1)
{6,1,3} | POINT(1 1 1)
{6,1,4} | POINT(O 1 1)
{6,1,5} | POINT(O O 1)
(30 rows)
—-— Triangle -—-
SELECT (g.gdump) .path, ST_AsText ((g.gdump).geom) as wkt
FROM
(SELECT
ST_DumpPoints (ST_GeomFromEWKT ('TRIANGLE ((
0 o,
0 9,
9 0,
00
)) ")) AS gdump
) AS g;
-— result —-
path | wkt
,,,,,, JTIS
{1} | POINT (O 0)
{2} | POINT (0 9)
{3} | POINT (9 0)
{4} | POINT (0 0)
== TN ==
SELECT (g.gdump) .path, ST_ASEWKT ((g.gdump) .geom) as wkt
FROM
(SELECT

ST_DumpPoints (ST_GeomFromEWKT ('TIN (((
0 0 O,

PostGIS 3.3.0rc2 Manual 112 /896

001,
010,
000
)) . ((
00 0,
010,
110,
00O
))
)')) AS gdump
) AS g;
-— result —-—
path | wkt
_________ e
{1,1,1} | POINT(O O 0)
{1,1,2} | POINT(O O 1)
{1,1,3} | POINT(O 1 0)
{1,1,4} | POINT(O O 0)
{2,1,1} | POINT (O 0 0)
{2,1,2} | POINT(O 1 0)
{2,1,3} | POINT(1 1 0)
{2,1,4} | POINT(O 0 0)
(8 rows)
See Also

geometry_dump, Section 15.6, ST_Dump, ST_DumpRings, ST_Points

8.4.8 ST_DumpSegments

ST_DumpSegments — Returns a set of geomet ry_dump rows for the segments in a geometry.

Synopsis

geometry_dump[] ST_DumpSegments(geometry geom);

Description

A set-returning function (SRF) that extracts the segments of a geometry. It returns a set of geometry_dump rows, each containing
a geometry (geom field) and an array of integers (path field).

* the geom field LINESTRINGs represent the segments of the supplied geometry.

* the path field (an integer[]) is an index enumerating the segment start point positions in the elements of the supplied
geometry. The indices are 1-based. For example, for a LINESTRING the paths are {1} where i is the nth segment start
point in the LINESTRING. For a POLYGON the paths are {1, 7} where i is the ring number (1 is outer; inner rings follow)
and 7 is the segment start point position in the ring.

Availability: 3.2.0

F
%" This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
%" This function supports 3d and will not drop the z-index.

PostGIS 3.3.0rc2 Manual 113 /896

Standard Geometry Examples

SELECT path, ST_AsText (geom)

FROM (
SELECT (ST_DumpSegments (g.geom)) .x*
FROM (SELECT 'GEOMETRYCOLLECTION (
LINESTRING(1 1, 3 3, 4 4),
POLYGON((5 5, 6 6, 7 7, 5 5))

) '::geometry AS geom

) AS g

{1,1} │ LINESTRING(1 1,3
{1,2} │ LINESTRING(3 3,4
{2,1,1} │ LINESTRING(5 5,6
{2,1,2} │ LINESTRING (6 6,7
{2,1,3} │ LINESTRING(7 7,5
(5 rows)

0 J o x> W

TIN and Triangle Examples

—-— Triangle —-

SELECT path, ST_AsText (geom)

FROM (
SELECT
FROM (

(ST_DumpSegments (g.geom)) . *
ELECT 'TRIANGLE ((

14

14

14

O w0 O O
O O W O Wn

)) '::geometry AS geom
) AS g

path │ st_astext

{1,1} │ LINESTRING (
{1,2} │ LINESTRING (
{1,3} │ LINESTRING (

o O O
o 0 O
~
o v O
o O W

-— TIN —-

SELECT path, ST_ASEWKT (geom)

FROM (
SELECT (ST_DumpSegments (g.geom)) .*
FROM (SELECT 'TIN(((

O!

’

1
0,
0

o P O O

~

~

-
~
O R OO ~ O O O O

o R P O
o O O O
~

) '::geometry AS geom

PostGIS 3.3.0rc2 Manual 114 /896

) AS g
) Ji

path │ st_asewkt
{1,1,1} │ LINESTRING(0 O 0,0 0 1)
{1,1,2} │ LINESTRING(0O 0 1,0 1 0)
{1,1,3} │ LINESTRING(O 1 0,0 0 0)
{2,1,1} │ LINESTRING(0 0 0,0 1 0)
{2,1,2} │ LINESTRING(0O 1 0,1 1 0)
{2,1,3} │ LINESTRING(1 1 0,0 0 0)
(6 rows)
See Also

geometry_dump, Section 15.6, ST_Dump, ST_DumpRings

8.4.9 ST_DumpRings

ST_DumpRings — Returns a set of geomet ry_dump rows for the exterior and interior rings of a Polygon.

Synopsis

geometry_dump[] ST_DumpRings(geometry a_polygon);

Description
A set-returning function (SRF) that extracts the rings of a polygon. It returns a set of geometry_dump rows, each containing a
geometry (geom field) and an array of integers (path field).

The geom field contains each ring as a POLYGON. The path field is an integer array of length 1 containing the polygon ring
index. The exterior ring (shell) has index 0. The interior rings (holes) have indices of 1 and higher.

Not¢ Note
This only works for POLYGON geometries. It does not work for MULTIPOLYGONS

Auvailability: PostGIS 1.1.3. Requires PostgreSQL 7.3 or higher.

This function supports 3d and will not drop the z-index.

Examples

General form of query.

SELECT polyTable.fieldl, polyTable.fieldl,
(ST_DumpRings (polyTable.geom)) .geom As geom
FROM polyTable;

A polygon with a single hole.

PostGIS 3.3.0rc2 Manual 115/ 896

SELECT path, ST_ASEWKT (geom) As geom
FROM ST_DumpRings (

ST_GeomFromEWKT ('POLYGON ((-8149064 5133092 1,-8149064 5132986 1,-8148996 5132839 <
1,-8148972 5132767 1,-8148958 5132508 1,-8148941 5132466 1,-8148924 5132394 1,

-8148903 5132210 1,-8148930 5131967 1,-8148992 5131978 1,-8149237 5132093 1,-8149404 <+
5132211 1,-8149647 5132310 1,-8149757 5132394 1,

-8150305 5132788 1,-8149064 5133092 1),

(-8149362 5132394 1,-8149446 5132501 1,-8149548 5132597 1,-8149695 5132675 1,-8149362 <
5132394 1))")

) as foo;

{0} | POLYGON((-8149064 5133092 1,-8149064 5132986 1,-8148996 5132839 1,-8148972 5132767 <
1,-8148958 5132508 1,
—-8148941 5132466 1,-8148924 5132394 1,
-8148903 5132210 1,-8148930 5131967 1,
-8148992 5131978 1,-8149237 5132093 1,
-8149404 5132211 1,-8149647 5132310 1,
1,-8149064 5133092 1))
{1} | POLYGON((—-8149362 5132394 1,-8149446 5132501 1,
| —-8149548 5132597 1,-8149695 5132675 1,-8149362 5132394 1))

-8149757 5132394 1,-8150305 5132788 <

See Also

geometry_dump, Section 15.6, ST_Dump, ST_ExteriorRing, ST_InteriorRingN

8.4.10 ST_EndPoint

ST_EndPoint — Returns the last point of a LineString or CircularLineString.

Synopsis

geometry ST_EndPoint(geometry g);

Description

Returns the last point of a LINESTRING or CIRCULARLINESTRING geometry as a POINT. Returns NULL if the input is not
a LINESTRING or CIRCULARLINESTRING.

This method implements the SQL/MM specification. SQL-MM 3: 7.1.4
This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Note

N;H’! Changed: 2.0.0 no longer works with single geometry MultiLineStrings. In older versions of PostGIS a single-line Multi-
LineString would work with this function and return the end point. In 2.0.0 it returns NULL like any other MultiLineString.
The old behavior was an undocumented feature, but people who assumed they had their data stored as LINESTRING
may experience these returning NULL in 2.0.0.

PostGIS 3.3.0rc2 Manual 116/ 896

Examples

End point of a LineString

postgis=# SELECT ST_AsText (ST_EndPoint ('LINESTRING(1 1, 2 2, 3 3)'::geometry));
st_astext

POINT (3 3)

End point of a non-LineString is NULL

SELECT ST_EndPoint ('"POINT(1 1)'::geometry) IS NULL AS is_null;
is_null

End point of a 3D LineString

—--3d endpoint
SELECT ST_ASEWKT (ST_EndPoint ('LINESTRING(1 1 2, 1 2 3, 0 0 5)"));
st_asewkt

POINT (O 0 5)

End point of a CircularString

SELECT ST_AsText (ST_EndPoint ('CIRCULARSTRING(5 2,-3 1.999999, -2 1, -4 2, 6 3)'::geometry)) <

4
st_astext

POINT (6 3)

See Also

ST PointN, ST_StartPoint

8.4.11 ST_Envelope

ST_Envelope — Returns a geometry representing the bounding box of a geometry.

Synopsis

geometry ST_Envelope(geometry gl);

Description

Returns the double-precision (float8) minimum bounding box for the supplied geometry, as a geometry. The polygon is defined
by the corner points of the bounding box ((MINX, MINY), (MINX, MAXY), (MAXX, MAXY), (MAXX, MINY), (MINX, MINY)).
(PostGIS will add a ZMIN/ZMAX coordinate as well).

Degenerate cases (vertical lines, points) will return a geometry of lower dimension than POLYGON, ie. POINT or LINESTRING.

Availability: 1.5.0 behavior changed to output double precision instead of float4
ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.1

ﬂ This method implements the SQL/MM specification. SQL-MM 3: 5.1.19

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 117/ 896
Examples
SELECT ST_AsText (ST_Envelope ('POINT (1 3)'::geometry));

st_astext

POINT (1 3)
(1 row)
SELECT ST_AsText (ST_Envelope ('LINESTRING(0 0, 1 3)'::geometry));

st_astext
POLYGON((0 0,0 3,1 3,1 0,0 0))
(1 row)
SELECT ST_AsText (ST_Envelope ('POLYGON((O O, O 1, 1.0000001 1, 1.0000001 0, O 0))'::geometry <«
)) i
st_astext
POLYGON((0 0,0 1,1.00000011920929 1,1.00000011920929 0,0 0))
(1 row)
SELECT ST_AsText (ST_Envelope ('POLYGON((0O 0, O 1, 1.0000000001 1, 1.0000000001 0, O 0Q0))':: ¢«
geometry)) ;
st_astext

POLYGON((0 0,0 1,1.00000011920929 1,1.00000011920929 0,0 0))
(1 row)
SELECT Box3D (geom), Box2D (geom), ST_AsText (ST_Envelope (geom)) As envelopewkt

FROM (SELECT 'POLYGON((O 0, 0 1000012333334.34545678, 1.0000001 1, 1.0000001 0, O 0))':: ¢«

geometry As geom) As foo;

Envelope of a point and linestring.

SELECT ST_AsText (ST_Envelope (
ST_Collect (
ST_GeomFromText ('LINESTRING (55 75,125 150)"'"),
ST _Point (20, 80))

PostGIS 3.3.0rc2 Manual 118 /896

)) As wktenv;
wktenv

POLYGON ((20 75,20 150,125 150,125 75,20 75))

See Also

Box2D, Box3D, ST_OrientedEnvelope

8.4.12 ST_ExteriorRing

ST_ExteriorRing — Returns a LineString representing the exterior ring of a Polygon.

Synopsis

geometry ST _ExteriorRing(geometry a_polygon);

Description

Returns a LINESTRING representing the exterior ring (shell) of a POLYGON. Returns NULL if the geometry is not a polygon.

oA Note
N This function does not support MULTIPOLYGONSs. For MULTIPOLYGONSs use in conjunction with ST_GeometryN or
ST_Dump

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1. 2.1.5.1
ﬂ This method implements the SQL/MM specification. SQL-MM 3: 8.2.3, 8.3.3

ﬂ This function supports 3d and will not drop the z-index.

Examples

——If you have a table of polygons
SELECT gid, ST_ExteriorRing(geom) AS ering
FROM sometable;

-—-If you have a table of MULTIPOLYGONs
—-—and want to return a MULTILINESTRING composed of the exterior rings of each polygon
SELECT gid, ST_Collect (ST_ExteriorRing(geom)) AS erings
FROM (SELECT gid, (ST_Dump (geom)) .geom As geom
FROM sometable) As foo
GROUP BY gid;

-—-3d Example

SELECT ST_AsEWKT (
ST_ExteriorRing (
ST_GeomFromEWKT ('POLYGON((O O 1, 1 11, 1 2 1, 111, 00 1))")
)

)i

st_asewkt

LINESTRING(O O 1,1 1 1,1 2 1,1 1 1,0 0 1)

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 119/ 896

See Also

ST_InteriorRingN, ST_Boundary, ST_NumlnteriorRings

8.4.13 ST_GeometryN

ST_GeometryN — Return an element of a geometry collection.

Synopsis

geometry ST_GeometryN(geometry geomA, integer n);

Description

Return the 1-based Nth element geometry of an input geometry which is a GEOMETRYCOLLECTION, MULTIPOINT, MUL-
TILINESTRING, MULTICURVE, MULTI)POLYGON, or POLYHEDRALSURFACE. Otherwise, returns NULL.

Not? Note

Index is 1-based as for OGC specs since version 0.8.0. Previous versions implemented this as 0-based instead.

Not? Note

To extract all elements of a geometry, ST_Dump is more efficient and works for atomic geometries.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.

Changed: 2.0.0 Prior versions would return NULL for singular geometries. This was changed to return the geometry for
ST_GeometryN(..,1) case.

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
ﬂ This method implements the SQL/MM specification. SQL-MM 3: 9.1.5

ﬂ This function supports 3d and will not drop the z-index.

ﬂ This method supports Circular Strings and Curves

ﬂ This function supports Polyhedral surfaces.

ﬂ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Standard Examples

—-—-Extracting a subset of points from a 3d multipoint

SELECT n, ST_ASEWKT (ST_GeometryN(geom, n)) As geomewkt

FROM (

VALUES (ST_GeomFromEWKT ('MULTIPOINT((1 2 7), (3 4 7), (5 6 7), (8 9 10))"')),

(ST_GeomFromEWKT ("MULTICURVE (CIRCULARSTRING (2.5 2.5,4.5 2.5, 3.5 3.5), (10 11, 12 11))"))
)As foo (geom)
CROSS JOIN generate_series(1,100) n

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual

120/ 896

WHERE n <= ST_NumGeometries (geom) ;

—-—-Extracting all geometries
SELECT gid,
FROM sometable CROSS JOIN generate_series(1,100)

POINT (1
POINT (3

POINT (5

POINT (8

CIRCULARSTRING (2.5 2.5,4.5 2.5,3.5 3.5)

7)
10

geomewkt

)

LINESTRING(10 11,12 11)

n,

(useful when you want to assign an id)

ST_GeometryN (geom, n)

WHERE n <= ST_NumGeometries (geom) ;

Polyhedral Surfaces, TIN and Triangle Examples

—— Polyhedral surface example
—— Break a Polyhedral surface into its faces

SELECT ST_ASEWKT (ST_GeometryN (p_geom, 3))

0

e

FROM

((0 00, 001,
((000, 010,
((000, 100,
((1 10, 111,
(0010, 011,
(001, 101,
)') AS p_geom)

POLYGON((O O 0,1 0 0,1 0 1,0

-— TIN --

geom_ewkt

1, 0
’
’

’

R RO o P
R R 2o
[

14

AS aj;

1

= P O O O

0,
’
’
’

14

= O O O

~

O O O O O

0 0)),

O P P O O

SELECT ST_ASEWKT (ST_GeometryN (geom, 2))

FRO

(SELECT
ST_GeomFromEWKT ('TIN

) AS g;

M

-— result —-—

~

0

O OO ~ 0O O O

0 0,

14

1
0,
0

o = O

~

O = P O
o O O O
~ ~

>
n

geom

(((

TRIANGLE((O O 0,0 1 0,1 1 0,0 O 0))

as wkt

As geom_ewkt
(SELECT ST_GeomFromEWKT ('POLYHEDRALSURFACE (

PostGIS 3.3.0rc2 Manual 121 /896

See Also

ST_Dump, ST_NumGeometries

8.4.14 ST_GeometryType

ST_GeometryType — Returns the SQL-MM type of a geometry as text.

Synopsis

text ST_GeometryType(geometry gl);

Description
Returns the type of the geometry as a string. EG: ST_LineString’, ’ST_Polygon’,”ST_MultiPolygon’ etc. This function differs

from GeometryType(geometry) in the case of the string and ST in front that is returned, as well as the fact that it will not indicate
whether the geometry is measured.

Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
ﬂ This method implements the SQL/MM specification. SQL-MM 3: 5.1.4
ﬂ This function supports 3d and will not drop the z-index.

ﬂ This function supports Polyhedral surfaces.

Examples

SELECT ST_GeometryType (ST_GeomFromText ('LINESTRING(77.29 29.07,77.42 29.26,77.27 <&
29.31,77.29 29.07)"));
——result
ST_LineString

SELECT ST_GeometryType (ST_GeomFromEWKT ('POLYHEDRALSURFACE(((O0 0 0, 0 0 1, 01 1, 01 0, 0 <
0 0)),
(¢<0 0o 0, 010, 1210, 100, 000O0)), (COOO0CQ, 100, 101, 001, 000y,
(210, 1211, 1201, 100, 11 0)),
(¢<02 0,011,111, 110, 010)), (COO0C1, 101, 111, 011, 001L)y)y)y
—-—-result

ST_PolyhedralSurface

SELECT ST_GeometryType (ST_GeomFromEWKT ('POLYHEDRALSURFACE(((O0 0 0, 0 0 1, 01 1, 01 0, 0 <
O O)) ’
((<0 o0, 010, 1210, 100, 000O0)), (COOO0CB, 100, 101, 001, 000,
(210, 1211, 1201, 100, 11 0)),
(¢0120,011,111,110, 010)), (¢(OO0C1, 101, 111, 011, 001)))")):
——result

ST_PolyhedralSurface

SELECT ST_GeometryType (geom) as result
FROM
(SELECT
ST_GeomFromEWKT ("TIN (((
00 0,
001,

PostGIS 3.3.0rc2 Manual 122/ 896

01 0,
00O
)) .
0 0 0O,
01 0,
110,
000
))
)') AS geom
) AS g;
result
ST_Tin
See Also
GeometryType

8.4.15 ST HasArc

ST_HasArc — Tests if a geometry contains a circular arc

Synopsis

boolean ST_HasArc(geometry geomA);

Description

Returns true if a geometry or geometry collection contains a circular string

Auvailability: 1.2.37
ﬂ This function supports 3d and will not drop the z-index.

ﬂ This method supports Circular Strings and Curves

Examples

SELECT ST_HasArc(ST_Collect ('LINESTRING(1 2, 3 4, 5 6)', 'CIRCULARSTRING(1 1, 2 3, 4 5, 6 <+
7, 5 6)'));
st_hasarc

See Also

ST_CurveToLine, ST LineToCurve

8.4.16 ST_lInteriorRingN

ST_InteriorRingN — Returns the Nth interior ring (hole) of a Polygon.

PostGIS 3.3.0rc2 Manual 123/ 896

Synopsis

geometry ST_InteriorRingN(geometry a_polygon, integer n);

Description

Returns the Nth interior ring (hole) of a POLYGON geometry as a LINESTRING. The index starts at 1. Returns NULL if the
geometry is not a polygon or the index is out of range.

o4 Note
N This function does not support MULTIPOLYGONSs. For MULTIPOLYGONSs use in conjunction with ST_GeometryN or
ST_Dump

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
ﬁ This method implements the SQL/MM specification. SQL-MM 3: 8.2.6, 8.3.5

ﬂ This function supports 3d and will not drop the z-index.

Examples

SELECT ST_AsText (ST_InteriorRingN(geom, 1)) As geom
FROM (SELECT ST_BuildArea (
ST_Collect (ST_Buffer (ST_Point (1,2), 20,3),
ST_Buffer (ST_Point (1, 2), 10,3))) As geom
) as foo;

See Also

ST_ExteriorRing, ST_BuildArea, ST_Collect, ST_Dump, ST_NumlInteriorRing, ST_NumlInteriorRings

8.4.17 ST IsClosed

ST_IsClosed — Tests if a LineStrings’s start and end points are coincident. For a PolyhedralSurface tests if it is closed (volu-
metric).

Synopsis

boolean ST _IsClosed(geometry g);

Description

Returns TRUE if the LINESTRING’s start and end points are coincident. For Polyhedral Surfaces, reports if the surface is areal
(open) or volumetric (closed).

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1.

ﬂ This method implements the SQL/MM specification. SQL-MM 3: 7.1.5,9.3.3

http://www.opengeospatial.org/standards/sfs
http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 124 /896
Not Note
SQL-MM defines the result of ST_IsClosed (NULL) to be 0, while PostGIS returns NULL.
ﬂ This function supports 3d and will not drop the z-index.
ﬂ This method supports Circular Strings and Curves
Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
ﬂ This function supports Polyhedral surfaces.
Line String and Point Examples
postgis=# SELECT ST_IsClosed('LINESTRING(0 0, 1 1)'::geometry);
st_isclosed
£
(1 row)
postgis=# SELECT ST_IsClosed('LINESTRING(O O, 0 1, 1 1, 0 0)'::geometry);
st_isclosed
t
(1 row)
postgis=# SELECT ST_IsClosed('MULTILINESTRING((O O, 0 1, 1 1, 0 0), (0 0, 1 1))"'::geometry);

st_isclosed

postgis=# SELECT ST_IsClosed('POINT (0 0)'::geometry);
st_isclosed

postgis=# SELECT ST_IsClosed('MULTIPOINT((0O 0), (1 1))'::geometry);
st_isclosed

Polyhedral Surface Examples

-— A cube ——

SELECT ST_IsClosed(ST_GeomFromEWKT ('POLYHEDRALSURFACE(((O O 0, 0 0 1, 01 1, 0 1
0 0)),

((<0 00, 010, 1210, 100, 00O0)), (COOO0CG, 100, 201, 001, 000,

(¢(z10, 111, 101, 100, 11 0)),

(¢<0 2 0,011,111, 110, 010)), (COO0C1, 1201, 111, 011, 001L)))"

0 <

PostGIS 3.3.0rc2 Manual 125/ 896

—— Same as cube but missing a side --
SELECT ST _IsClosed (ST _GeomFromEWKT ('POLYHEDRALSURFACE(((0 0 0, 0 01, 011, 010, 00 <«

0)),

(<000, 010,110,100 000)), (¢(OOOCG 100, 201, 001, 00 0)),
(¢x10, 111, 101, 100, 110)),

(¢02 0,011, 111, 110, 01 0)))"));

~
~

’

See Also

ST_IsRing

8.4.18 ST _lIsCollection

ST_IsCollection — Tests if a geometry is a geometry collection type.

Synopsis

boolean ST_IsCollection(geometry g);

Description
Returns TRUE if the geometry type of the argument a geometry collection type. Collection types are the following:

* GEOMETRYCOLLECTION
* MULTI{POINT,POLY GON,LINESTRING,CURVE,SURFACE}
» COMPOUNDCURVE

) Note
Noth O
This function analyzes the type of the geometry. This means that it will return TRUE on collections that are empty or
that contain a single element.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Examples

postgis=# SELECT ST_IsCollection ('LINESTRING(O 0, 1 1)'::geometry);
st_iscollection

PostGIS 3.3.0rc2 Manual 126 / 896

postgis=# SELECT
st_iscollection

postgis=# SELECT
st_iscollection

postgis=# SELECT
st_iscollection

postgis=# SELECT
st_iscollection

See Also

ST_NumGeometries

ST_IsCollection ('MULTIPOINT EMPTY'::geometry) ;

ST_IsCollection ('MULTIPOINT((0 0))'::geometry);

ST_IsCollection ('MULTIPOINT((0O 0), (42 42))'::geometry);

ST_IsCollection ('GEOMETRYCOLLECTION (POINT (0O 0)) '::geometry);

8.4.19 ST_IsEmpty

ST_IsEmpty — Tests if a geometry is empty.

Synopsis

boolean ST_IsEmpty(geometry geomA);

Description

Returns true if this Geometry is an empty geometry. If true, then this Geometry represents an empty geometry collection,

polygon, point etc.

N:"l"! Note

SQL-MM defines the result of ST_IsEmpty(NULL) to be 0, while PostGIS returns NULL.

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.1

ﬂ This method implements the SQL/MM specification. SQL-MM 3: 5.1.7

ﬂ This method supports Circular Strings and Curves

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 127 / 896

Warning
Changed: 2.0.0 In prior versions of PostGIS ST_GeomFromText(GEOMETRYCOLLECTION(EMPTY)’) was allowed.
This is now illegal in PostGIS 2.0.0 to better conform with SQL/MM standards

Examples

SELECT ST_IsEmpty (ST_GeomFromText ('GEOMETRYCOLLECTION EMPTY'));

st_isempty
t
(1 row)

SELECT ST_IsEmpty (ST_GeomFromText ('POLYGON EMPTY'));
st_isempty

SELECT ST_IsEmpty (ST_GeomFromText ('POLYGON((1 2, 3 4, 56, 1 2))"));

st_isempty

SELECT ST_IsEmpty (ST_GeomFromText ('"POLYGON((1 2, 3 4, 5 6, 1 2))"')) = false;
?column?

SELECT ST_IsEmpty (ST_GeomFromText ('CIRCULARSTRING EMPTY'));
st_isempty

8.4.20 ST _IsPolygonCCW

ST_IsPolygonCCW — Tests if Polygons have exterior rings oriented counter-clockwise and interior rings oriented clockwise.

Synopsis

boolean ST_IsPolygonCCW (geometry geom);

Description

Returns true if all polygonal components of the input geometry use a counter-clockwise orientation for their exterior ring, and a
clockwise direction for all interior rings.

Returns true if the geometry has no polygonal components.

PostGIS 3.3.0rc2 Manual 128 / 896

N:"""! Note

Closed linestrings are not considered polygonal components, so you would still get a true return by passing a single
closed linestring no matter its orientation.

No'td Note

If a polygonal geometry does not use reversed orientation for interior rings (i.e., if one or more interior rings are oriented
in the same direction as an exterior ring) then both ST_IsPolygonCW and ST_IsPolygonCCW will return false.

Availability: 2.4.0
This function supports 3d and will not drop the z-index.

This function supports M coordinates.

See Also

ST_ForcePolygonCW , ST_ForcePolygonCCW , ST_IsPolygonCW

8.4.21 ST_lIsPolygonCW

ST_IsPolygonCW — Tests if Polygons have exterior rings oriented clockwise and interior rings oriented counter-clockwise.

Synopsis

boolean ST_IsPolygonCW (geometry geom);

Description

Returns true if all polygonal components of the input geometry use a clockwise orientation for their exterior ring, and a counter-
clockwise direction for all interior rings.

Returns true if the geometry has no polygonal components.

N:"“’! Note

Closed linestrings are not considered polygonal components, so you would still get a true return by passing a single
closed linestring no matter its orientation.

No'lﬁ'! Note

If a polygonal geometry does not use reversed orientation for interior rings (i.e., if one or more interior rings are oriented
in the same direction as an exterior ring) then both ST_IsPolygonCW and ST_IsPolygonCCW will return false.

Availability: 2.4.0
This function supports 3d and will not drop the z-index.

This function supports M coordinates.

PostGIS 3.3.0rc2 Manual 129/ 896

See Also

ST_ForcePolygonCW , ST_ForcePolygonCCW , ST_IsPolygonCW

8.4.22 ST_lIsRing

ST_IsRing — Tests if a LineString is closed and simple.

Synopsis

boolean ST_IsRing(geometry g);

Description

Returns TRUE if this LINESTRING is both ST IsClosed (ST_StartPoint ((g)) ~= ST_Endpoint ((g))) and ST_IsSimple
(does not self intersect).

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1. 2.1.5.1

ﬁ This method implements the SQL/MM specification. SQL-MM 3: 7.1.6

Not? Note
SQL-MM defines the result of ST_IsRing (NULL) to be 0, while PostGIS returns NULL.

Examples

SELECT ST_IsRing(geom), ST_IsClosed(geom), ST _IsSimple (geom)
FROM (SELECT 'LINESTRING(O O, 0 1, 1 1, 1 0, O 0)'::geometry AS geom) AS foo;
st_isring | st_isclosed | st_issimple

SELECT ST_IsRing(geom), ST_IsClosed(geom), ST_IsSimple (geom)

FROM (SELECT 'LINESTRING(O O, 0 1, 1 0, 1 1, 0 0Q)'::geometry AS geom) AS foo;
st_isring | st_isclosed | st_issimple

,,,,,,,,,,, T

f |t | £

(1 row)

See Also

ST_IsClosed, ST_IsSimple, ST_StartPoint, ST_EndPoint

8.4.23 ST_IsSimple

ST_IsSimple — Tests if a geometry has no points of self-intersection or self-tangency.

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 130/ 896

Synopsis

boolean ST_IsSimple(geometry geomA);

Description

Returns true if this Geometry has no anomalous geometric points, such as self-intersection or self-tangency. For more information
on the OGC'’s definition of geometry simplicity and validity, refer to "Ensuring OpenGIS compliancy of geometries"

Not? Note
SQL-MM defines the result of ST_IsSimple(NULL) to be 0, while PostGIS returns NULL.

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.1
ﬂ This method implements the SQL/MM specification. SQL-MM 3: 5.1.8

ﬂ This function supports 3d and will not drop the z-index.

Examples

SELECT ST_IsSimple (ST_GeomFromText ('POLYGON((1 2, 3 4, 56, 1 2))"));
st_issimple

SELECT ST_IsSimple (ST_GeomFromText ('LINESTRING(1 1,2 2,2 3.5,1 3,1 2,2 1)"));
st_issimple

See Also

ST IsValid

8.424 ST M

ST M — Returns the M coordinate of a Point.

Synopsis

float ST_M(geometry a_point);

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 131 /896

Description

Return the M coordinate of a Point, or NULL if not available. Input must be a Point.

N;"l"! Note

This is not (yet) part of the OGC spec, but is listed here to complete the point coordinate extractor function list.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
This method implements the SQL/MM specification.

This function supports 3d and will not drop the z-index.

Examples

SELECT ST_M(ST_GeomFromEWKT ("POINT (1 2 3 4)"'));
st_m

See Also

ST _GeomFromEWKT, ST X, ST Y, ST Z

8.4.25 ST_MemSize

ST_MemSize — Returns the amount of memory space a geometry takes.

Synopsis

integer ST_MemSize(geometry geomA);

Description

Returns the amount of memory space (in bytes) the geometry takes.

This complements the PostgreSQL built-in database object functions pg_column_size, pg_size_pretty, pg_relation_size, pg_total_relatio

Note
¢ pg_relation_size which gives the byte size of a table may return byte size lower than ST_MemSize. This is because
N”’M pg_relation_size does not add toasted table contribution and large geometries are stored in TOAST tables.
pg_total_relation_size - includes, the table, the toasted tables, and the indexes.
pg_column_size returns how much space a geometry would take in a column considering compression, so may be
lower than ST_MemSize

http://www.opengeospatial.org/standards/sfs
https://www.postgresql.org/docs/current/functions-admin.html#FUNCTIONS-ADMIN-DBOBJECT

PostGIS 3.3.0rc2 Manual 132/ 896

ﬂ This function supports 3d and will not drop the z-index.

ﬂ This method supports Circular Strings and Curves

ﬂ This function supports Polyhedral surfaces.

ﬂ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
Changed: 2.2.0 name changed to ST_MemSize to follow naming convention.

Examples

——Return how much byte space Boston takes up 1in our Mass data set

SELECT pg_size_pretty (SUM(ST_MemSize (geom))) as totgeomsum,
pg_size_pretty (SUM(CASE WHEN town = 'BOSTON' THEN ST_MemSize (geom) ELSE 0 END)) As bossum,
CAST (SUM (CASE WHEN town = 'BOSTON' THEN ST_MemSize (geom) ELSE 0 END)*1.00 /

SUM (ST_MemSize (geom)) *100 As numeric(10,2)) As perbos
FROM towns;

totgeomsum bossum perbos

1522 kB 30 kB 1.99

SELECT ST_MemSize (ST_GeomFromText ('CIRCULARSTRING (220268 150415,220227 150505,220227 <>
150406) ")) ;

73

—-What percentage of our table is taken up by Jjust the geometry

SELECT pg_total_relation_size('public.neighborhoods') As fulltable_size, sum(ST_MemSize(<
geom)) As geomsize,

sum (ST_MemSize (geom)) «1.00/pg_total_relation_size ('public.neighborhoods')*100 As pergeom

FROM neighborhoods;
fulltable_size geomsize pergeom

262144 96238 36.71188354492187500000

8.4.26 ST_NDims

ST_NDims — Returns the coordinate dimension of a geometry.

Synopsis

integer ST_NDims(geometry gl);

Description

Returns the coordinate dimension of the geometry. PostGIS supports 2 - (x,y) , 3 - (X,y,z) or 2D with measure - X,y,m, and 4 - 3D
with measure space X,y,z,m

ﬂ This function supports 3d and will not drop the z-index.

PostGIS 3.3.0rc2 Manual 133/ 896

Examples

SELECT ST_NDims (ST_GeomFromText ('POINT(1 1)')) As d2point,
ST_NDims (ST_GeomFromEWKT ('POINT (1 1 2)')) As d3point,
ST_NDims (ST_GeomFromEWKT ('POINTM(1 1 0.5)"')) As d2pointm;

d2point | d3point | d2pointm

See Also

ST_CoordDim, ST_Dimension, ST_GeomFromEWKT

8.4.27 ST_NPoints

ST_NPoints — Returns the number of points (vertices) in a geometry.

Synopsis

integer ST_NPoints(geometry gl);

Description

Return the number of points in a geometry. Works for all geometries.

Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.

N;’R’! Note

Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

ﬂ This function supports 3d and will not drop the z-index.
ﬂ This method supports Circular Strings and Curves

ﬂ This function supports Polyhedral surfaces.

Examples

SELECT ST_NPoints (ST_GeomFromText ('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 <+
29.07)"));

—-—result

4

—--Polygon in 3D space

SELECT ST_NPoints (ST_GeomFromEWKT ('LINESTRING(77.29 29.07 1,77.42 29.26 0,77.27 29.31 <+
-1,77.29 29.07 3)"'))

——result

4

PostGIS 3.3.0rc2 Manual 134/ 896

See Also

ST_NumPoints

8.4.28 ST_NRings

ST_NRings — Returns the number of rings in a polygonal geometry.

Synopsis

integer ST_NRings(geometry geomA);

Description

If the geometry is a polygon or multi-polygon returns the number of rings. Unlike NumlInteriorRings, it counts the outer rings as
well.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Examples

SELECT ST_NRings (geom) As Nrings, ST_NumInteriorRings (geom) As ninterrings

FROM (SELECT ST_GeomFromText ('"POLYGON((1 2, 3 4, 5 6, 1 2))') As geom) As foo;
nrings | ninterrings
________ e
1| 0
(1 row)
See Also

ST_NumlInteriorRings

8.4.29 ST_NumGeometries

ST_NumGeometries — Returns the number of elements in a geometry collection.

Synopsis

integer ST_NumGeometries(geometry geom);

Description

Returns the number of Geometries. If geometry is a GEOMETRYCOLLECTION (or MULTI*) return the number of geometries,
for single geometries will return 1, otherwise return NULL.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.

Changed: 2.0.0 In prior versions this would return NULL if the geometry was not a collection/MULTT type. 2.0.0+ now returns
1 for single geometries e.g POLYGON, LINESTRING, POINT.

PostGIS 3.3.0rc2 Manual 135/ 896

ﬂ This method implements the SQL/MM specification. SQL-MM 3: 9.1.4
ﬂ This function supports 3d and will not drop the z-index.
ﬂ This function supports Polyhedral surfaces.

ﬂ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

—-—Prior versions would have returned NULL for this —-— in 2.0.0 this returns 1

SELECT ST_NumGeometries (ST_GeomFromText ('LINESTRING(77.29 29.07,77.42 29.26,77.27 <+
29.31,77.29 29.07)"));

—-—result

1

——Geometry Collection Example - multis count as one geom in a collection

SELECT ST_NumGeometries (ST_GeomFromEWKT ('GEOMETRYCOLLECTION (MULTIPOINT ((-2 3), (=2 2)),
LINESTRING(5 5 ,10 10),

POLYGON((-7 4.2,-7.1 5,-7.1 4.3,-7 4.2)))"));

—-—result

3

See Also

ST_GeometryN, ST_Multi

8.4.30 ST_NuminteriorRings

ST_NumlnteriorRings — Returns the number of interior rings (holes) of a Polygon.

Synopsis

integer ST_NumlInteriorRings(geometry a_polygon);

Description
Return the number of interior rings of a polygon geometry. Return NULL if the geometry is not a polygon.

ﬂ This method implements the SQL/MM specification. SQL-MM 3: 8.2.5

Changed: 2.0.0 - in prior versions it would allow passing a MULTIPOLYGON, returning the number of interior rings of first
POLYGON.

Examples

—-—-If you have a regular polygon
SELECT gid, fieldl, field2, ST_NumInteriorRings(geom) AS numholes
FROM sometable;

—--If you have multipolygons
—-—-And you want to know the total number of interior rings in the MULTIPOLYGON
SELECT gid, fieldl, field2, SUM(ST_NumInteriorRings (geom)) AS numholes

PostGIS 3.3.0rc2 Manual 136/ 896

FROM (SELECT gid, fieldl, field2, (ST_Dump (geom)) .geom As geom
FROM sometable) As foo
GROUP BY gid, fieldl,field2;

See Also

ST_NumlnteriorRing, ST_InteriorRingN

8.4.31 ST_NuminteriorRing

ST_NumlnteriorRing — Returns the number of interior rings (holes) of a Polygon. Aias for ST_NumlInteriorRings

Synopsis

integer ST_NumlInteriorRing(geometry a_polygon);

See Also

ST_NumlnteriorRings, ST_InteriorRingN

8.4.32 ST NumPatches

ST_NumPatches — Return the number of faces on a Polyhedral Surface. Will return null for non-polyhedral geometries.

Synopsis

integer ST_NumPatches(geometry g1);

Description

Return the number of faces on a Polyhedral Surface. Will return null for non-polyhedral geometries. This is an alias for
ST_NumGeometries to support MM naming. Faster to use ST_NumGeometries if you don’t care about MM convention.

Auwailability: 2.0.0

ﬂ This function supports 3d and will not drop the z-index.

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
ﬂ This method implements the SQL/MM specification. SQL-MM ISO/IEC 13249-3: 8.5

ﬂ This function supports Polyhedral surfaces.

Examples

SELECT ST_NumPatches (ST_GeomFromEWKT ('POLYHEDRALSURFACE(((O 0 0, 0 01, 01 1, 010, 00 <
0)),
((<0o o0, 010, 210,100, 00O0)), (COOCO0CG, 100, 1201, 001, 000y,
((z10, 111, 101, 100, 11 0)),
(¢<0 20, 011,111,110, 010)), (COO0O1, 101, 111, 011, 001)",
—-—result

6

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 137/ 896

See Also

ST_GeomFromEWKT, ST_NumGeometries

8.4.33 ST_NumPoints

ST_NumPoints — Returns the number of points in a LineString or CircularString.

Synopsis

integer ST_NumPoints(geometry gl);

Description

Return the number of points in an ST_LineString or ST_CircularString value. Prior to 1.4 only works with linestrings as the
specs state. From 1.4 forward this is an alias for ST_NPoints which returns number of vertexes for not just linestrings. Consider
using ST_NPoints instead which is multi-purpose and works with many geometry types.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: 7.2.4

Examples

SELECT ST_NumPoints (ST_GeomFromText ('LINESTRING (77.29 29.07,77.42 29.26,77.27 29.31,77.29
29.07)"));
——result
4

See Also

ST_NPoints

8.4.34 ST PatchN

ST_PatchN — Returns the Nth geometry (face) of a PolyhedralSurface.

Synopsis

geometry ST_PatchN(geometry geomA, integer n);

Description

Returns the 1-based Nth geometry (face) if the geometry is a POLYHEDRALSURFACE or POLYHEDRALSURFACEM. Oth-
erwise, returns NULL. This returns the same answer as ST_GeometryN for PolyhedralSurfaces. Using ST_GeometryN is faster.

N;"ld Note

Index is 1-based.

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 138/ 896

N;"""! Note

If you want to extract all elements of a geometry ST_Dump is more efficient.

Availability: 2.0.0
This method implements the SQL/MM specification. SQL-MM ISO/IEC 13249-3: 8.5
This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

Examples

—-—Extract the 2nd face of the polyhedral surface
SELECT ST_ASEWKT (ST_PatchN (geom, 2)) As geomewkt
FROM (
VALUES (ST_GeomFromEWKT ('POLYHEDRALSURFACE(((O O O, 0 01, 011, 010, OO0 O0)),
(¢<00 0,010,110, 100000)), (¢<OOO0CG 100, 1201, 001, 00 0)),
(10, 11, 101, 100, 110)),
(¢0 20, 011,111,110, 010)), (COO0O1, 101, 111, 011, 001)))"))) As <
foo (geom) ;

geomewkt
777+ 777
POLYGON((O O 0,0 1 0,1 1 0,1 0 0,0 0 0))

See Also

ST_AsEWKT, ST_GeomFromEWKT, ST_Dump, ST_GeometryN, ST_NumGeometries

8.4.35 ST_PointN

ST_PointN — Returns the Nth point in the first LineString or circular LineString in a geometry.

Synopsis

geometry ST_PointN(geometry a_linestring, integer n);

Description

Return the Nth point in a single linestring or circular linestring in the geometry. Negative values are counted backwards from the
end of the LineString, so that -1 is the last point. Returns NULL if there is no linestring in the geometry.

st¢} Note
N Index is 1-based as for OGC specs since version 0.8.0. Backward indexing (negative index) is not in OGC Previous
versions implemented this as 0-based instead.

PostGIS 3.3.0rc2 Manual

139 /896

N;"""! Note

If you want to get the Nth point of each LineString in a MultiLineString, use in conjunction with ST_Dump

This method implements the OGC Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: 7.2.5,7.3.5
This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Note

N;"l"! Changed: 2.0.0 no longer works with single geometry multilinestrings. In older versions of PostGIS -- a single line

multilinestring would work happily with this function and return the start point. In 2.0.0 it just returns NULL like any other

multilinestring.
Changed: 2.3.0 : negative indexing available (-1 is last point)

Examples

—— Extract all POINTs from a LINESTRING
SELECT ST_AsText (
ST_PointN(
columnl,
generate_series (1, ST_NPoints (columnl))

))
FROM (VALUES ('LINESTRING(O O, 1 1, 2 2)'::geometry)) AS foo;

st_astext

POINT (O 0)
POINT (1 1)
POINT (2 2)
(3 rows)

—-—-Example circular string
SELECT ST_AsText (ST_PointN (ST_GeomFromText ('CIRCULARSTRING (1 2,

st_astext

POINT (3 2)
(1 row)

SELECT ST_AsText (f)
FROM ST_GeomFromText ('LINESTRING(O O O, 1 1 1, 2 2 2)') AS g
,ST_PointN(g, -2) AS f; —-- 1 based index

st_astext

POINT Z (1 1 1)
(1 row)

32, 12)"Y), 2));

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 140/ 896

See Also

ST _NPoints

8.4.36 ST Points

ST_Points — Returns a MultiPoint containing the coordinates of a geometry.

Synopsis

geometry ST _Points(geometry geom);

Description

Returns a MultiPoint containing all the coordinates of a geometry. Duplicate points are preserved, including the start and end
points of ring geometries. (If desired, duplicate points can be removed by calling ST_RemoveRepeatedPoints on the result).

To obtain information about the position of each coordinate in the parent geometry use ST_DumpPoints.

M and Z coordinates are preserved if present.

ﬂ This method supports Circular Strings and Curves

ﬂ This function supports 3d and will not drop the z-index.
Auvailability: 2.3.0

Examples

SELECT ST_AsText (ST_Points ('POLYGON Z ((30 10 4,10 30 5,40 40 6, 30 10))"));

——-result
MULTIPOINT Z ((30 10 4), (10 30 5), (40 40 6), (30 10 4))

See Also

ST_RemoveRepeatedPoints, ST_DumpPoints

8.4.37 ST_StartPoint

ST_StartPoint — Returns the first point of a LineString.

Synopsis

geometry ST_StartPoint(geometry geomA);

PostGIS 3.3.0rc2 Manual 141 /896

Description

Returns the first point of a LINESTRING or CIRCULARLINESTRING geometry as a POINT. Returns NULL if the input is not
a LINESTRING or CIRCULARLINESTRING.

This method implements the SQL/MM specification. SQL-MM 3: 7.1.3
This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Note
. Enhanced: 3.2.0 returns a point for all geometries. Prior behavior returns NULLs if input was not a LineString.

Nﬂ‘l"! Changed: 2.0.0 no longer works with single geometry MultiLineStrings. In older versions of PostGIS a single-line
MultiLineString would work happily with this function and return the start point. In 2.0.0 it just returns NULL like any
other MultiLineString. The old behavior was an undocumented feature, but people who assumed they had their data
stored as LINESTRING may experience these returning NULL in 2.0.0.

Examples

Start point of a LineString

SELECT ST_AsText (ST_StartPoint ('LINESTRING(0O 1, 0 2)'::geometry));
st_astext

POINT (0 1)

Start point of a non-LineString is NULL

SELECT ST_StartPoint ('"POINT (0 1)'::geometry) IS NULL AS is_null;
is_null

Start point of a 3D LineString

SELECT ST_ASEWKT (ST_StartPoint ('LINESTRING(0O 1 1, 0 2 2)'::geometry));
st_asewkt

POINT (0 1 1)

Start point of a CircularString

SELECT ST_AsText (ST_StartPoint ('CIRCULARSTRING (S5 2,-3 1.999999, -2 1, -4 2, 6 3)'::geometry ¢

)) i
st_astext

POINT (5 2)

See Also

ST_EndPoint, ST PointN

8.4.38 ST_Summary

ST_Summary — Returns a text summary of the contents of a geometry.

PostGIS 3.3.0rc2 Manual 142 / 896

Synopsis

text ST_Summary(geometry g);
text ST_Summary(geography g);

Description

Returns a text summary of the contents of the geometry.

Flags shown square brackets after the geometry type have the following meaning:

* M: has M coordinate

* Z: has Z coordinate

* B: has a cached bounding box
* G: is geodetic (geography)

* S: has spatial reference system

ﬂ This method supports Circular Strings and Curves
ﬂ This function supports Polyhedral surfaces.

ﬂ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
Availability: 1.2.2

Enhanced: 2.0.0 added support for geography

Enhanced: 2.1.0 S flag to denote if has a known spatial reference system

Enhanced: 2.2.0 Added support for TIN and Curves

Examples
=# SELECT ST_Summary (ST_GeomFromText ('LINESTRING(0 0, 1 1)')) as geom,
ST_Summary (ST_GeogFromText ('POLYGON((O O, 1 1, 1 2, 1 1, 0 0))")) geog;
geom \ geog

LineString[B] with 2 points Polygon[BGS] with 1 rings

ring 0 has 5 points
(1 row)
=# SELECT ST_Summary (ST_GeogFromText ('LINESTRING(0O O 1, 1 1 1)')) As geog_line,
ST_Summary (ST_GeomFromText ('SRID=4326;POLYGON((O0 O 1, 1 1 2, 1 2 3, 1 11, 00 1)) <«
')) As geom_poly;
geog_line | geom_poly

LineString[ZBGS] with 2 points | Polygon[ZBS] with 1 rings
ring 0 has 5 points

(1 row)

PostGIS 3.3.0rc2 Manual 143/ 896

See Also

PostGIS_DropBBox, PostGIS_AddBBox, ST_Force3DM, ST_Force3DZ, ST_Force2D, geography
ST IsValid, ST_IsValid, ST_IsValidReason, ST_IsValidDetail

8.4.39 ST X

ST _X — Returns the X coordinate of a Point.

Synopsis

float ST_X(geometry a_point);

Description

Return the X coordinate of the point, or NULL if not available. Input must be a point.

N;'l"! Note

To get the minimum and maximum X value of geometry coordinates use the functions ST_XMin and ST_XMax.

ﬂ This method implements the SQL/MM specification. SQL-MM 3: 6.1.3

ﬂ This function supports 3d and will not drop the z-index.

Examples

SELECT ST_X(ST_GeomFromEWKT ('POINT(1 2 3 4)"'"));
st_x

SELECT ST_Y (ST_Centroid (ST_GeomFromEWKT ('LINESTRING(1 2 3 4, 1 1 1 1)'")));
st_y

See Also

ST Centroid, ST_GeomFromEWKT, ST_M, ST _XMax, ST_XMin, ST_Y, ST_Z

8.4.40 ST Y

ST_Y — Returns the Y coordinate of a Point.

PostGIS 3.3.0rc2 Manual 144 / 896

Synopsis

float ST_Y(geometry a_point);

Description

Return the Y coordinate of the point, or NULL if not available. Input must be a point.

N;'“’! Note

To get the minimum and maximum Y value of geometry coordinates use the functions ST_YMin and ST_YMax.

ﬁ This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
ﬂ This method implements the SQL/MM specification. SQL-MM 3: 6.1.4

ﬂ This function supports 3d and will not drop the z-index.

Examples

SELECT ST_Y (ST_GeomFromEWKT ('POINT(1 2 3 4)"'));
st_y

SELECT ST_Y (ST_Centroid (ST_GeomFromEWKT ('LINESTRING(1 2 3 4, 1 1 1 1)'")));
st_y

See Also

ST Centroid, ST _GeomFromEWKT, ST M, ST X, ST YMax, ST YMin, ST Z

8.441 ST Z

ST_Z — Returns the Z coordinate of a Point.

Synopsis

float ST_Z(geometry a_point);

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 145/ 896

Description

Return the Z coordinate of the point, or NULL if not available. Input must be a point.

N;’R’! Note

To get the minimum and maximum Z value of geometry coordinates use the functions ST_ZMin and ST_ZMax.

ﬂ This method implements the SQL/MM specification.

ﬂ This function supports 3d and will not drop the z-index.

Examples

SELECT ST_Z (ST_GeomFromEWKT ('POINT(1 2 3 4)"'));
st_z

See Also

ST_GeomFromEWKT, ST_M, ST_X, ST_Y, ST _ZMax, ST_ZMin

8.4.42 ST_Zmflag

ST_Zmflag — Returns a code indicating the ZM coordinate dimension of a geometry.

Synopsis

smallint ST_Zmflag(geometry geomA);

Description

Returns a code indicating the ZM coordinate dimension of a geometry.

Values are: 0 =2D, 1 =3D-M, 2 =3D-Z, 3 =4D.
ﬂ This function supports 3d and will not drop the z-index.

ﬂ This method supports Circular Strings and Curves

Examples

SELECT ST_Zmflag(ST_GeomFromEWKT ('LINESTRING(1 2, 3 4)'));
st_zmflag

SELECT ST_Zmflag(ST_GeomFromEWKT ('LINESTRINGM(1 2 3, 3 4 3)"));

PostGIS 3.3.0rc2 Manual 146/ 896

st_zmflag

SELECT ST_Zmflag (ST_GeomFromEWKT ('CIRCULARSTRING(1 2 3, 3 4 3, 56 3)'"));
st_zmflag

SELECT ST_Zmflag (ST_GeomFromEWKT ('POINT(1 2 3 4)"'"));
st_zmflag

See Also

ST _CoordDim, ST_NDims, ST_Dimension

8.5 Geometry Editors

8.5.1 ST_AddPoint

ST_AddPoint — Add a point to a LineString.

Synopsis

geometry ST_AddPoint(geometry linestring, geometry point);

geometry ST_AddPoint(geometry linestring, geometry point, integer position = -1);

Description

Adds a point to a LineString before the index position (using a 0-based index). If the position parameter is omitted or is -1
the point is appended to the end of the LineString.

Availability: 1.1.0

This function supports 3d and will not drop the z-index.

Examples

Add a point to the end of a 3D line

SELECT ST_AsEWKT (ST_AddPoint ('LINESTRING(0O 0 1, 1 1 1)', ST _MakePoint (1, 2, 3)));

st_asewkt

LINESTRING(0 0 1,1 1 1,1 2 3)

Guarantee all lines in a table are closed by adding the start point of each line to the end of the line only for those that are not
closed.

UPDATE sometable

SET geom = ST_AddPoint (geom, ST_StartPoint (geom))
FROM sometable

WHERE ST_IsClosed(geom) = false;

PostGIS 3.3.0rc2 Manual 147 / 896

See Also

ST_RemovePoint, ST_SetPoint

8.5.2 ST_CollectionExtract

ST_CollectionExtract — Given a geometry collection, returns a multi-geometry containing only elements of a specified type.

Synopsis

geometry ST_CollectionExtract(geometry collection);

geometry ST_CollectionExtract(geometry collection, integer type);

Description

Given a geometry collection, returns a homogeneous multi-geometry.

If the type is not specified, returns a multi-geometry containing only geometries of the highest dimension. So polygons are
preferred over lines, which are preferred over points.

If the type is specified, returns a multi-geometry containing only that type. If there are no sub-geometries of the right type, an
EMPTY geometry is returned. Only points, lines and polygons are supported. The type numbers are:

* 1 ==POINT
* 2 ==LINESTRING
* 3=POLYGON

For atomic geometry inputs, the geometry is retured unchanged if the input type matches the requested type. Otherwise, the
result is an EMPTY geometry of the specified type. If required, these can be converted to multi-geometries using ST_Multi.

Warning

MultiPolygon results are not checked for validity. If the polygon components are adjacent or overlapping the result will
be invalid. (For example, this can occur when applying this function to an ST_Split result.) This situation can be checked
with ST_IsValid and repaired with ST_MakeValid.

Availability: 1.5.0

N:ﬂ"’! Note

Prior to 1.5.3 this function returned atomic inputs unchanged, no matter type. In 1.5.3 non-matching single geometries
returned a NULL result. In 2.0.0 non-matching single geometries return an EMPTY result of the requested type.

Examples

Extract highest-dimension type:

SELECT ST_AsText (ST_CollectionExtract (
'GEOMETRYCOLLECTION (POINT (0 0), LINESTRING(1l 1, 2 2))'));
st_astext

MULTILINESTRING((1 1, 2 2))

PostGIS 3.3.0rc2 Manual 148 / 896

Extract points (type 1 == POINT):

SELECT ST_AsText (ST_CollectionExtract (
'GEOMETRYCOLLECTION (GEOMETRYCOLLECTION (POINT (O 0))) "',
1))
st_astext

MULTIPOINT ((0 0))

Extract lines (type 2 == LINESTRING):

SELECT ST_AsText (ST_CollectionExtract (
'GEOMETRYCOLLECTION (GEOMETRYCOLLECTION (LINESTRING (0O 0, 1 1)),LINESTRING(2 2, 3 3)) <«

Al

r

2));
st_astext

MULTILINESTRING((0 0, 1 1), (2 2, 3 3))

See Also

ST_CollectionHomogenize, ST_Multi, ST_IsValid, ST_MakeValid

8.5.3 ST_CollectionHomogenize

ST_CollectionHomogenize — Returns the simplest representation of a geometry collection.

Synopsis

geometry ST_CollectionHomogenize(geometry collection);

Description

Given a geometry collection, returns the "simplest" representation of the contents.

* Homogeneous (uniform) collections are returned as the appropriate multi-geometry.
» Heterogeneous (mixed) collections are flattened into a single GeometryCollection.
* Collections containing a single atomic element are returned as that element.

* Atomic geometries are returned unchanged. If required, these can be converted to a multi-geometry using ST_Multi.

Warning
This function does not ensure that the result is valid. In particular, a collection containing adjacent or overlapping Poly-
gons will create an invalid MultiPolygon. This situation can be checked with ST_IsValid and repaired with ST_MakeValid.

Auvailability: 2.0.0

PostGIS 3.3.0rc2 Manual 149/ 896

Examples

Single-element collection converted to an atomic geometry

SELECT ST_AsText (ST_CollectionHomogenize ('GEOMETRYCOLLECTION (POINT (O 0)) ")) ;

st_astext

POINT (0 0)

Nested single-element collection converted to an atomic geometry:

SELECT ST_AsText (ST_CollectionHomogenize ('GEOMETRYCOLLECTION (MULTIPOINT ((0 0)))'));
st_astext

POINT (O 0)

Collection converted to a multi-geometry:

SELECT ST_AsText (ST_CollectionHomogenize ('GEOMETRYCOLLECTION (POINT (0 0),POINT (1 1))"'));
st_astext

MULTIPOINT ((0O 0), (1 1))

Nested heterogeneous collection flattened to a GeometryCollection:

SELECT ST_AsText (ST_CollectionHomogenize ('GEOMETRYCOLLECTION (POINT (0O 0), GEOMETRYCOLLECTION <=
(LINESTRING(1 1, 2 2)))"'));

st_astext

GEOMETRYCOLLECTION (POINT (0O 0), LINESTRING(1 1,2 2))

Collection of Polygons converted to an (invalid) MultiPolygon:

SELECT ST_AsText (ST_CollectionHomogenize ('GEOMETRYCOLLECTION (POLYGON ((10 50, 50 50, 50 <=
10, 10 10, 10 50)), POLYGON ((90 50, 90 10, 50 10, 50 50, 90 50)))"));

st_astext

MULTIPOLYGON(((10 50,50 50,50 10,10 10,10 50)), ((90 50,90 10,50 10,50 50,90 50)))

See Also

ST CollectionExtract, ST_Multi, ST_IsValid, ST _MakeValid

8.5.4 ST CurveToLine

ST_CurveToLine — Converts a geometry containing curves to a linear geometry.

Synopsis

geometry ST_CurveToLine(geometry curveGeom, float tolerance, integer tolerance_type, integer flags);

PostGIS 3.3.0rc2 Manual 150/ 896

Description

Converts a CIRCULAR STRING to regular LINESTRING or CURVEPOLYGON to POLYGON or MULTISURFACE to MUL-
TIPOLYGON. Useful for outputting to devices that can’t support CIRCULARSTRING geometry types

Converts a given geometry to a linear geometry. Each curved geometry or segment is converted into a linear approximation using
the given “tolerance™ and options (32 segments per quadrant and no options by default).

The ’tolerance_type’ argument determines interpretation of the “tolerance™ argument. It can take the following values:

* 0 (default): Tolerance is max segments per quadrant.
¢ 1: Tolerance is max-deviation of line from curve, in source units.

 2: Tolerance is max-angle, in radians, between generating radii.
The ’flags’ argument is a bitfield. 0 by default. Supported bits are:

* 1: Symmetric (orientation idependent) output.

* 2: Retain angle, avoids reducing angles (segment lengths) when producing symmetric output. Has no effect when Symmetric
flag is off.

Availability: 1.3.0
Enhanced: 2.4.0 added support for max-deviation and max-angle tolerance, and for symmetric output.

Enhanced: 3.0.0 implemented a minimum number of segments per linearized arc to prevent topological collapse.
G This method implements the OGC Simple Features Implementation Specification for SQL 1.1.

ﬂ This method implements the SQL/MM specification. SQL-MM 3: 7.1.7

ﬂ This function supports 3d and will not drop the z-index.

ﬂ This method supports Circular Strings and Curves

Examples

SELECT ST_AsText (ST_CurveToLine (ST_GeomFromText ('CIRCULARSTRING (220268 150415,220227 <+
150505,220227 150406) ')));

—-—-Result —-
LINESTRING (220268 150415,220269.95064912 150416.539364228,220271.823415575 <>
150418.17258804,220273.613787707 150419.895736857,
220275.317452352 150421.704659462,220276.930305234 150423.594998003,220278.448460847 <+
150425.562198489,
220279.868261823 150427.60152176,220281.186287736 150429.708054909,220282.399363347 <
150431.876723113,
220283.50456625 150434.10230186,220284.499233914 150436.379429536,220285.380970099 <+
150438.702620341,220286.147650624 150441.066277505,
220286.797428488 150443.464706771,220287.328738321 150445.892130112,220287.740300149 <+
150448.342699654,
220288.031122486 150450.810511759,220288.200504713 150453.289621251,220288.248038775 <+
150455.77405574,
220288.173610157 150458.257830005,220287.977398166 150460.734960415,220287.659875492 <+
150463.199479347,
220287.221807076 150465.64544956,220286.664248262 150468.066978495,220285.988542259 <+
150470.458232479,220285.196316903 150472.81345077,
220284.289480732 150475.126959442,220283.270218395 150477.39318505,220282.140985384 <
150479.606668057,

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 151 /896
220280.90450212 150481.762075989,220279.5637474 150483.85421628,220278.12195122 <+
150485.87804878,
220276.582586992 150487.828697901,220274.949363179 150489.701464356,220273.226214362 <
150491.491836488,
220271.417291757 150493.195501133,220269.526953216 150494.808354014,220267.559752731 <«
150496.326509628,
220265.520429459 150497.746310603,220263.41389631 150499.064336517,220261.245228106 <+
150500.277412127,
220259.019649359 150501.38261503,220256.742521683 150502.377282695,220254.419330878 <
150503.259018879,
220252.055673714 150504.025699404,220249.657244448 150504.675477269,220247.229821107 <+
150505.206787101,
220244.779251566 150505.61834893,220242.311439461 150505.909171266,220239.832329968 <+
150506.078553494,
220237.347895479 150506.126087555,220234.864121215 150506.051658938,220232.386990804 <
150505.85544694¢6,
220229.922471872 150505.537924272,220227.47650166 150505.099855856,220225.054972724 <+
150504.542297043,
220222 .663718741 150503.86659104,220220.308500449 150503.074365683,
220217.994991777 150502.167529512,220215.72876617 150501.148267175,
220213.515283163 150500.019034164,220211.35987523 150498.7825509,
220209.267734939 150497.441796181,220207.243902439 150496,
220205.293253319 150494.460635772,220203.420486864 150492.82741196,220201.630114732 <+
150491.104263143,
220199.926450087 150489.295340538,220198.313597205 150487.405001997,220196.795441592 <&
150485.437801511,
220195.375640616 150483.39847824,220194.057614703 150481.291945091,220192.844539092 <
150479.123276887,220191.739336189 150476.89769814,
220190.744668525 150474.620570464,220189.86293234 150472.297379659,220189.096251815 <+
150469.933722495,
220188.446473951 150467.535293229,220187.915164118 150465.107869888,220187.50360229 <+
150462.657300346,
220187.212779953 150460.189488241,220187.043397726 150457.710378749,220186.995863664 <
150455.2259442¢6,
220187.070292282 150452.742169995,220187.266504273 150450.265039585,220187.584026947 <+
150447.800520653,
220188.022095363 150445.35455044,220188.579654177 150442.933021505,220189.25536018 <+
150440.541767521,
220190.047585536 150438.18654923,220190.954421707 150435.873040558,220191.973684044 <
150433.60681495,
220193.102917055 150431.393331943,220194.339400319 150429.237924011,220195.680155039 <«
150427.14578372,220197.12195122 150425.12195122,
220198.661315447 150423.171302099,220200.29453926 150421.298535644,220202.017688077 <+
150419.508163512,220203.826610682 150417.804498867,
220205.716949223 150416.191645986,220207.684149708 150414.673490372,220209.72347298 <
150413.253689397,220211.830006129 150411.935663483,
220213.998674333 150410.722587873,220216.22425308 150409.61738497,220218.501380756 <+
150408.622717305,220220.824571561 150407.740981121,
220223.188228725 150406.974300596,220225.586657991 150406.324522731,220227 150406)
—-—3d example
SELECT ST_ASEWKT (ST_CurveToLine (ST_GeomFromEWKT ('CIRCULARSTRING (220268 150415 1,220227 <+
150505 2,220227 150406 3)'")));
Output
LINESTRING (220268 150415 1,220269.95064912 150416.539364228 1.0181172856673,
220271.823415575 150418.17258804 1.03623457133459,220273.613787707 150419.895736857 <+

1.05435185700189,AD INFINITUM
220225.586657991 150406.324522731 1.32611114201132,220227 150406 3)

--use only 2 segments to approximate quarter circle

PostGIS 3.3.0rc2 Manual 152/ 896

SELECT ST_AsText (ST_CurveToLine (ST_GeomFromText ('CIRCULARSTRING (220268 150415,220227 <+
150505,220227 150406)'"),2));
st_astext
LINESTRING (220268 150415,220287.740300149 150448.342699654,220278.12195122 <
150485.87804878,
220244 .779251566 150505.61834893,220207.243902439 150496,220187.50360229 150462.657300346,
220197.12195122 150425.12195122,220227 150406)

—— Ensure approximated line is no further than 20 units away from
—— original curve, and make the result direction-neutral
SELECT ST_AsText (ST_CurveToLine (

'CIRCULARSTRING (0 0,100 -100,200 0)'::geometry,
20, —-— Tolerance
1, —— Above is max distance between curve and line
1 —- Symmetric flag

))
st_astext

LINESTRING(O 0,50 -86.6025403784438,150 —-86.6025403784439,200 -1.1331077795296e-13,200 0)

See Also

ST LineToCurve

8.5.5 ST_Scroll

ST_Scroll — Change start point of a closed LineString.

Synopsis

geometry ST_Scroll(geometry linestring, geometry point);

Description

Changes the start/end point of a closed LineString to the given vertex point.

Awailability: 3.2.0
ﬂ This function supports 3d and will not drop the z-index.

ﬂ This function supports M coordinates.

Examples

Make e closed line start at its 3rd vertex

SELECT ST_ASEWKT (ST_Scroll ('SRID=4326;LINESTRING(0O O O 1, 10 0 2 0, 55 4 2,0 0 0 1)', "' ¢«
POINT (5 5 4 2)"));

st_asewkt

SRID=4326; LINESTRING(5 5 4 2,0 0 0 1,10 0 2 0,5 5 4 2)

PostGIS 3.3.0rc2 Manual 153/ 896

See Also

ST Normalize

8.5.6 ST_FlipCoordinates

ST_FlipCoordinates — Returns a version of a geometry with X and Y axis flipped.

Synopsis

geometry ST_FlipCoordinates(geometry geom);

Description

Returns a version of the given geometry with X and Y axis flipped. Useful for fixing geometries which contain coordinates
expressed as latitude/longitude (Y,X).

Availability: 2.0.0

ﬂ This method supports Circular Strings and Curves

ﬂ This function supports 3d and will not drop the z-index.
ﬂ This function supports M coordinates.

ﬂ This function supports Polyhedral surfaces.

ﬂ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Example

SELECT ST_ASEWKT (ST_FlipCoordinates (GeomFromEWKT ('POINT (1 2)"')));
st_asewkt

POINT (2 1)

See Also

ST_SwapOrdinates

8.5.7 ST Force2D

ST_Force2D — Force the geometries into a "2-dimensional mode".

Synopsis

geometry ST_Force2D(geometry geomA);

PostGIS 3.3.0rc2 Manual 154/ 896

Description

Forces the geometries into a "2-dimensional mode" so that all output representations will only have the X and Y coordinates.
This is useful for force OGC-compliant output (since OGC only specifies 2-D geometries).

Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.

Changed: 2.1.0. Up to 2.0.x this was called ST_Force_2D.
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.

This function supports 3d and will not drop the z-index.

Examples

SELECT ST_ASEWKT (ST_Force2D (ST_GeomFromEWKT ('CIRCULARSTRING(1 1 2, 2 3 2, 45 2, 67 2, 56
2)"))) i
st_asewkt

CIRCULARSTRING(1 1,2 3,4 5,6 7,5 6)

SELECT ST_ASEWKT (ST_Force2D ('POLYGON((0 0 2,0 5 2,5 0 2,0 0 2),(1 1 2,3 12,1 32,1 12)) <
"))

st_asewkt

POLYGON((O 0,0 5,5 0,0 0),(1 1,3 1,1 3,1 1))

See Also

ST Force3D

8.5.8 ST Force3D

ST_Force3D — Force the geometries into XYZ mode. This is an alias for ST_Force3DZ.

Synopsis

geometry ST_Force3D(geometry geomA, float Zvalue = 0.0);

Description

Forces the geometries into XYZ mode. This is an alias for ST_Force3DZ. If a geometry has no Z component, then a Zvalue Z
coordinate is tacked on.

Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
Changed: 2.1.0. Up to 2.0.x this was called ST_Force_3D.
Changed: 3.1.0. Added support for supplying a non-zero Z value.

This function supports Polyhedral surfaces.
This method supports Circular Strings and Curves

This function supports 3d and will not drop the z-index.

PostGIS 3.3.0rc2 Manual 155/ 896

Examples

——Nothing happens to an already 3D geometry
SELECT ST_ASEWKT (ST_Force3D (ST_GeomFromEWKT ('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, <
56 2)")));
st_asewkt

CIRCULARSTRING(1 1 2,2 3 2,4 5 2,6 7 2,5 6 2)

SELECT ST _ASEWKT (ST_Force3D ('POLYGON((0 0,0 5,5 0,0 0), (1 1,3 1,1 3,1 1))"));

st_asewkt

POLYGON((O O 0,0 5 0,5 0 0,0 0 O),(¢(1 1 0,3 10,13 0,11 0))

See Also

ST_ASEWKT, ST_Force2D, ST_Force3DM, ST_Force3DZ

8.5.9 ST Force3DZ

ST_Force3DZ — Force the geometries into XYZ mode.

Synopsis

geometry ST _Force3DZ(geometry geomA, float Zvalue = 0.0);

Description

Forces the geometries into XYZ mode. If a geometry has no Z component, then a Zvalue Z coordinate is tacked on.
Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.

Changed: 2.1.0. Up to 2.0.x this was called ST_Force_3DZ.

Changed: 3.1.0. Added support for supplying a non-zero Z value.

ﬂ This function supports Polyhedral surfaces.
ﬂ This function supports 3d and will not drop the z-index.

ﬂ This method supports Circular Strings and Curves

Examples

——Nothing happens to an already 3D geometry
SELECT ST_ASEWKT (ST_Force3DZ (ST_GeomFromEWKT ('CIRCULARSTRING(1 1 2, 2 3 2, 4 52, 6 7 2, 5 <&
6.2)")));
st_asewkt

CIRCULARSTRING(1 1 2,2 3 2,4 5 2,6 7 2,5 6 2)

SELECT ST _ASEWKT (ST_Force3DZ ('POLYGON((0 0,0 5,5 0,0 0),(1 1,3 1,1 3,1 1))"'));

PostGIS 3.3.0rc2 Manual 156 / 896

st_asewkt

POLYGON((O O 0,0 5 0,5 0 0,0 0 O),(¢(1 1 0,3 160,13 0,11 0))

See Also

ST_AsEWKT, ST_Force2D, ST _Force3DM, ST_Force3D

8.5.10 ST_Force3DM

ST_Force3DM — Force the geometries into XYM mode.

Synopsis

geometry ST_Force3DM(geometry geomA, float Mvalue = 0.0);

Description

Forces the geometries into XYM mode. If a geometry has no M component, then a Mvalue M coordinate is tacked on. If it has
a Z component, then Z is removed

Changed: 2.1.0. Up to 2.0.x this was called ST_Force_3DM.
Changed: 3.1.0. Added support for supplying a non-zero M value.

ﬂ This method supports Circular Strings and Curves

Examples

—--Nothing happens to an already 3D geometry
SELECT ST_ASEWKT (ST_Force3DM(ST_GeomFromEWKT ('CIRCULARSTRING(1 1 2, 2 3 2, 45 2, 6 7 2, 5 <
6.2)")));
st_asewkt

CIRCULARSTRINGM(1 1 0,2 3 0,4 5 0,6 7 0,5 6 0)
SELECT ST_AsSEWKT (ST_Force3DM('POLYGON((0 0 1,0 5 1,5 0 1,0 0 1),(1 1 1,3 1 1,1 3 1,1 1 1)) <«

st_asewkt

POLYGONM((O O 0,0 5 0,5 0 0,0 O O0),(2 1 0,3 10,1 30,11 0))

See Also

ST_ASEWKT, ST _Force2D, ST _Force3DM, ST_Force3D, ST _GeomFromEWKT

8.5.11 ST_Force4D

ST_Force4D — Force the geometries into XYZM mode.

PostGIS 3.3.0rc2 Manual 157 / 896

Synopsis

geometry ST_Force4D(geometry geomA, float Zvalue = 0.0, float Mvalue = 0.0);

Description

Forces the geometries into XYZM mode. Zvalue and Mvalue is tacked on for missing Z and M dimensions, respectively.
Changed: 2.1.0. Up to 2.0.x this was called ST_Force_4D.
Changed: 3.1.0. Added support for supplying non-zero Z and M values.

ﬂ This function supports 3d and will not drop the z-index.

ﬂ This method supports Circular Strings and Curves

Examples

——Nothing happens to an already 3D geometry
SELECT ST_ASEWKT (ST_Force4D (ST_GeomFromEWKT ('CIRCULARSTRING(1 1 2, 2 3 2, 45 2, 6 7 2, 5 6 ¢
2)")));
st_asewkt

CIRCULARSTRING(1 1 2 0,2 32 0,452 0,67 20,56 2 0)

SELECT ST_ASEWKT (ST_Force4D ('MULTILINESTRINGM((O 0 1,0 5 2,50 3,0 0 4),(1 11,31 1,1 3 <
1,11 1))"));

st_asewkt

MULTILINESTRING((O O O 1,0 50 2,500 3,000 4),¢(2x101,3101,1 301,110 1))

See Also

ST _ASEWKT, ST Force2D, ST Force3DM, ST Force3D

8.5.12 ST_ForcePolygonCCW

ST_ForcePolygonCCW — Orients all exterior rings counter-clockwise and all interior rings clockwise.

Synopsis

geometry ST_ForcePolygonCCW (geometry geom);

Description

Forces (Multi)Polygons to use a counter-clockwise orientation for their exterior ring, and a clockwise orientation for their interior
rings. Non-polygonal geometries are returned unchanged.

Availability: 2.4.0
ﬂ This function supports 3d and will not drop the z-index.

ﬂ This function supports M coordinates.

PostGIS 3.3.0rc2 Manual 158 / 896

See Also

ST_ForcePolygonCW , ST_IsPolygonCCW , ST_IsPolygonCW

8.5.13 ST _ForceCollection

ST_ForceCollection — Convert the geometry into a GEOMETRYCOLLECTION.

Synopsis

geometry ST_ForceCollection(geometry geomA);

Description

Converts the geometry into a GEOMETRYCOLLECTION. This is useful for simplifying the WKB representation.
Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.

Auvailability: 1.2.2, prior to 1.3.4 this function will crash with Curves. This is fixed in 1.3.4+

Changed: 2.1.0. Up to 2.0.x this was called ST_Force_Collection.

ﬂ This function supports Polyhedral surfaces.
ﬂ This function supports 3d and will not drop the z-index.

ﬂ This method supports Circular Strings and Curves

Examples

SELECT ST_ASEWKT (ST_ForceCollection('POLYGON((O O 1,0 51,50 1,0 0 1),(1 1 1,3 1 1,1 3 <«
1,111))"));

st_asewkt

GEOMETRYCOLLECTION (POLYGON((O O 1,0 5 1,50 1,00 1),(¢(1 11,3 11,1 31,11 1)))

SELECT ST_AsText (ST_ForceCollection ('CIRCULARSTRING (220227 150406,2220227 150407,220227 <
150406) ")) ;
st_astext

GEOMETRYCOLLECTION (CIRCULARSTRING (220227 150406,2220227 150407,220227 150406))
(1 row)

—— POLYHEDRAL example ——
SELECT ST_ASEWKT (ST_ForceCollection ('POLYHEDRALSURFACE(((0 0 0,0 0 1,0 1 1,0 1 0,0 0 0)),

(¢0o 0 0,01 0,210,100,000)),
(¢0 0 0,1 00,101,0 1,0 0 0)),
(¢210,111,201,100,110)),
(¢010,011,1211,110,010)),
(¢0 01,1201,111,011,001)))"))

st_asewkt

PostGIS 3.3.0rc2 Manual 159/ 896

GEOMETRYCOLLECTION (
POLYGON((O O 0,0 O 1,0 1 1,0 1 0,0 0 0)),
POLYGON((O O 0,0 1 0,12 1 0,1 0 0,0 0 0)),
POLYGON((0O 0 0,1 0 0,1 0 1,0 0 1,0 0 0)),
POLYGON((1 1 0,1 1 1,1 0 1,1 0 0,1 1 0)),
POLYGON((O 1 0,0 1 1,1 1 1,1 1 0,0 1 0)),
POLYGON((0O 0 1,1 0 1,1 1 1,0 1 1,0 0 1))

)

See Also

ST_ASEWKT, ST Force2D, ST _Force3DM, ST_Force3D, ST GeomFromEWKT

8.5.14 ST_ForcePolygonCW

ST_ForcePolygonCW — Orients all exterior rings clockwise and all interior rings counter-clockwise.

Synopsis

geometry ST_ForcePolygonCW (geometry geom);

Description

Forces (Multi)Polygons to use a clockwise orientation for their exterior ring, and a counter-clockwise orientation for their interior
rings. Non-polygonal geometries are returned unchanged.

Auvailability: 2.4.0
ﬂ This function supports 3d and will not drop the z-index.

ﬂ This function supports M coordinates.

See Also

ST_ForcePolygonCCW , ST_IsPolygonCCW , ST_IsPolygonCW

8.5.15 ST ForceSFS

ST_ForceSFS — Force the geometries to use SFS 1.1 geometry types only.

Synopsis

geometry ST_ForceSFS(geometry geomA);
geometry ST_ForceSFS(geometry geomA, text version);

Description

ﬂ This function supports Polyhedral surfaces.
ﬂ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
ﬂ This method supports Circular Strings and Curves

ﬂ This function supports 3d and will not drop the z-index.

PostGIS 3.3.0rc2 Manual 160/ 896

8.5.16 ST_ForceRHR

ST_ForceRHR — Force the orientation of the vertices in a polygon to follow the Right-Hand-Rule.

Synopsis

geometry ST_ForceRHR(geometry g);

Description

Forces the orientation of the vertices in a polygon to follow a Right-Hand-Rule, in which the area that is bounded by the polygon
is to the right of the boundary. In particular, the exterior ring is orientated in a clockwise direction and the interior rings in a
counter-clockwise direction. This function is a synonym for ST_ForcePolygonCW

st¢} Note
N The above definition of the Right-Hand-Rule conflicts with definitions used in other contexts. To avoid confusion, it is
recommended to use ST_ForcePolygonCW.

Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

Examples

SELECT ST_ASEWKT (
ST_ForceRHR (
'POLYGON((O O 2, 502, 052, 002),(212, 132, 312, 112))"

st_asewkt

POLYGON((O O 2,0 52,50 2,00 2),(112,312,132,112))
(1 row)

See Also

ST_ForcePolygonCCW , ST_ForcePolygonCW , ST_IsPolygonCCW , ST_IsPolygonCW , ST_BuildArea, ST_Polygonize,
ST Reverse

8.5.17 ST_ForceCurve

ST_ForceCurve — Upcast a geometry into its curved type, if applicable.

Synopsis

geometry ST _ForceCurve(geometry g);

PostGIS 3.3.0rc2 Manual 161 /896

Description
Turns a geometry into its curved representation, if applicable: lines become compoundcurves, multilines become multicurves

polygons become curvepolygons multipolygons become multisurfaces. If the geometry input is already a curved representation
returns back same as input.

Availability: 2.2.0
This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Examples

SELECT ST_AsText (
ST_ForceCurve (
'POLYGON((O O 2, 502, 052, 002),(0 12, 132, 312, 112))"'::geometry

st_astext

CURVEPOLYGON Z ((O0 0 2,50 2,0 52,002),(112,132,312,112))
(1 row)

See Also

ST _LineToCurve

8.5.18 ST LineToCurve

ST_LineToCurve — Converts a linear geometry to a curved geometry.

Synopsis

geometry ST_LineToCurve(geometry geomANoncircular);

Description

Converts plain LINESTRING/POLYGON to CIRCULAR STRINGs and Curved Polygons. Note much fewer points are needed
to describe the curved equivalent.

) Note
Note!
If the input LINESTRING/POLYGON is not curved enough to clearly represent a curve, the function will return the same
input geometry.

Availability: 1.3.0
This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

PostGIS 3.3.0rc2 Manual 162/ 896

Examples

—— 2D Example

SELECT ST_AsText (ST_LineToCurve (foo.geom)) As curvedastext, ST_AsText (foo.geom) As <
non_curvedastext
FROM (SELECT ST_Buffer ('POINT(1 3)'::geometry, 3) As geom) As foo;

curvedatext non_curvedastext

CURVEPOLYGON (CIRCULARSTRING (4 3,3.12132034355964 0.878679656440359, | POLYGON((4 <+
3,3.94235584120969 2.41472903395162,3.77163859753386 1.85194970290473,
1 0,-1.12132034355965 5.12132034355963,4 3)) | 3.49440883690764 <«
1.33328930094119,3.12132034355964 0.878679656440359,
| 2.66671069905881 <=
0.505591163092366,2.14805029"
0.228361402466141,
| 1.58527096604839 <
0.0576441587903094,1
OI
| 0.414729033951621 <
0.0576441587903077,-0.148050:
0.228361402466137,
| -0.666710699058802 <=
0.505591163092361,-1.1213203:
0.878679656440353,
| -1.49440883690763 <
1.33328930094119,-1.77163859’
1.85194970290472
| --ETC-- <+
,3.94235584120969 <«
3.58527096604839,4 ¢
3))

—-3D example

SELECT ST_AsText (ST_LineToCurve (geom)) As curved, ST_AsText (geom) AS not_curved

FROM (SELECT ST_Translate (ST_Force3D (ST_Boundary (ST_Buffer (ST_Point(1,3), 2,2))),0,0,3) AS <«
geom) AS foo;

curved | not_curved

CIRCULARSTRING Z (3 3 3,-1 2.99999999999999 3,3 3 3) | LINESTRING Z (3 3 3,2.4142135623731 ¢
1.58578643762691 3,1 1 3,
| =0.414213562373092 1.5857864376269 <+
3,-1 2.99999999999999 3,
| -0.414213562373101 4.41421356237309 <+
3!
| 0.999999999999991 5 <«
3,2.41421356237309 4.4142135623731 +
3,3 3 3)
(1 row)

See Also

ST _CurveToLine

PostGIS 3.3.0rc2 Manual 163/ 896

8.5.19 ST_Multi

ST_Multi — Return the geometry as a MULTI* geometry.

Synopsis

geometry ST_Multi(geometry geom);

Description

Returns the geometry as a MULTI* geometry collection. If the geometry is already a collection, it is returned unchanged.

Examples

SELECT ST_AsText (ST_Multi ('POLYGON ((10 30, 30 30, 30 10, 10 10, 10 30))"));
st_astext

MULTIPOLYGON (((10 30,30 30,30 10,10 10,10 30)))

See Also

ST AsText

8.5.20 ST_Normalize

ST_Normalize — Return the geometry in its canonical form.

Synopsis

geometry ST_Normalize(geometry geom);

Description

Returns the geometry in its normalized/canonical form. May reorder vertices in polygon rings, rings in a polygon, elements in a
multi-geometry complex.

Mostly only useful for testing purposes (comparing expected and obtained results).

Availability: 2.3.0

Examples

SELECT ST_AsText (ST_Normalize (ST_GeomFromText (
'GEOMETRYCOLLECTION (
POINT (2 3),
MULTILINESTRING((O O, 1 1), (2 2, 3 3)),

POLYGON (
(0 10,0 0,10 0,10 10,0 10),
(4 2,2 2,2 4,4 4,4 2),
(6 8,8 8,8 6,6 6,6 8)

PostGIS 3.3.0rc2 Manual 164 / 896

st_astext

GEOMETRYCOLLECTION (POLYGON((O 0,0 10,10 10,10 0,0 O0), (6 6,8 6,8 8,6 8,6 6),(2 2,4 2,4 4,2 <
4,2 2)),MULTILINESTRING((2 2,3 3), (0 0,1 1)),POINT(2 3))
(1 row)

See Also

ST_Equals,

8.5.21 ST_QuantizeCoordinates

ST_QuantizeCoordinates — Sets least significant bits of coordinates to zero

Synopsis

geometry ST_QuantizeCoordinates (geometry g , int prec_x , int prec_y , int prec_z , int prec_m);

Description

ST_QuantizeCoordinates determines the number of bits (N) required to represent a coordinate value with a specified
number of digits after the decimal point, and then sets all but the N most significant bits to zero. The resulting coordinate value
will still round to the original value, but will have improved compressiblity. This can result in a significant disk usage reduction
provided that the geometry column is using a compressible storage type. The function allows specification of a different number
of digits after the decimal point in each dimension; unspecified dimensions are assumed to have the precision of the x dimension.
Negative digits are interpreted to refer digits to the left of the decimal point, (i.e., prec_x=-2 will preserve coordinate values
to the nearest 100.

The coordinates produced by ST_QuantizeCoordinates are independent of the geometry that contains those coordinates
and the relative position of those coordinates within the geometry. As a result, existing topological relationships between geome-
tries are unaffected by use of this function. The function may produce invalid geometry when it is called with a number of digits
lower than the intrinsic precision of the geometry.

Availability: 2.5.0

Technical Background

PostGIS stores all coordinate values as double-precision floating point integers, which can reliably represent 15 significant digits.
However, PostGIS may be used to manage data that intrinsically has fewer than 15 significant digits. An example is TIGER
data, which is provided as geographic coordinates with six digits of precision after the decimal point (thus requiring only nine
significant digits of longitude and eight significant digits of latitude.)

When 15 significant digits are available, there are many possible representations of a number with 9 significant digits. A double
precision floating point number uses 52 explicit bits to represent the significand (mantissa) of the coordinate. Only 30 bits are
needed to represent a mantissa with 9 significant digits, leaving 22 insignificant bits; we can set their value to anything we
like and still end up with a number that rounds to our input value. For example, the value 100.123456 can be represented by
the floating point numbers closest to 100.123456000000, 100.123456000001, and 100.123456432199. All are equally valid,
in that ST_AsText (geom, 6) will return the same result with any of these inputs. As we can set these bits to any value,
ST_QuantizeCoordinates sets the 22 insignificant bits to zero. For a long coordinate sequence this creates a pattern of
blocks of consecutive zeros that is compressed by PostgreSQL more effeciently.

. Note
Nf"""! Only the on-disk size of the geometry is potentially affected by ST_QuantizeCoordinates. ST_MemSize, which
reports the in-memory usage of the geometry, will return the the same value regardless of the disk space used by a
geometry.

https://www.postgresql.org/docs/current/static/storage-toast.html#STORAGE-TOAST-ONDISK

PostGIS 3.3.0rc2 Manual 165/ 896

Examples

SELECT ST_AsText (ST_QuantizeCoordinates ('POINT (100.123456 0)'::geometry, 4));
st_astext

POINT (100.123455047607 0)

WITH test AS (SELECT 'POINT (123.456789123456 123.456789123456) '::geometry AS geom)
SELECT

digits,

encode (ST_QuantizeCoordinates (geom, digits), 'hex'),

ST_AsText (ST_QuantizeCoordinates (geom, digits))
FROM test, generate_series (15, -15, -1) AS digits;

digits | encode | st_astext

________ o

15 | 01010000005f9a72083cdd5e405f9a72083cdd5e40 | POINT (123.456789123456 <+
123.456789123456)

14 | 01010000005f9a72083cdd5e405£f9a72083cdd5e40 | POINT (123.456789123456 <+
123.456789123456)

13 | 01010000005f9a72083cdd5e405f9a72083cdd5e40 | POINT (123.456789123456 <+
123.456789123456)

12 | 01010000005¢c9a72083cdd5e405¢c9a72083cdd5e40 | POINT (123.456789123456 <+
123.456789123456)

11 | 0101000000409a72083cdd5e40409a72083cdd5e40 | POINT (123.456789123456 <+
123.456789123456)

10 | 0101000000009a72083cdd5e40009a72083cdd5e40 | POINT (123.456789123455 <+
123.456789123455)

9 | 0101000000009072083cdd5e40009072083cdd5e40 | POINT (123.456789123418 <+
123.456789123418)

8 | 0101000000008072083cdd5e40008072083cdd5e40 | POINT (123.45678912336 <
123.45678912336)

7 | 0101000000000070083cdd5e40000070083cdd5e40 | POINT (123.456789121032 <+
123.456789121032)

6 | 0101000000000040083cdd5e40000040083cdd5e40 | POINT (123.456789076328 <+
123.456789076328)

5 | 0101000000000000083cdd5e40000000083cdd5e40 | POINT (123.456789016724 <+
123.456789016724)

4 | 0101000000000000003cdd5e40000000003cdd5e40 | POINT (123.456787109375 <+
123.456787109375)

3 | 0101000000000000003cdd5e40000000003cdd5e40 | POINT (123.456787109375 <+
123.456787109375)

2 | 01010000000000000038dd5e400000000038dd5e40 | POINT (123.45654296875 <

123.45654296875)

1 | 01010000000000000000dd5€400000000000dd5e40 | POINT (123.453125 123.453125)
0 | 01010000000000000000dc5€400000000000dc5e40 | POINT (123.4375 123.4375)
-1 | 01010000000000000000c05€400000000000c05€40 | POINT (123 123)

-2 | 01010000000000000000005€400000000000005e40 | POINT (120 120)

-3 | 010100000000000000000058400000000000005840 | POINT (96 96)

-4 | 010100000000000000000058400000000000005840 | POINT (96 96)

-5 | 010100000000000000000058400000000000005840 | POINT (96 96)

-6 | 010100000000000000000058400000000000005840 | POINT (96 96)

=7 | 010100000000000000000058400000000000005840 | POINT (96 96)

-8 | 010100000000000000000058400000000000005840 | POINT (96 96)

-9 | 010100000000000000000058400000000000005840 | POINT (96 96)

-10 | 010100000000000000000058400000000000005840 | POINT (96 96)

=11 | 010100000000000000000058400000000000005840 | POINT (96 96)

=12 | 010100000000000000000058400000000000005840 | POINT (96 96)

-13 | 010100000000000000000058400000000000005840 | POINT (96 96)

-14 | 010100000000000000000058400000000000005840 | POINT (96 96)

PostGIS 3.3.0rc2 Manual 166 / 896

=15 | 010100000000000000000058400000000000005840 | POINT (96 96)

See Also

ST_SnapToGrid

8.5.22 ST RemovePoint

ST_RemovePoint — Remove a point from a linestring.

Synopsis

geometry ST_RemovePoint(geometry linestring, integer offset);

Description

Removes a point from a LineString, given its index (0-based). Useful for turning a closed line (ring) into an open linestring.
Enhanced: 3.2.0
Availability: 1.1.0

This function supports 3d and will not drop the z-index.

Examples

Guarantees no lines are closed by removing the end point of closed lines (rings). Assumes geom is of type LINESTRING

UPDATE sometable
SET geom = ST_RemovePoint (geom, ST_NPoints(geom) - 1)
FROM sometable
WHERE ST_IsClosed(geom);

See Also

ST_AddPoint, ST _NPoints, ST NumPoints

8.5.23 ST_RemoveRepeatedPoints

ST_RemoveRepeatedPoints — Returns a version of a geometry with duplicate points removed.

Synopsis

geometry ST_RemoveRepeatedPoints(geometry geom, float8 tolerance);

PostGIS 3.3.0rc2 Manual 167 / 896

Description

Returns a version of the given geometry with duplicate consecutive points removed. The function processes only (Multi)LineStrings,
(Multi)Polygons and MultiPoints but it can be called with any kind of geometry. Elements of GeometryCollections are processed
individually. The endpoints of LineStrings are preserved.

If the tolerance parameter is provided, vertices within the tolerance distance of one another are considered to be duplicates.
Enhanced: 3.2.0

Availability: 2.2.0

g

This function supports Polyhedral surfaces.

o

F

%" This function supports 3d and will not drop the z-index.

Examples

SELECT ST_AsText (ST_RemoveRepeatedPoints('MULTIPOINT ((1 1), (2 2), (3 3), (2 2))"'"));

MULTIPOINT (1 1,2 2,3 3)

SELECT ST_AsText (ST_RemoveRepeatedPoints('LINESTRING (O O, O O, 1 1, 0 0, 1 1, 2 2)"));

LINESTRING(O 0,1 1,0 0,1 1,2 2)

Example: Collection elements are processed individually.

SELECT ST_AsText (ST_RemoveRepeatedPoints('GEOMETRYCOLLECTION (LINESTRING (1 1, 2 2, 2 2, <>
3 3), POINT (4 4), POINT (4 4), POINT (5 5))"));

GEOMETRYCOLLECTION (LINESTRING(1 1,2 2,3 3),POINT(4 4),POINT (4 4),POINT(5 5))

Example: Repeated point removal with a distance tolerance.

SELECT ST_AsText (ST_RemoveRepeatedPoints('LINESTRING (O O, O O, 1 1, 55, 11, 2 2)', 2)) &

LINESTRING(0 0,5 5,2 2)

See Also

ST_Simplify

8.5.24 ST_Reverse

ST_Reverse — Return the geometry with vertex order reversed.

Synopsis

geometry ST_Reverse(geometry gl);

PostGIS 3.3.0rc2 Manual 168 / 896

Description

Can be used on any geometry and reverses the order of the vertexes.

Enhanced: 2.4.0 support for curves was introduced.
This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

Examples

SELECT ST_AsText (geom) as line, ST_AsText (ST_Reverse(geom)) As reverseline
FROM
(SELECT ST_MakeLine (ST_Point (1,2),

ST_Point (1,10)) As geom) as foo;

—-—result

line | reverseline
_____________________ +______________________
LINESTRING(1 2,1 10) | LINESTRING(1 10,1 2)

8.5.25 ST_Segmentize

ST_Segmentize — Return a modified geometry/geography having no segment longer than the given distance.

Synopsis

geometry ST_Segmentize(geometry geom, float max_segment_length);
geography ST_Segmentize(geography geog, float max_segment_length);

Description

Returns a modified geometry having no segment longer than the given max_segment_length. Distance computation is
performed in 2d only. For geometry, length units are in units of spatial reference. For geography, units are in meters.
Availability: 1.2.2

Enhanced: 3.0.0 Segmentize geometry now uses equal length segments

Enhanced: 2.3.0 Segmentize geography now uses equal length segments

Enhanced: 2.1.0 support for geography was introduced.

Changed: 2.1.0 As aresult of the introduction of geography support: The construct SELECT ST_Segmentize (/ LINESTRING (1
2, 3 4)",0.5); will result in ambiguous function error. You need to have properly typed object e.g. a geometry/-
geography column, use ST_GeomFromText, ST_GeogFromText or SELECT ST_Segmentize (' LINESTRING (1 2, 3

4)'" ::geometry,0.5);

N;ﬂ"’! Note

This will only increase segments. It will not lengthen segments shorter than max length

PostGIS 3.3.0rc2 Manual 169/ 896

Examples

SELECT ST_AsText (ST_Segmentize (

ST_GeomFromText ("MULTILINESTRING((-29 -27,-30 -29.7,-36 -31,-45 -33), (=45 -33,-46 -32))")
r9)

)

st_astext

MULTILINESTRING((-29 -27,-30 -29.7,-34.886615700134 -30.758766735029,-36 —-31,
-40.8809353009198 -32.0846522890933,-45 -33),

(=45 -33,-46 -32))

(1 row)

SELECT ST_AsText (ST_Segmentize (ST_GeomFromText ('POLYGON ((-29 28, -30 40, -29 28))"'),10));
st_astext

POLYGON ((=29 28,-29.8304547985374 37.9654575824488,-30 40,-29.1695452014626 <+
30.0345424175512,-29 28))
(1 row)

See Also

ST_LineSubstring

8.5.26 ST_SetPoint

ST_SetPoint — Replace point of a linestring with a given point.

Synopsis

geometry ST_SetPoint(geometry linestring, integer zerobasedposition, geometry point);

Description

Replace point N of linestring with given point. Index is 0-based.Negative index are counted backwards, so that -1 is last point.
This is especially useful in triggers when trying to maintain relationship of joints when one vertex moves.

Availability: 1.1.0
Updated 2.3.0 : negative indexing

G This function supports 3d and will not drop the z-index.

Examples

——-Change first point in line string from -1 3 to -1 1
SELECT ST_AsText (ST_SetPoint ('LINESTRING(-1 2,-1 3)', 0, 'POINT(-1 1)"'));
st_astext

LINESTRING (-1 1,-1 3)

———-Change last point in a line string (lets play with 3d linestring this time)
SELECT ST_ASEWKT (ST_SetPoint (foo.geom, ST_NumPoints (foo.geom) - 1, ST_GeomFromEWKT ('POINT <=
(=11 .3)")))

PostGIS 3.3.0rc2 Manual

170/ 896

FROM (SELECT ST_GeomFromEWKT ('LINESTRING(-1 2 3,-1 3 4, 5 6 7)') As geom) As foo;
st_asewkt

LINESTRING(-1 2 3,-1 3 4,-1 1 3)
SELECT ST_AsText (ST_SetPoint (g, -3, p))
FROM ST_GEomFromText ('LINESTRING(O O, 1 1, 2 2, 3 3, 4 4)') AS g
, ST_PointN(g,1l) as p;
st_astext

LINESTRING(O 0,1 1,0 0,3 3,4 4)

See Also

ST_AddPoint, ST_NPoints, ST_NumPoints, ST_PointN, ST_RemovePoint

8.5.27 ST_ShiftLongitude

ST_ShiftLongitude — Shifts the longitude coordinates of a geometry between -180..180 and 0..360.

Synopsis

geometry ST_ShiftLongitude(geometry geom);

Description

Reads every point/vertex in a geometry, and shifts its longitude coordinate from -180..0 to 180..360 and vice versa if between
these ranges. This function is symmetrical so the result is a 0..360 representation of a -180..180 data and a -180..180 representa-

tion of a 0..360 data.

=

Not? Note

This is only useful for data with coordinates in longitude/latitude; e.g. SRID 4326 (WGS 84 geographic)

0 Warning

Pre-1.3.4 bug prevented this from working for MULTIPOINT. 1.3.4+ works with MULTIPOINT as well.

This function supports 3d and will not drop the z-index.
Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
NOTE: this function was renamed from "ST_Shift_Longitude" in 2.2.0

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

PostGIS 3.3.0rc2 Manual 171 /896

Examples

—--single point forward transformation
SELECT ST_AsText (ST_ShiftLongitude ('SRID=4326;POINT (270 0)'::geometry))

st_astext

POINT (=90 0)

—-—-single point reverse transformation
SELECT ST_AsText (ST_ShiftLongitude ('SRID=4326;POINT (=90 0)'::geometry))

st_astext

POINT (270 0)

——for linestrings the functions affects only to the sufficient coordinates
SELECT ST_AsText (ST_ShiftLongitude ('SRID=4326; LINESTRING (174 12, 182 13)'::geometry))

st_astext

LINESTRING (174 12,-178 13)

See Also

ST_WrapX

8.5.28 ST_WrapX

ST_WrapX — Wrap a geometry around an X value.

Synopsis

geometry ST_WrapX(geometry geom, float8 wrap, float8 move);

Description

This function splits the input geometries and then moves every resulting component falling on the right (for negative 'move’) or
on the left (for positive 'move’) of given *wrap’ line in the direction specified by the 'move’ parameter, finally re-unioning the
pieces together.

N;ﬂ"’! Note

This is useful to "recenter" long-lat input to have features of interest not spawned from one side to the other.

Availability: 2.3.0 requires GEOS

This function supports 3d and will not drop the z-index.

PostGIS 3.3.0rc2 Manual 172/ 896

Examples

—— Move all components of the given geometries whose bounding box
—-— falls completely on the left of x=0 to +360
select ST _WrapX(geom, 0, 360);

—-— Move all components of the given geometries whose bounding box

—— falls completely on the left of x=-30 to +360
select ST_WrapX(geom, -30, 360);

See Also

ST_ShiftLongitude

8.5.29 ST_SnapToGrid

ST_SnapToGrid — Snap all points of the input geometry to a regular grid.

Synopsis

geometry ST_SnapToGrid(geometry geomA, float originX, float originY, float sizeX, float sizeY);

geometry ST_SnapToGrid(geometry geomA, float sizeX, float sizeY);

geometry ST_SnapToGrid(geometry geomA, float size);

geometry ST_SnapToGrid(geometry geomA, geometry pointOrigin, float sizeX, float sizeY, float sizeZ, float sizeM);

Description

Variant 1,2,3: Snap all points of the input geometry to the grid defined by its origin and cell size. Remove consecutive points
falling on the same cell, eventually returning NULL if output points are not enough to define a geometry of the given type.
Collapsed geometries in a collection are stripped from it. Useful for reducing precision.

Variant 4: Introduced 1.1.0 - Snap all points of the input geometry to the grid defined by its origin (the second argument, must
be a point) and cell sizes. Specify 0 as size for any dimension you don’t want to snap to a grid.

N;"H’! Note

The returned geometry might lose its simplicity (see ST_IsSimple).

. Note
NO‘R’! Before release 1.1.0 this function always returned a 2d geometry. Starting at 1.1.0 the returned geometry will have same
dimensionality as the input one with higher dimension values untouched. Use the version taking a second geometry
argument to define all grid dimensions.

Auvailability: 1.0.0RC1
Awailability: 1.1.0 - Z and M support

This function supports 3d and will not drop the z-index.

PostGIS 3.3.0rc2 Manual 173/ 896

Examples

—-—Snap your geometries to a precision grid of 107-3
UPDATE mytable
SET geom = ST_SnapToGrid(geom, 0.001);

SELECT ST_AsText (ST_SnapToGrid (
ST_GeomFromText ('LINESTRING(1.1115678 2.123, 4.111111 3.2374897, 4.11112 3.23748667) <«

')I
0.001)

st_astext

LINESTRING(1.112 2.123,4.111 3.237)

——Snap a 4d geometry
SELECT ST_ASEWKT (ST_SnapToGrid (

ST_GeomFromEWKT ('LINESTRING(-1.1115678 2.123 2.3456 1.11111,

4.111111 3.2374897 3.1234 1.1111, -1.11111112 2.123 2.3456 1.1111112)"),

ST_GeomFromEWKT ('POINT (1.12 2.22 3.2 4.4444)"),

0.1, 0.1, 0.1, 0.01));

st_asewkt

LINESTRING(-1.08 2.12 2.3 1.1144,4.12 3.22 3.1 1.1144,-1.08 2.12 2.3 1.1144)

——With a 4d geometry - the ST_SnapToGrid(geom,size) only touches x and y coords but keeps m ¢
and z the same
SELECT ST_ASEWKT (ST_SnapToGrid (ST_GeomFromEWKT ('LINESTRING(-1.1115678 2.123 3 2.3456,
4.111111 3.2374897 3.1234 1.1111)"),
0.01)) i
st_asewkt

LINESTRING(-1.11 2.12 3 2.3456,4.11 3.24 3.1234 1.1111)

See Also

ST_Snap, ST_ASEWKT, ST_AsText, ST_GeomFromText, ST_GeomFromEWKT, ST_Simplify

8.5.30 ST_Snap

ST_Snap — Snap segments and vertices of input geometry to vertices of a reference geometry.

Synopsis

geometry ST_Snap(geometry input, geometry reference, float tolerance);

Description

Snaps the vertices and segments of a geometry to another Geometry’s vertices. A snap distance tolerance is used to control where
snapping is performed. The result geometry is the input geometry with the vertices snapped. If no snapping occurs then the input
geometry is returned unchanged.

Snapping one geometry to another can improve robustness for overlay operations by eliminating nearly-coincident edges (which
cause problems during noding and intersection calculation).

Too much snapping can result in invalid topology being created, so the number and location of snapped vertices is decided using
heuristics to determine when it is safe to snap. This can result in some potential snaps being omitted, however.

PostGIS 3.3.0rc2 Manual

174 /896

Not? Note

The returned geometry might lose its simplicity (see ST_IsSimple) and validity (see ST_IsValid).

Performed by the GEOS module.

Availability: 2.0.0

Examples

A multipolygon shown with a linestring (before any snapping)

PostGIS 3.3.0rc2 Manual

AN
~—_/

A multipolygon snapped to linestring to tolerance: 1.01 of

distance. The new multipolygon is shown with reference
linestring

SELECT ST_AsText (ST_Snap (poly,line,

(_)
ST_Distance (poly,line)*1.01))

P
AS polysnapped line)=x1.25)
FROM (SELECT) AS polysnapped
ST_GeomFromText ('"MULTIPOLYGON (FROM (SELECT
((26 125, 26 200, 126 200, 126 125, +— ST_GeomFromText ('"MULTIPOLYGON (
26 125), ((26 125, 26 200, 126 200, 126 125, <
(51 150, 101 150, 76 175, 51 150) <« 26 125),
), (51 150, 101 150, 76 175, 51 150) <«
((151 100, 151 200, 176 175, 151 <),
100))) ') As poly, ((151 100, 151 200, 176 175, 151 <
ST_GeomFromText ('LINESTRING (5 < 100))) ') As poly,
107, 54 84, 101 100)') As line ST_GeomFromText ('LINESTRING (5 <
) As foo; 107, 54 84, 101 100)') As line
) As foo;
polysnapped
777 &~ polysnapped
MULTIPOLYGON(((26 125,26 200,126 200,126 <
125,101 100,26 125), MULTIPOLYGON (((5 107,26 200,126 200,126 <=
(51 150,101 150,76 175,51 150)), ((151 <«

100,151 200,176 175,151 100)))

linestring

SELECT ST_AsText (
ST_Snap (poly, line,

125,101 100,54 84,5 107),

(51 150,101 150,76 175,51 150)), ((151

100,151 200,176 175,151 100)))

ST_Distance (poly,

<

175/ 896

A multipolygon snapped to linestring to tolerance: 1.25 of
distance. The new multipolygon is shown with reference

PostGIS 3.3.0rc2 Manual

176/ 896

The linestring snapped to the original multipolygon at
tolerance 1.01 of distance. The new linestring is shown
with reference multipolygon

SELECT ST_AsText (

ST_Snap(line, poly, ST_Distance (poly, <«
line)*=1.01)
) AS linesnapped
FROM (SELECT
ST_GeomFromText ("MULTIPOLYGON (
((26 125, 26 200, 126 200, 126 125, <
26 125),
(51 150, 101 150, 76 175, 51 150)) <«
14
((151 100, 151 200, 176 175, 151 <=
100))) ") As poly,
ST_GeomFromText ('LINESTRING (5 <
107, 54 84, 101 100)') As line
) As foo;
linesnapped

LINESTRING(5 107,26 125,54 84,101 100)

The linestring snapped to the original multipolygon at
tolerance 1.25 of distance. The new linestring is shown
with reference multipolygon

SELECT ST_AsText (
ST_Snap(line, poly,
line) *x1.25)

) AS linesnapped
FROM (SELECT
ST_GeomFromText ("MULTIPOLYGON (
((26 125, 26 200, 126 200,
26 125),
(51 150,

ST_Distance (poly, <

126 125, <«

101 150, 76 175, 51 150)) <

((151 100, 151 200,
100))) ') As poly,
ST_GeomFromText ('LINESTRING (5 <>
107, 54 84, 101 100)') As line
) As foo;
linesnapped

176 175, 151 <=

LINESTRING (26 125,54 84,101 100)

See Also

ST_SnapToGrid

8.5.31 ST_SwapOrdinates

ST_SwapOrdinates — Returns a version of the given geometry with given ordinate values swapped.

Synopsis

geometry ST_SwapOrdinates(geometry geom, cstring ords);

PostGIS 3.3.0rc2 Manual 177 / 896

Description

Returns a version of the given geometry with given ordinates swapped.
The ords parameter is a 2-characters string naming the ordinates to swap. Valid names are: x,y,z and m.

Auvailability: 2.2.0

ﬂ This method supports Circular Strings and Curves

ﬂ This function supports 3d and will not drop the z-index.
ﬂ This function supports M coordinates.

ﬂ This function supports Polyhedral surfaces.

ﬂ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Example

—-— Scale M value by 2
SELECT ST_AsText (
ST_SwapOrdinates (

ST_Scale (
ST_SwapOrdinates (g, 'xm'),
2, 1
)I
'xm')
) FROM (SELECT 'POINT ZM (0 O O 2)'::geometry g) foo;

st_astext

POINT zZM (0 O O 4)

See Also

ST_FlipCoordinates

8.6 Geometry Validation

8.6.1 ST_lsValid

ST_IsValid — Tests if a geometry is well-formed in 2D.

Synopsis

boolean ST _IsValid(geometry g);
boolean ST_IsValid(geometry g, integer flags);

PostGIS 3.3.0rc2 Manual 178/ 896

Description

Tests if an ST_Geometry value is well-formed and valid in 2D according to the OGC rules. For geometries with 3 and 4
dimensions, the validity is still only tested in 2 dimensions. For geometries that are invalid, a PostgreSQL NOTICE is emitted
providing details of why it is not valid.

For the version with the £1ags parameter, supported values are documented in ST_IsValidDetail This version does not print a
NOTICE explaining invalidity.

For more information on the definition of geometry validity, refer to Section 4.4

Net? Note
SQL-MM defines the result of ST_IsValid(NULL) to be 0, while PostGIS returns NULL.

Performed by the GEOS module.

The version accepting flags is available starting with 2.0.0.
%" This method implements the OGC Simple Features Implementation Specification for SQL 1.1.

i

%" This method implements the SQL/MM specification. SQL-MM 3: 5.1.9

Not Note
Neither OGC-SFS nor SQL-MM specifications include a flag argument for ST_IsValid. The flag is a PostGIS extension.

Examples
SELECT ST_IsValid(ST_GeomFromText ('LINESTRING(O 0, 1 1)')) As good_line,
ST_IsValid(ST_GeomFromText ('POLYGON((O O, 1 1, 1 2, 1 1, 0 0))'")) As bad_poly

—-—results

NOTICE: Self-intersection at or near point 0 0
good_line | bad_poly

___________ o

t | £

See Also

ST_IsSimple, ST_IsValidReason, ST_IsValidDetail,

8.6.2 ST_lsValidDetail

ST_IsValidDetail — Returns a valid_detail row stating if a geometry is valid or if not a reason and a location.

Synopsis

valid_detail ST_IsValidDetail(geometry geom, integer flags);

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 179/ 896

Description

Returns a valid_detail row, containing a boolean (valid) stating if a geometry is valid, a varchar (reason) stating a
reason why it is invalid and a geometry (Locat ion) pointing out where it is invalid.

Useful to improve on the combination of ST_IsValid and ST_IsValidReason to generate a detailed report of invalid geometries.

The optional £1lags parameter is a bitfield. It can have the following values:

* 0: Use usual OGC SFS validity semantics.

* 1: Consider certain kinds of self-touching rings (inverted shells and exverted holes) as valid. This is also known as "the ESRI
flag", since this is the validity model used by those tools. Note that this is invalid under the OGC model.

Performed by the GEOS module.
Auvailability: 2.0.0

Examples

—-—First 3 Rejects from a successful quintuplet experiment
SELECT gid, reason(ST_IsValidDetail (geom)), ST_AsText (location(ST_IsValidDetail (geom))) as <=
location
FROM
(SELECT ST_MakePolygon (ST_ExteriorRing(e.buff), array_agg(f.line)) As geom, gid
FROM (SELECT ST _Buffer (ST_Point (x1x10,yl), zl) As buff, x1x10 + y1%x100 + z1x1000 As gid
FROM generate_series(-4,6) x1
CROSS JOIN generate_series(2,5) yl
CROSS JOIN generate_series(1,8) =zl
WHERE x1 > y1%x0.5 AND zl1l < xlxyl) As e
INNER JOIN (SELECT ST_Translate (ST_ExteriorRing(ST_Buffer (ST_Point (x1%10,y1l), zl)),ylx1l, +—
z1x2) As line
FROM generate_series(-3,6) x1
CROSS JOIN generate_series(2,5) vyl
CROSS JOIN generate_series(1,10) =zl
WHERE x1 > y1x0.75 AND zl < xlxyl) As £
ON (ST_Area(e.buff) > 78 AND ST_Contains (e.buff, f.line))
GROUP BY gid, e.buff) As quintuplet_experiment
WHERE ST_IsValid(geom) = false
ORDER BY gid

LIMIT 3;
gid | reason | location
______ S
5330 | Self-intersection | POINT (32 5)
5340 | Self-intersection | POINT (42 5)
5350 | Self-intersection | POINT (52 5)

——-simple example
SELECT % FROM ST_IsValidDetail ('LINESTRING (220227 150406,2220227 150407,222020 150410)");

See Also

ST_IsValid, ST_IsValidReason

PostGIS 3.3.0rc2 Manual

180 /896

8.6.3 ST_IsValidReason

ST_IsValidReason — Returns text stating if a geometry is valid, or a reason for invalidity.

Synopsis

text ST_IsValidReason(geometry geomA);
text ST_IsValidReason(geometry geomA, integer flags);

Description

Returns text stating if a geometry is valid, or if invalid a reason why.

Useful in combination with ST_IsValid to generate a detailed report of invalid geometries and reasons.
Allowed f1ags are documented in ST_IsValidDetail.

Performed by the GEOS module.

Availability: 1.4

Auvailability: 2.0 version taking flags.

Examples

—-— invalid bow-tie polygon
SELECT ST_IsValidReason (

'"POLYGON ((100 200, 100 100, 200 200,

200 100, 100 200)) '::geometry) as validity_info;
validity_info

Self-intersection[150 150]

——-First 3 Rejects from a successful quintuplet experiment
SELECT gid, ST_IsValidReason (geom) as validity_info
FROM
(SELECT ST_MakePolygon (ST_ExteriorRing(e.buff), array_agg(f.line)) As geom, gid
FROM (SELECT ST _Buffer (ST_Point (x1x10,yl), zl) As buff, x1x10 + y1%x100 + z1x1000 As gid
FROM generate_series(-4,6) x1
CROSS JOIN generate_series (2,5) vyl
CROSS JOIN generate_series(1,8) =zl
WHERE x1 > y1%x0.5 AND zl1l < xlxyl) As e

INNER JOIN (SELECT ST_Translate (ST_ExteriorRing(ST_Buffer (ST_Point (x1%10,y1l), zl)),ylx1l, +—

z1x2) As line

FROM generate_series(-3,6) x1

CROSS JOIN generate_series(2,5) vyl

CROSS JOIN generate_series(1,10) =zl

WHERE x1 > y1x0.75 AND zl < xlxyl) As £
ON (ST_Area(e.buff) > 78 AND ST_Contains (e.buff, f.line))
GROUP BY gid, e.buff) As quintuplet_experiment
WHERE ST_IsValid(geom) = false
ORDER BY gid
LIMIT 3;

Self-intersection [32 5]
Self-intersection [42 5]
Self-intersection [52 5]

PostGIS 3.3.0rc2 Manual 181 /896

——-simple example
SELECT ST_IsValidReason ('LINESTRING (220227 150406,2220227 150407,222020 150410)");

st_isvalidreason

Valid Geometry

See Also

ST_IsValid, ST_Summary

8.6.4 ST_MakeValid

ST_MakeValid — Attempts to make an invalid geometry valid without losing vertices.

Synopsis

geometry ST_MakeValid(geometry input);
geometry ST_MakeValid(geometry input, text params);

Description
The function attempts to create a valid representation of a given invalid geometry without losing any of the input vertices. Valid

geometries are returned unchanged.

Supported inputs are: POINTS, MULTIPOINTS, LINESTRINGS, MULTILINESTRINGS, POLYGONS, MULTIPOLYGONS
and GEOMETRYCOLLECTIONS containing any mix of them.

In case of full or partial dimensional collapses, the output geometry may be a collection of lower-to-equal dimension geometries,
or a geometry of lower dimension.

Single polygons may become multi-geometries in case of self-intersections.

The params argument can be used to supply an options string to select the method to use for building valid geometry. The
options string is in the format "method=lineworklstructure keepcollapsed=truelfalse".

The "method" key has two values.

* "linework" is the original algorithm, and builds valid geometries by first extracting all lines, noding that linework together, then
building a value output from the linework.

* "structure" is an algorithm that distinguishes between interior and exterior rings, building new geometry by unioning exterior
rings, and then differencing all interior rings.

The "keepcollapsed" key is only valid for the "structure" algorithm, and takes a value of "true" or "false". When set to "false",
geometry components that collapse to a lower dimensionality, for example a one-point linestring would be dropped.

Performed by the GEOS module.

Availability: 2.0.0

Enhanced: 2.0.1, speed improvements

Enhanced: 2.1.0, added support for GEOMETRYCOLLECTION and MULTIPOINT.

Enhanced: 3.1.0, added removal of Coordinates with NaN values.

Enhanced: 3.2.0, added algorithm options, ’linework’ and ’structure’.

This function supports 3d and will not drop the z-index.

PostGIS 3.3.0rc2 Manual 182/ 896

Examples

PostGIS 3.3.0rc2 Manual

183 /896

before_geom: MULTIPOLYGON of 2 overlapping polygons

after_geom: MULTIPOLYGON of 4 non-overlapping polygons

after_geom_structure: MULTIPOLYGON of 1 non-overlapping polygon

SELECT f.geom AS before_geom, ST_MakeValid(f.geom) AS after_geom, ST_MakeValid(f.geom,
'method=structure') AS after_geom_structure
FROM (SELECT 'MULTIPOLYGON (((186 194,187 194,188 195,189 195,190 195,

1 01 10 109 10 102 10449 104 104 104 102 10 102 10 1017

<

PostGIS 3.3.0rc2 Manual 184/ 896

PostGIS 3.3.0rc2 Manual 185/ 896

before_geom: MULTIPOLYGON of 6 overlapping polygons

after_geom: MULTIPOLYGON of 14 Non-overlapping polygons

after_geom_structure: MULTIPOLYGON of 1 Non-overlapping polygon

SELECT c.geom AS before_geom,
ST_MakeValid(c.geom) AS after_geom,
ST_MakeValid(c.geom, 'method=structure') AS after_geom_structure
FROM (SELECT 'MULTIPOLYGON(((91 50,79 22,51 10,23 22,11 50,23 78,51 90,79 78,91 <«

PostGIS 3.3.0rc2 Manual 186/ 896

Examples

SELECT ST_AsText (ST_MakeValid/(
'LINESTRING (O 0, 0 0)',
'method=structure keepcollapsed=true'’

POINT (0 0)

SELECT ST_AsText (ST_MakeValid(
'LINESTRING(O O, 0 0)"',
'method=structure keepcollapsed=false'
)) i

st_astext

LINESTRING EMPTY

See Also
ST IsValid, ST_Collect, ST_CollectionExtract
8.7 Spatial Reference System Functions

8.7.1 ST_SetSRID

ST_SetSRID — Set the SRID on a geometry.

Synopsis

geometry ST_SetSRID(geometry geom, integer srid);

Description

Sets the SRID on a geometry to a particular integer value. Useful in constructing bounding boxes for queries.

. Note
N"R’! This function does not transform the geometry coordinates in any way - it simply sets the meta data defining the spatial
reference system the geometry is assumed to be in. Use ST_Transform if you want to transform the geometry into a
new projection.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1.

This method supports Circular Strings and Curves

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 187/ 896

Examples

-- Mark a point as WGS 84 long lat --

SELECT ST_SetSRID(ST_Point (-123.365556, 48.428611),4326) As wgs84long_lat;
—-— the ewkt representation (wrap with ST_ASEWKT) -
SRID=4326; POINT (-123.365556 48.428611)

-- Mark a point as WGS 84 long lat and then transform to web mercator (Spherical Mercator) --

SELECT ST_Transform(ST_SetSRID(ST_Point (-123.365556, 48.428611),4326),3785) As spere_merc;
—— the ewkt representation (wrap with ST_ASEWKT) -
SRID=3785;POINT (-13732990.8753491 6178458.96425423)

See Also

Section 4.5, ST_SRID, ST_Transform, UpdateGeometrySRID

8.7.2 ST_SRID

ST_SRID — Returns the spatial reference identifier for a geometry.

Synopsis

integer ST_SRID(geometry gl);

Description

Returns the spatial reference identifier for the ST_Geometry as defined in spatial_ref_sys table. Section 4.5

& Note
Nﬂ'l"! spatial_ref_sys table is a table that catalogs all spatial reference systems known to PostGIS and is used for transforma-
tions from one spatial reference system to another. So verifying you have the right spatial reference system identifier is
important if you plan to ever transform your geometries.

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.1
ﬂ This method implements the SQL/MM specification. SQL-MM 3: 5.1.5

ﬂ This method supports Circular Strings and Curves

Examples

SELECT ST_SRID(ST_GeomFromText ('POINT (-71.1043 42.315)"',4326));
—-—result
4326

See Also

Section 4.5, ST_SetSRID, ST_Transform, ST_SRID, ST_SRID

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 188/ 896

8.7.3 ST _Transform

ST_Transform — Return a new geometry with coordinates transformed to a different spatial reference system.

Synopsis

geometry ST_Transform(geometry gl, integer srid);

geometry ST_Transform(geometry geom, text to_proj);

geometry ST_Transform(geometry geom, text from_proj, text to_proj);
geometry ST_Transform(geometry geom, text from_proj, integer to_srid);

Description

Returns a new geometry with its coordinates transformed to a different spatial reference system. The destination spatial reference
to_srid may be identified by a valid SRID integer parameter (i.e. it must exist in the spatial_ref_sys table). Alterna-
tively, a spatial reference defined as a PROJ.4 string can be used for to_proj and/or from_pro j, however these methods are
not optimized. If the destination spatial reference system is expressed with a PROJ.4 string instead of an SRID, the SRID of the
output geometry will be set to zero. With the exception of functions with from_proj, input geometries must have a defined
SRID.

ST_Transform is often confused with ST_SetSRID. ST_Transform actually changes the coordinates of a geometry from one
spatial reference system to another, while ST_SetSRID() simply changes the SRID identifier of the geometry.

et Note
N Requires PostGIS be compiled with PROJ support. Use PostGIS_Full_Version to confirm you have PROJ support
compiled in.
N:"""! Note

If using more than one transformation, it is useful to have a functional index on the commonly used transformations to
take advantage of index usage.

Not? Note

Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.

Enhanced: 2.3.0 support for direct PROJ .4 text was introduced.
This method implements the SQL/MM specification. SQL-MM 3: 5.1.6
This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Examples

Change Massachusetts state plane US feet geometry to WGS 84 long lat

PostGIS 3.3.0rc2 Manual 189/ 896

SELECT ST_AsText (ST_Transform(ST_GeomFromText ('"POLYGON ((743238 2967416,743238 2967450,
743265 2967450, 743265.625 2967416,743238 2967416))',2249),4326)) As wgs_geom;

wgs_geom

POLYGON ((=71.1776848522251 42.3902896512902,-71.1776843766326 42.3903829478009,
—-71.1775844305465 42.3903826677917,-71.1775825927231 42.3902893647987,-71.177684
8522251 42.3902896512902)) ;

(1 row)

—-3D Circular String example
SELECT ST_ASEWKT (ST_Transform (ST_GeomFromEWKT ('SRID=2249; CIRCULARSTRING (743238 2967416 <
1,743238 2967450 2,743265 2967450 3,743265.625 2967416 3,743238 2967416 4)"'),4326));

st_asewkt
SRID=4326; CIRCULARSTRING (-71.1776848522251 42.3902896512902 1,-71.1776843766326 <+
42.3903829478009 2,
-71.1775844305465 42.3903826677917 3,
-71.1775825927231 42.3902893647987 3,-71.1776848522251 42.3902896512902 4)

Example of creating a partial functional index. For tables where you are not sure all the geometries will be filled in, its best to use
a partial index that leaves out null geometries which will both conserve space and make your index smaller and more efficient.

CREATE INDEX idx_geom_26986_parcels
ON parcels
USING gist
(ST_Transform(geom, 26986))
WHERE geom IS NOT NULL;

Examples of using PROJ.4 text to transform with custom spatial references.

—— Find intersection of two polygons near the North pole, using a custom Gnomic projection
—-— See http://boundlessgeo.com/2012/02/flattening-the-peel/
WITH data AS (
SELECT
ST_GeomFromText ('POLYGON((170 50,170 72,-130 72,-130 50,170 50))"', 4326) AS pl,
ST_GeomFromText ('POLYGON((=170 68,-170 90,-141 90,-141 68,-170 68))"', 4326) AS p2,
'+proj=gnom +ellps=WGS84 +lat_0=70 +lon_0=-160 +no_defs'::text AS gnom
)
SELECT ST_AsText (
ST_Transform(
ST_Intersection(ST_Transform(pl, gnom), ST _Transform(p2, gnom)),
gnom, 4326))
FROM data;
st_astext
POLYGON ((=170 74.053793645338,-141 73.4268621378904,-141 68,-170 68,-170 74.053793645338) <
)

Configuring transformation behavior

Sometimes coordinate transformation involving a grid-shift can fail, for example if PROJ.4 has not been built with grid-shift files
or the coordinate does not lie within the range for which the grid shift is defined. By default, PostGIS will throw an error if a
grid shift file is not present, but this behavior can be configured on a per-SRID basis either by testing different to_pro j values
of PROJ.4 text, or altering the proj4text value within the spatial_ref_sys table.

For example, the proj4text parameter +datum=NADS7 is a shorthand form for the following +nadgrids parameter:

PostGIS 3.3.0rc2 Manual 190/ 896

+nadgrids=@conus, @alaska, @ntv2_0.gsb,@ntvl_can.dat

The @ prefix means no error is reported if the files are not present, but if the end of the list is reached with no file having been
appropriate (ie. found and overlapping) then an error is issued.

If, conversely, you wanted to ensure that at least the standard files were present, but that if all files were scanned without a hit a
null transformation is applied you could use:

+nadgrids=@conus, @alaska, @ntv2_0.gsb, @ntvl_can.dat,null

The null grid shift file is a valid grid shift file covering the whole world and applying no shift. So for a complete example, if you
wanted to alter PostGIS so that transformations to SRID 4267 that didn’t lie within the correct range did not throw an ERROR,
you would use the following:

UPDATE spatial_ref_ sys SET projdtext = '+proj=longlat +ellps=clrk66 +nadgrids=@conus, <>
@alaska,@ntv2_0.gsb, @ntvl_can.dat,null +no_defs' WHERE srid = 4267;

See Also

Section 4.5, ST_SetSRID, ST_SRID, UpdateGeometrySRID

8.8 Geometry Input

8.8.1 Well-Known Text (WKT)

8.8.1.1 ST_BdPolyFromText

ST_BdPolyFromText — Construct a Polygon given an arbitrary collection of closed linestrings as a MultiLineString Well-Known
text representation.

Synopsis

geometry ST_BdPolyFromText(text WKT, integer srid);

Description

Construct a Polygon given an arbitrary collection of closed linestrings as a MultiLineString Well-Known text representation.

ote} Note
N Throws an error if WKT is not a MULTILINESTRING. Throws an error if output is a MULTIPOLYGON; use
ST_BdMPolyFromText in that case, or see ST_BuildArea() for a postgis-specific approach.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.6.2
Performed by the GEOS module.
Auvailability: 1.1.0

See Also

ST_BuildArea, ST_BdMPolyFromText

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 191/ 896

8.8.1.2 ST_BdMPolyFromText

ST_BdMPolyFromText — Construct a MultiPolygon given an arbitrary collection of closed linestrings as a MultiLineString text
representation Well-Known text representation.

Synopsis

geometry ST_BdMPolyFromText(text WKT, integer srid);

Description

Construct a Polygon given an arbitrary collection of closed linestrings, polygons, MultiLineStrings as Well-Known text repre-
sentation.

. Note
Nﬁ'l""! Throws an error if WKT is not a MULTILINESTRING. Forces MULTIPOLYGON output even when result is really only
composed by a single POLYGON; use ST_BdPolyFromText if you're sure a single POLYGON will result from operation,
or see ST_BuildArea() for a postgis-specific approach.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.6.2
Performed by the GEOS module.
Availability: 1.1.0

See Also

ST_BuildArea, ST_BdPolyFromText

8.8.1.3 ST_GeogFromText

ST_GeogFromText — Return a specified geography value from Well-Known Text representation or extended (WKT).

Synopsis

geography ST_GeogFromText(text EWKT);

Description

Returns a geography object from the well-known text or extended well-known representation. SRID 4326 is assumed if unspec-
ified. This is an alias for ST_GeographyFromText. Points are always expressed in long lat form.

Examples

—-—— converting lon lat coords to geography
ALTER TABLE sometable ADD COLUMN geog geography (POINT, 4326) ;
UPDATE sometable SET geog = ST_GeogFromText ('SRID=4326;POINT(' || lon || " ' || lat || ")'") <«

’

—-—— specify a geography point using EPSG:4267, NAD27
SELECT ST_ASEWKT (ST_GeogFromText ('SRID=4267;POINT (-77.0092 38.889588)"'));

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 192/ 896

See Also

ST_AsText, ST_GeographyFromText

8.8.1.4 ST_GeographyFromText

ST_GeographyFromText — Return a specified geography value from Well-Known Text representation or extended (WKT).

Synopsis

geography ST_GeographyFromText(text EWKT);

Description

Returns a geography object from the well-known text representation. SRID 4326 is assumed if unspecified.

See Also

ST_GeogFromText, ST_AsText

8.8.1.5 ST_GeomCollFromText

ST_GeomCollFromText — Makes a collection Geometry from collection WKT with the given SRID. If SRID is not given, it
defaults to 0.

Synopsis
geometry ST_GeomCollFromText(text WKT, integer srid);
geometry ST_GeomCollFromText(text WKT);

Description

Makes a collection Geometry from the Well-Known-Text (WKT) representation with the given SRID. If SRID is not given, it
defaults to 0.

OGC SPEC 3.2.6.2 - option SRID is from the conformance suite
Returns null if the WKT is not a GEOMETRYCOLLECTION

N:rld Note

If you are absolutely sure all your WKT geometries are collections, don't use this function. It is slower than
ST_GeomFromText since it adds an additional validation step.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.6.2

This method implements the SQL/MM specification.

Examples

SELECT ST_GeomCollFromText ('GEOMETRYCOLLECTION (POINT (1 2),LINESTRING(1 2, 3 4))"'");

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 193/ 896

See Also

ST_GeomFromText, ST_SRID

8.8.1.6 ST _GeomFromEWKT

ST_GeomFromEWKT — Return a specified ST_Geometry value from Extended Well-Known Text representation (EWKT).

Synopsis

geometry ST_GeomFromEWKT (text EWKT);

Description

Constructs a PostGIS ST_Geometry object from the OGC Extended Well-Known text (EWKT) representation.

. Note
Noted
The EWKT format is not an OGC standard, but an PostGIS specific format that includes the spatial reference system
(SRID) identifier

Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
ﬂ This function supports 3d and will not drop the z-index.

ﬂ This method supports Circular Strings and Curves

ﬂ This function supports Polyhedral surfaces.

ﬂ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

SELECT ST_GeomFromEWKT ('SRID=4269; LINESTRING (-71.160281 42.258729,-71.160837 <
42.259113,-71.161144 42.25932)");

SELECT ST_GeomFromEWKT ('SRID=4269; MULTILINESTRING((-71.160281 42.258729,-71.160837 <>
42.259113,-71.161144 42.25932))");

SELECT ST_GeomFromEWKT ('SRID=4269;POINT (-71.064544 42.28787)");

SELECT ST_GeomFromEWKT ('SRID=4269;POLYGON ((-71.1776585052917 <=
42.3902909739571,-71.1776820268866 42.3903701743239,

-71.1776063012595 42.3903825660754,-71.1775826583081 42.3903033653531,-71.1776585052917 <«
42.3902909739571)) ") ;

SELECT ST_GeomFromEWKT ('SRID=4269; MULTIPOLYGON (((-71.1031880899493 42.3152774590236,
-71.1031627617667 42.3152960829043,-71.102923838298 42.3149156848307,
-71.1023097974109 42.3151969047397,-71.1019285062273 42.3147384934248,
—71.102505233663 42.3144722937587,-71.10277487471 42.3141658254797,

—-71.103113945163 42.3142739188902,-71.10324876416 42.31402489987,

-71.1033002961013 42.3140393340215,-71.1033488797549 42.3139495090772,
-71.103396240451 42.3138632439557,-71.1041521907712 42.3141153348029,
—-71.1041411411543 42.3141545014533,-71.1041287795912 42.3142114839058,
—71.1041188134329 42.3142693656241,-71.1041112482575 42.3143272556118,
—71.1041072845732 42.3143851580048,-71.1041057218871 42.3144430686681,

PostGIS 3.3.0rc2 Manual 194 / 896

-71.1041065602059 42.3145009876017,-71.1041097995362 42.3145589148055,
-71.1041166403905 42.3146168544148,-71.1041258822717 42.3146748022936,
—71.1041375307579 42.3147318674446,-71.1041492906949 42.3147711126569,
—-71.1041598612795 42.314808571739,-71.1042515013869 42.3151287620809,
-71.1041173835118 42.3150739481917,-71.1040809891419 42.3151344119048,
—71.1040438678912 42.3151191367447,-71.1040194562988 42.3151832057859,
—-71.1038734225584 42.3151140942995,-71.1038446938243 42.3151006300338,
—71.1038315271889 42.315094347535,-71.1037393329282 42.315054824985,
—71.1035447555574 42.3152608696313,-71.1033436658644 42.3151648370544,
—-71.1032580383161 42.3152269126061,-71.103223066939 42.3152517403219,
—71.1031880899493 42.3152774590236)),
((=71.1043632495873 42.315113108546,-71.1043583974082 42.3151211109857,
—71.1043443253471 42.3150676015829,-71.1043850704575 42.3150793250568,-71.1043632495873 <«
42.315113108546))) ") ;

—-3d circular string
SELECT ST_GeomFromEWKT ('CIRCULARSTRING (220268 150415 1,220227 150505 2,220227 150406 3)'");

——Polyhedral Surface example
SELECT ST_GeomFromEWKT ('POLYHEDRALSURFACE (
((O 0, 001, O , 010, 00 0)),

’ ’ ’ 14

I4 4 14 14

’ ’ ’ ’

’ 14

~

14

A
o
O B oo o
o o oo
el e
SR e e
R B 2o o
e
R RO o R e
e =
N
SR N e
R 2 O oo
o or o
o or oo
oK OO

I4 14 ’

See Also

ST _ASEWKT, ST _GeomFromText, ST GeomFromEWKT

8.8.1.7 ST_GeometryFromText

ST_GeometryFromText — Return a specified ST_Geometry value from Well-Known Text representation (WKT). This is an alias
name for ST_GeomFromText

Synopsis

geometry ST_GeometryFromText(text WKT);
geometry ST_GeometryFromText(text WKT, integer srid);

Description

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1.

ﬂ This method implements the SQL/MM specification. SQL-MM 3: 5.1.40

See Also

ST_GeomFromText

8.8.1.8 ST_GeomFromText

ST_GeomFromText — Return a specified ST_Geometry value from Well-Known Text representation (WKT).

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 195/ 896

Synopsis

geometry ST_GeomFromText(text WKT);
geometry ST_GeomFromText(text WKT, integer srid);

Description

Constructs a PostGIS ST_Geometry object from the OGC Well-Known text representation.

. Note
N"M There are two variants of ST_GeomFromText function. The first takes no SRID and returns a geometry with no defined

spatial reference system (SRID=0). The second takes a SRID as the second argument and returns a geometry that
includes this SRID as part of its metadata.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.6.2 - option SRID is
from the conformance suite.

This method implements the SQL/MM specification. SQL-MM 3: 5.1.40

This method supports Circular Strings and Curves

. Note
NG'R’! While not OGC-compliant, ST_MakePoint is faster than ST_GeomFromText and ST_PointFromText. It is also easier to

use for numeric coordinate values. ST_Point is another option similar in speed to ST_MakePoint and is OGC-compliant,
but doesn’t support anything but 2D points.

Warning

0 Changed: 2.0.0 In prior versions of PostGIS ST_GeomFromText(GEOMETRYCOLLECTION(EMPTY)’) was allowed.
This is now illegal in PostGIS 2.0.0 to better conform with SQL/MM standards. This should now be written as
ST_GeomFromText(GEOMETRYCOLLECTION EMPTY’)

Examples

SELECT ST_GeomFromText ('LINESTRING(-71.160281 42.258729,-71.160837 42.259113,-71.161144 <>

42.25932)");
SELECT ST_GeomFromText ('LINESTRING(-71.160281 42.258729,-71.160837 42.259113,-71.161144 <>

42.25932) ',4269) ;

SELECT ST_GeomFromText ('MULTILINESTRING((-71.160281 42.258729,-71.160837 <=
42.259113,-71.161144 42.25932))");

SELECT ST_GeomFromText ('POINT (-71.064544 42.28787)");

SELECT ST_GeomFromText ('POLYGON ((-71.1776585052917 42.3902909739571,-71.1776820268866 <>

42.3903701743239,
-71.1776063012595 42.3903825660754,-71.1775826583081 42.3903033653531,-71.1776585052917 <«

42.3902909739571)) ") ;

SELECT ST_GeomFromText ('MULTIPOLYGON (((-71.1031880899493 42.3152774590236,
-71.1031627617667 42.3152960829043,-71.102923838298 42.3149156848307,
—-71.1023097974109 42.3151969047397,-71.1019285062273 42.3147384934248,
—71.102505233663 42.3144722937587,-71.10277487471 42.3141658254797,

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 196 / 896

—-71.103113945163 42.3142739188902,-71.10324876416 42.31402489987,
-71.1033002961013 42.3140393340215,-71.1033488797549 42.3139495090772,
-71.103396240451 42.3138632439557,-71.1041521907712 42.3141153348029,
—-71.1041411411543 42.3141545014533,-71.1041287795912 42.3142114839058,
—71.1041188134329 42.3142693656241,-71.1041112482575 42.3143272556118,
-71.1041072845732 42.3143851580048,-71.1041057218871 42.3144430686681,
-71.1041065602059 42.3145009876017,-71.1041097995362 42.3145589148055,
-71.1041166403905 42.3146168544148,-71.1041258822717 42.3146748022936,
—71.1041375307579 42.3147318674446,-71.1041492906949 42.3147711126569,
—-71.1041598612795 42.314808571739,-71.1042515013869 42.3151287620809,
-71.1041173835118 42.3150739481917,-71.1040809891419 42.3151344119048,
—71.1040438678912 42.3151191367447,-71.1040194562988 42.3151832057859,
—-71.1038734225584 42.3151140942995,-71.1038446938243 42.3151006300338,
—71.1038315271889 42.315094347535,-71.1037393329282 42.315054824985,
—71.1035447555574 42.3152608696313,-71.1033436658644 42.3151648370544,
—-71.1032580383161 42.3152269126061,-71.103223066939 42.3152517403219,
—71.1031880899493 42.3152774590236)),
((=71.1043632495873 42.315113108546,-71.1043583974082 42.3151211109857,
—-71.1043443253471 42.3150676015829,-71.1043850704575 42.3150793250568,-71.1043632495873 <«
42.315113108546))) ',4326);

SELECT ST_GeomFromText ('CIRCULARSTRING (220268 150415,220227 150505,220227 150406) ") ;

See Also

ST_GeomFromEWKT, ST_GeomFromWKB, ST_SRID

8.8.1.9 ST_LineFromText

ST_LineFromText — Makes a Geometry from WKT representation with the given SRID. If SRID is not given, it defaults to O.

Synopsis

geometry ST_LineFromText(text WKT);

geometry ST_LineFromText(text WKT, integer srid);
Description

Makes a Geometry from WKT with the given SRID. If SRID is not given, it defaults to 0. If WKT passed in is not a
LINESTRING, then null is returned.

Not¥ Note
OGC SPEC 3.2.6.2 - option SRID is from the conformance suite.

oA Note
N If you know all your geometries are LINESTRINGS, its more efficient to just use ST_GeomFromText. This just calls
ST_GeomFromText and adds additional validation that it returns a linestring.

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.6.2

ﬂ This method implements the SQL/MM specification. SQL-MM 3: 7.2.8

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 197 / 896

Examples

SELECT ST_LineFromText ('LINESTRING(1 2, 3 4)') AS aline, ST_LineFromText ('POINT (1 2)') AS <+
null_return;

aline | null_return

010200000002000000000000000000F ... | t

See Also

ST _GeomFromText

8.8.1.10 ST_MLineFromText

ST_MLineFromText — Return a specified ST_MultiLineString value from WKT representation.

Synopsis

geometry ST_MLineFromText(text WKT, integer srid);
geometry ST_MLineFromText(text WKT);
Description

Makes a Geometry from Well-Known-Text (WKT) with the given SRID. If SRID is not given, it defaults to 0.
OGC SPEC 3.2.6.2 - option SRID is from the conformance suite
Returns null if the WKT is not a MULTILINESTRING

N;l"! Note
If you are absolutely sure all your WKT geometries are points, don’t use this function. It is slower than
ST_GeomFromText since it adds an additional validation step.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.6.2

This method implements the SQL/MM specification.SQL-MM 3: 9.4.4

Examples

SELECT ST_MLineFromText ('"MULTILINESTRING((1 2, 3 4), (4 5, 6 7))"');

See Also

ST_GeomFromText

8.8.1.11 ST_MPointFromText

ST_MPointFromText — Makes a Geometry from WKT with the given SRID. If SRID is not given, it defaults to 0.

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 198 / 896

Synopsis

geometry ST_MPointFromText(text WKT, integer srid);
geometry ST_MPointFromText(text WKT);

Description

Makes a Geometry from WKT with the given SRID. If SRID is not given, it defaults to 0.
OGC SPEC 3.2.6.2 - option SRID is from the conformance suite
Returns null if the WKT is not a MULTIPOINT

N:ﬂ"! Note
If you are absolutely sure all your WKT geometries are points, don’t use this function. It is slower than
ST_GeomFromText since it adds an additional validation step.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. 3.2.6.2

This method implements the SQL/MM specification. SQL-MM 3: 9.2.4

Examples

SELECT ST_MPointFromText ('"MULTIPOINT ((1 2), (3 4))"');
SELECT ST _MPointFromText ('MULTIPOINT ((-70.9590 42.1180), (-70.9611 42.1223))"', 4326);

See Also

ST GeomFromText

8.8.1.12 ST_MPolyFromText

ST_MPolyFromText — Makes a MultiPolygon Geometry from WKT with the given SRID. If SRID is not given, it defaults to 0.

Synopsis

geometry ST_MPolyFromText(text WKT, integer srid);
geometry ST_MPolyFromText(text WKT);

Description

Makes a MultiPolygon from WKT with the given SRID. If SRID is not given, it defaults to 0.
OGC SPEC 3.2.6.2 - option SRID is from the conformance suite
Throws an error if the WKT is not a MULTIPOLY GON

N:ﬂ"! Note

If you are absolutely sure all your WKT geometries are multipolygons, don’t use this function. It is slower than
ST_GeomFromText since it adds an additional validation step.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.6.2

This method implements the SQL/MM specification. SQL-MM 3: 9.6.4

http://www.opengeospatial.org/standards/sfs
http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 199/ 896

Examples

SELECT ST_MPolyFromText ('MULTIPOLYGON(((0 0 1,20 0 1,20 20 1,0 20 1,0 0 1),(5 5 3,5 7 3,7 7 «
3,7 53,55 3)))");

SELECt ST _MPolyFromText ("MULTIPOLYGON (((-70.916 42.1002,-70.9468 42.0946,-70.9765 <
42.0872,-70.9754 42.0875,-70.9749 42.0879,-70.9752 42.0881,-70.9754 42.0891,-70.9758
42.0894,-70.9759 42.0897,-70.9759 42.0899,-70.9754 42.0902,-70.9756 42.0906,-70.9753
42.0907,-70.9753 42.0917,-70.9757 42.0924,-70.9755 42.0928,-70.9755 42.0942,-70.9751
42.0948,-70.9755 42.0953,-70.9751 42.0958,-70.9751 42.0962,-70.9759 42.0983,-70.9767
42.0987,-70.9768 42.0991,-70.9771 42.0997,-70.9771 42.1003,-70.9768 42.1005,-70.977
42.1011,-70.9766 42.1019,-70.9768 42.1026,-70.9769 42.1033,-70.9775 42.1042,-70.9773
42.1043,-70.9776 42.1043,-70.9778 42.1048,-70.9773 42.1058,-70.9774 42.1061,-70.9779
42.1065,-70.9782 42.1078,-70.9788 42.1085,-70.9798 42.1087,-70.9806 42.109,-70.9807
42.1093,-70.9806 42.1099,-70.9809 42.1109,-70.9808 42.1112,-70.9798 42.1116,-70.9792
42.1127,-70.979 42.1129,-70.9787 42.1134,-70.979 42.1139,-70.9791 42.1141,-70.9987 <+
42.1116,-71.0022 42.1273,

-70.9408 42.1513,-70.9315 42.1165,-70.916 42.1002)))"',4326);

1Tt te111

See Also

ST_GeomFromText, ST_SRID

8.8.1.13 ST_PointFromText

ST_PointFromText — Makes a point Geometry from WKT with the given SRID. If SRID is not given, it defaults to unknown.

Synopsis

geometry ST_PointFromText(text WKT);

geometry ST_PointFromText(text WKT, integer srid);
Description

Constructs a PostGIS ST_Geometry point object from the OGC Well-Known text representation. If SRID is not given, it defaults
to unknown (currently 0). If geometry is not a WKT point representation, returns null. If completely invalid WKT, then throws
an error.

s Note
Nﬂ‘l"! There are 2 variants of ST_PointFromText function, the first takes no SRID and returns a geometry with no defined
spatial reference system. The second takes a spatial reference id as the second argument and returns an ST_Geometry
that includes this srid as part of its meta-data. The srid must be defined in the spatial_ref_sys table.

Note

Noﬂ’! If you are absolutely sure all your WKT geometries are points, don’t use this function. It is slower than
ST_GeomFromText since it adds an additional validation step. If you are building points from long lat coordinates
and care more about performance and accuracy than OGC compliance, use ST_MakePoint or OGC compliant alias
ST _Point.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.6.2 - option SRID is
from the conformance suite.

This method implements the SQL/MM specification. SQL-MM 3: 6.1.8

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 200/ 896

Examples

SELECT ST_PointFromText ('POINT (-71.064544 42.28787)");
SELECT ST_PointFromText ('POINT (-71.064544 42.28787)"', 4326);

See Also

ST_GeomFromText, ST_MakePoint, ST_Point, ST_SRID

8.8.1.14 ST_PolygonFromText

ST_PolygonFromText — Makes a Geometry from WKT with the given SRID. If SRID is not given, it defaults to 0.

Synopsis

geometry ST_PolygonFromText(text WKT);

geometry ST_PolygonFromText(text WKT, integer srid);
Description

Makes a Geometry from WKT with the given SRID. If SRID is not given, it defaults to 0. Returns null if WKT is not a polygon.
OGC SPEC 3.2.6.2 - option SRID is from the conformance suite

N;'R’! Note

If you are absolutely sure all your WKT geometries are polygons, don’t use this function. It is slower than
ST_GeomFromText since it adds an additional validation step.

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.6.2

ﬂ This method implements the SQL/MM specification. SQL-MM 3: 8.3.6

Examples

SELECT ST_PolygonFromText ('POLYGON ((=71.1776585052917 42.3902909739571,-71.1776820268866 <+
42.3903701743239,

-71.1776063012595 42.3903825660754,-71.1775826583081 42.3903033653531,-71.1776585052917 <
42.3902909739571)) ") ;

st_polygonfromtext

010300000001000000050000006. . .

SELECT ST_PolygonFromText ('"POINT (1 2)') IS NULL as point_is_notpoly;

point_is_not_poly

See Also

ST GeomFromText

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 201 /896

8.8.1.15 ST_WKTToSQL

ST_WKTToSQL — Return a specified ST_Geometry value from Well-Known Text representation (WKT). This is an alias name
for ST_GeomFromText
Synopsis

geometry ST_WKTToSQL(text WKT);

Description

This method implements the SQL/MM specification. SQL-MM 3: 5.1.34

See Also

ST_GeomFromText

8.8.2 Well-Known Binary (WKB)

8.8.2.1 ST_GeogFromWKB

ST_GeogFromWKB — Creates a geography instance from a Well-Known Binary geometry representation (WKB) or extended
Well Known Binary (EWKB).

Synopsis

geography ST_GeogFromWKB(bytea wkb);

Description

The ST_GeogFromWKB function, takes a well-known binary representation (WKB) of a geometry or PostGIS Extended WKB
and creates an instance of the appropriate geography type. This function plays the role of the Geometry Factory in SQL.

If SRID is not specified, it defaults to 4326 (WGS 84 long lat).

This method supports Circular Strings and Curves

Examples

—-—-Although bytea rep contains single \, these need to be escaped when inserting into a <+
table

SELECT ST_AsText (

ST_GeogFromWKB (E'\\001\\002\\000\\000\\000\\002\\000\\000\\000\\037\\205\\353Q
AN\270~N\N\N\N300\\323Mb\\020X\\231C@\\020X9\\264 \\310~\\\\\\300) \\\\\\217\\302\\365\\230 <>
cer")

st_astext

LINESTRING(-113.98 39.198,-113.981 39.195)
(1 row)

PostGIS 3.3.0rc2 Manual 202/ 896

See Also

ST_GeogFromText, ST_AsBinary

8.8.2.2 ST_GeomFromEWKB

ST_GeomFromEWKB — Return a specified ST_Geometry value from Extended Well-Known Binary representation (EWKB).

Synopsis

geometry ST_GeomFromEWKB(bytea EWKB);

Description

Constructs a PostGIS ST_Geometry object from the OGC Extended Well-Known binary (EWKT) representation.

) Note
Note!
The EWKB format is not an OGC standard, but a PostGIS specific format that includes the spatial reference system
(SRID) identifier

Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

line string binary rep Of LINESTRING(-71.160281 42.258729,-71.160837 42.259113,-71.161144 42.25932) in NAD 83 long lat
(4269).

otet Note
N NOTE: Even though byte arrays are delimited with \ and may have ’, we need to escape both out with \ and ” if
standard_conforming_strings is off. So it does not look exactly like its ASEWKB representation.

SELECT ST_GeomFromEWKB (E'\\001\\002\\000\\000 \\255\\020\\000\\000\\003\\000\\000\\000\\344 <«
J:

\\013B\\3120\\300n\\303 (\\010\\036!E@"' '\\277E"' 'K

\\3120\\300\\366{b\\235x!EQ\\225|\\354.P\\3120Q

\\300p\\231\\323e1!E@");

. Note
Nf"""! In PostgreSQL 9.1+ - standard_conforming_strings is set to on by default, where as in past versions it was set to off.
You can change defaults as needed for a single query or at the database or server level. Below is how you would do it
with standard_conforming_strings = on. In this case we escape the ’ with standard ansi’, but slashes are not escaped

PostGIS 3.3.0rc2 Manual 203 /896

set standard_conforming_strings = on;
SELECT ST_GeomFromEWKB ('\001\002\000\000 \255\020\000\000\003\000\000\000\344J=\012\013B
\3120\300n\303 (\010\036!E@"'"'\277E"' 'K\012\3120Q0\300\366{b\235+x!E@\225|\354.P\3120\012\300 ¢
p\231\323el")

See Also

ST_AsBinary, ST_ASsEWKB, ST_GeomFromWKB

8.8.2.3 ST_GeomFromWKB

ST_GeomFromWKB — Creates a geometry instance from a Well-Known Binary geometry representation (WKB) and optional
SRID.

Synopsis

geometry ST_GeomFromWKB(bytea geom);
geometry ST_GeomFromWKB(bytea geom, integer srid);

Description

The ST_GeomFromWKB function, takes a well-known binary representation of a geometry and a Spatial Reference System ID
(SRID) and creates an instance of the appropriate geometry type. This function plays the role of the Geometry Factory in SQL.
This is an alternate name for ST_WKBToSQL.

If SRID is not specified, it defaults to O (Unknown).

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.7.2 - the optional SRID
is from the conformance suite

ﬂ This method implements the SQL/MM specification. SQL-MM 3: 5.1.41

ﬂ This method supports Circular Strings and Curves

Examples

—-—-Although bytea rep contains single \, these need to be escaped when inserting into a <
table
—— unless standard_conforming_strings is set to on.

SELECT ST_ASEWKT (

ST_GeomFromWKB (E'\\001\\002\\000\\000\\000\\002\\000\\000\\000\\037\\205\\3530Q «
N\270~N\\N\N300\\323Mb\\020X\\231C@\\020X9\\264 \\310~\\\\\\300) \\\\\\217\\302\\365\\230 <
ce',4326)

st_asewkt
SRID=4326; LINESTRING (-113.98 39.198,-113.981 39.195)
(1 row)

SELECT
ST_AsText (
ST_GeomFromWKB (
ST_ASEWKB ('POINT (2 5)'::geometry)
)
) i

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 204 / 896

st_astext

POINT (2 5)
(1 row)

See Also

ST_WKBToSQL, ST_AsBinary, ST_GeomFromEWKB

8.8.2.4 ST_LineFromWKB

ST_LineFromWKB — Makes a LINESTRING from WKB with the given SRID

Synopsis

geometry ST_LineFromWKB(bytea WKB);
geometry ST_LineFromWKB(bytea WKB, integer srid);

Description

The ST_LineFromWKB function, takes a well-known binary representation of geometry and a Spatial Reference System ID
(SRID) and creates an instance of the appropriate geometry type - in this case, a LINESTRING geometry. This function plays
the role of the Geometry Factory in SQL.

If an SRID is not specified, it defaults to 0. NULL is returned if the input bytea does not represent a LINESTRING.

Not Note
OGC SPEC 3.2.6.2 - option SRID is from the conformance suite.

o4 Note
N If you know all your geometries are LINESTRINGS, its more efficient to just use ST_GeomFromWKB. This function
just calls ST_GeomFromWKB and adds additional validation that it returns a linestring.

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.6.2

ﬂ This method implements the SQL/MM specification. SQL-MM 3: 7.2.9

Examples

SELECT ST_LineFromWKB (ST_AsBinary (ST_GeomFromText ('LINESTRING(1 2, 3 4)'))) AS aline,
ST_LineFromWKB (ST_AsBinary (ST_GeomFromText ('POINT (1 2)"'))) IS NULL AS null_return;

aline | null_return

010200000002000000000000000000F ... | t

See Also

ST_GeomFromWKB, ST_LinestringFromWKB

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 205/ 896

8.8.2.5 ST_LinestringFromWKB

ST_LinestringFromWKB — Makes a geometry from WKB with the given SRID.

Synopsis

geometry ST_LinestringFromWKB(bytea WKB);
geometry ST_LinestringFromWKB(bytea WKB, integer srid);

Description

The ST_LinestringFromWKB function, takes a well-known binary representation of geometry and a Spatial Reference Sys-
tem ID (SRID) and creates an instance of the appropriate geometry type - in this case, a LINESTRING geometry. This function
plays the role of the Geometry Factory in SQL.

If an SRID is not specified, it defaults to 0. NULL is returned if the input bytea does not represent a LINESTRING geometry.
This an alias for ST LineFromWKB.

Nott Note
OGC SPEC 3.2.6.2 - optional SRID is from the conformance suite.

4 Note
N If you know all your geometries are LINESTRINGS, it's more efficient to just use ST_GeomFromWKB. This function
just calls ST_GeomFromWKB and adds additional validation that it returns a LINESTRING.

F
%" This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.6.2
F

% This method implements the SQL/MM specification. SQL-MM 3: 7.2.9

Examples

SELECT
ST_LineStringFromWKB (
ST_AsBinary (ST_GeomFromText ('LINESTRING(1 2, 3 4)"))
) AS aline,
ST_LinestringFromWKB (
ST_AsBinary (ST_GeomFromText ('POINT (1 2)"'))
) IS NULL AS null_return;

aline | null_return
010200000002000000000000000000F ... | t
See Also

ST _GeomFromWKB, ST LineFromWKB

8.8.2.6 ST_PointFromWKB

ST_PointFromWKB — Makes a geometry from WKB with the given SRID

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 206 / 896

Synopsis

geometry ST_GeomFromWKB(bytea geom);
geometry ST_GeomFromWKB(bytea geom, integer srid);

Description

The ST_PointFromWKB function, takes a well-known binary representation of geometry and a Spatial Reference System ID
(SRID) and creates an instance of the appropriate geometry type - in this case, a POINT geometry. This function plays the role
of the Geometry Factory in SQL.

If an SRID is not specified, it defaults to 0. NULL is returned if the input bytea does not represent a POINT geometry.
ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.7.2

ﬂ This method implements the SQL/MM specification. SQL-MM 3: 6.1.9

ﬂ This function supports 3d and will not drop the z-index.

ﬂ This method supports Circular Strings and Curves

Examples
SELECT
ST_AsText (
ST_PointFromWKB (
ST_ASEWKB ('"POINT (2 5) '::geometry)

)
)
st_astext

POINT (2 5)
(1 row)

SELECT
ST_AsText (
ST_PointFromWKB (
ST_ASEWKB ('LINESTRING (2 5, 2 6)'::geometry)
)
) i
st_astext

See Also

ST_GeomFromWKB, ST_LineFromWKB

8.8.2.7 ST_WKBToSQL

ST_WKBToSQL — Return a specified ST_Geometry value from Well-Known Binary representation (WKB). This is an alias
name for ST_GeomFromWXKB that takes no srid

Synopsis

geometry ST_WKBToSQL(bytea WKB);

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 207 / 896

Description

This method implements the SQL/MM specification. SQL-MM 3: 5.1.36

See Also

ST _GeomFromWKB

8.8.3 Other Formats

8.8.3.1 ST _Box2dFromGeoHash

ST_Box2dFromGeoHash — Return a BOX2D from a GeoHash string.

Synopsis

box2d ST_Box2dFromGeoHash(text geohash, integer precision=full_precision_of_geohash);

Description

Return a BOX2D from a GeoHash string.
If no precision is specified ST_Box2dFromGeoHash returns a BOX2D based on full precision of the input GeoHash string.

If precision is specified ST_Box2dFromGeoHash will use that many characters from the GeoHash to create the BOX2D.
Lower precision values results in larger BOX2Ds and larger values increase the precision.

Availability: 2.1.0

Examples
SELECT ST_Box2dFromGeoHash ('9gqgj7nmxncgyy4d0dbxgz0"') ;
st_geomfromgeohash
BOX(-115.172816 36.114646,-115.172816 36.114646)
SELECT ST_Box2dFromGeoHash ('9gqgj7nmxncgyy4d0dbxgz0', 0);
st_box2dfromgeohash

BOX (=180 -90,180 90)

SELECT ST_Box2dFromGeoHash ('9qgqgj7nmxncgyy4d0dbxgz0', 10);
st_box2dfromgeochash

BOX (-115.17282128334 36.1146408319473,-115.172810554504 36.1146461963654)

See Also

ST_GeoHash, ST_GeomFromGeoHash, ST_PointFromGeoHash

8.8.3.2 ST_GeomFromGeoHash

ST_GeomFromGeoHash — Return a geometry from a GeoHash string.

PostGIS 3.3.0rc2 Manual 208 / 896

Synopsis

geometry ST_GeomFromGeoHash(text geohash, integer precision=full_precision_of_geohash);

Description

Return a geometry from a GeoHash string. The geometry will be a polygon representing the GeoHash bounds.
If no precision is specified ST_GeomFromGeoHash returns a polygon based on full precision of the input GeoHash string.
If precision is specified ST_GeomFromGeoHash will use that many characters from the GeoHash to create the polygon.

Availability: 2.1.0

Examples

SELECT ST_AsText (ST_GeomFromGeoHash ('9qqj7nmxncgyy4d0dbxgz0"')) ;
st_astext

POLYGON ((-115.172816 36.114646,-115.172816 36.114646,-115.172816 36.114646,-115.172816 <«
36.114646,-115.172816 36.114646))

SELECT ST_AsText (ST_GeomFromGeoHash ('9gqgj7nmxncgyy4d0dbxgz0', 4));
st_astext

POLYGON ((-115.3125 36.03515625,-115.3125 36.2109375,-114.9609375 36.2109375,-114.9609375 <+
36.03515625,-115.3125 36.03515625))

SELECT ST_AsText (ST_GeomFromGeoHash ('9qqgj7nmxncgyy4d0dbxgz0', 10));
st_astext <

POLYGON ((-115.17282128334 36.1146408319473,-115.17282128334 <>
36.1146461963654,-115.172810554504 36.1146461963654,-115.172810554504 <>
36.1146408319473,-115.17282128334 36.1146408319473))

See Also

ST GeoHash,ST Box2dFromGeoHash, ST PointFromGeoHash

8.8.3.3 ST_GeomFromGML

ST_GeomFromGML — Takes as input GML representation of geometry and outputs a PostGIS geometry object

Synopsis

geometry ST_GeomFromGML(text geomgml);
geometry ST_GeomFromGML(text geomgml, integer srid);

PostGIS 3.3.0rc2 Manual 209/ 896

Description

Constructs a PostGIS ST_Geometry object from the OGC GML representation.
ST_GeomFromGML works only for GML Geometry fragments. It throws an error if you try to use it on a whole GML document.
OGC GML versions supported:

e GML 3.2.1 Namespace
e GML 3.1.1 Simple Features profile SF-2 (with GML 3.1.0 and 3.0.0 backward compatibility)
* GML 2.1.2

OGC GML standards, cf: http://www.opengeospatial.org/standards/gml:
Availability: 1.5, requires libxml2 1.6+
Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.

Enhanced: 2.0.0 default srid optional parameter added.
This function supports 3d and will not drop the z-index.
This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

GML allow mixed dimensions (2D and 3D inside the same MultiGeometry for instance). As PostGIS geometries don’t,
ST_GeomFromGML convert the whole geometry to 2D if a missing Z dimension is found once.

GML support mixed SRS inside the same MultiGeometry. As PostGIS geometries don’t, ST_GeomFromGML, in this case,
reproject all subgeometries to the SRS root node. If no srsName attribute available for the GML root node, the function throw an
error.

ST_GeomFromGML function is not pedantic about an explicit GML namespace. You could avoid to mention it explicitly for
common usages. But you need it if you want to use XLink feature inside GML.

N;ﬂ"! Note

ST_GeomFromGML function not support SQL/MM curves geometries.

Examples - A single geometry with srsName

SELECT ST_GeomFromGML ('
<gml:LineString srsName="EPSG:4269">
<gml:coordinates>
-71.16028,42.258729 -71.160837,42.259112 -71.161143,42.25932
</gml:coordinates>
</gml:LineString>"');

Examples - XLink usage

SELECT ST_GeomEFromGML ('
<gml:LineString xmlns:gml="http://www.opengis.net/gml"
xmlns:xlink="http://www.w3.0rg/1999/x1link"
srsName="urn:ogc:def:crs:EPSG::4269">
<gml:pointProperty>
<gml:Point gml:id="pl"><gml:pos>42.258729 -71.16028</gml:pos></gml:Point>

http://www.opengeospatial.org/standards/gml

PostGIS 3.3.0rc2 Manual

210/896

</gml:pointProperty>

<gml:pos>42.259112 -71.160837</gml:pos>

<gml:pointProperty>

<gml:Point xlink:type="simple" xlink:href="#pl"/>

</gml:pointProperty>
</gml:LineString>"'););

Examples - Polyhedral Surface

SELECT ST_ASEWKT (ST_GeomFromGML ('

<gml:PolyhedralSurface>
<gml:polygonPatches>
<gml:PolygonPatch>
<gml:exterior>

<gml:LinearRing><gml:posList srsDimension="3">0

posList></gml:LinearRing>

</gml:exterior>
</gml:PolygonPatch>
<gml:PolygonPatch>

<gml:exterior>

<gml:LinearRing><gml:posList

></gml:LinearRing>
</gml:exterior>
</gml:PolygonPatch>
<gml:PolygonPatch>
<gml:exterior>

<gml:LinearRing><gml:posList

></gml:LinearRing>
</gml:exterior>
</gml:PolygonPatch>
<gml:PolygonPatch>
<gml:exterior>

<gml:LinearRing><gml:posList

></gml:LinearRing>
</gml:exterior>
</gml:PolygonPatch>
<gml:PolygonPatch>
<gml:exterior>

<gml:LinearRing><gml:posList

></gml:LinearRing>
</gml:exterior>
</gml:PolygonPatch>
<gml:PolygonPatch>
<gml:exterior>

<gml:LinearRing><gml:posList

></gml:LinearRing>
</gml:exterior>
</gml:PolygonPatch>
</gml:polygonPatches>
</gml:PolyhedralSurface>"'));

-— result —-
POLYHEDRALSURFACE (((0 0 0,0
((0 0 0,01 0,110,1200,0
((0 0 0,1 00,101,000 1,0
(¢ 10,211,121 01,1 00,1
(¢0 1 0,011,212 11,1 10,0
((<0 01,2 01,11 1,01 1,0

~

O R P OO O

srsDimension="3">0 0 O

srsDimension="3">0 0 O

srsDimension="3">1 1 0

srsDimension="3">0 1 0

srsDimension="3">0 0 1

1,01 1,0 1 0,0 0 0)),
0)),

0 0 0</gml: ¢

0</gml

0</gml

0</gml

0</gml

1</gml

:posList

:posList

:posList

:posList

:posList <>

PostGIS 3.3.0rc2 Manual 211 /896

See Also

Section 2.2.3, ST_AsGML, ST_GMLToSQL

8.8.3.4 ST _GeomFromGeoJSON

ST_GeomFromGeoJSON — Takes as input a geojson representation of a geometry and outputs a PostGIS geometry object

Synopsis

geometry ST_GeomFromGeoJSON(text geomjson);
geometry ST _GeomFromGeoJSON(json geomjson);
geometry ST_GeomFromGeoJSON(jsonb geomjson);

Description

Constructs a PostGIS geometry object from the GeoJSON representation.

ST_GeomFromGeoJSON works only for JSON Geometry fragments. It throws an error if you try to use it on a whole JSON
document.

Enhanced: 3.0.0 parsed geometry defaults to SRID=4326 if not specified otherwise.
Enhanced: 2.5.0 can now accept json and jsonb as inputs.

Availability: 2.0.0 requires - JSON-C >=0.9

;H'! Note
N If you do not have JSON-C enabled, support you will get an error notice instead of seeing an output. To enable JSON-C,
run configure --with-jsondir=/path/to/json-c. See Section 2.2.3 for details.

This function supports 3d and will not drop the z-index.

Examples

SELECT ST_AsText (ST_GeomFromGeoJSON (' {"type":"Point", "coordinates":[-48.23456,20.12345]}")) <
As wkt;

POINT (-48.23456 20.12345)

—-— a 3D linestring
SELECT ST_AsText (ST_GeomFromGeoJSON (' {"type":"LineString", "coordinates <
":[011,2,31,14,5,61,17,8,911}")) As wkt;

LINESTRING(1 2,4 5,7 8)

See Also

ST AsText, ST _AsGeoJSON, Section 2.2.3

PostGIS 3.3.0rc2 Manual 212 /896

8.8.3.5 ST_GeomFromKML

ST_GeomFromKML — Takes as input KML representation of geometry and outputs a PostGIS geometry object

Synopsis

geometry ST_GeomFromKML(text geomkml);

Description

Constructs a PostGIS ST_Geometry object from the OGC KML representation.
ST_GeomFromKML works only for KML Geometry fragments. It throws an error if you try to use it on a whole KML document.

OGC KML versions supported:
* KML 2.2.0 Namespace

OGC KML standards, cf: http://www.opengeospatial.org/standards/kml:
Availability: 1.5, requires libxml2 2.6+

This function supports 3d and will not drop the z-index.

Not¢ Note
ST_GeomFromKML function not support SQL/MM curves geometries.

Examples - A single geometry with srsName
SELECT ST_GeomFromKML ('
<LineString>
<coordinates>-71.1663,42.2614

-71.1667,42.2616</coordinates>
</LineString>");

See Also

Section 2.2.3, ST _AsKML

8.8.3.6 ST _GeomFromTWKB

ST_GeomFromTWKB — Creates a geometry instance from a TWKB ("Tiny Well-Known Binary") geometry representation.

Synopsis

geometry ST_GeomFromTWKB(bytea twkb);

Description

The ST_GeomF romTWKB function, takes a a TWKB ("Tiny Well-Known Binary") geometry representation (WKB) and creates
an instance of the appropriate geometry type.

http://www.opengeospatial.org/standards/kml
https://github.com/TWKB/Specification/blob/master/twkb.md
https://github.com/TWKB/Specification/blob/master/twkb.md

PostGIS 3.3.0rc2 Manual 213 /896

Examples
SELECT ST_AsText (ST_GeomFromTWKB (ST_AsSTWKB ('LINESTRING (126 34, 127 35)'::geometry)));
st_astext

LINESTRING (126 34, 127 35)
(1 row)

SELECT ST_ASEWKT (
ST_GeomFromTWKB (E'\\x620002f7£40dbced4040105")
st_asewkt

LINESTRING(-113.98 39.198,-113.981 39.195)
(1 row)

See Also

ST_AsTWKB

8.8.3.7 ST_GMLToSQL

ST_GMLToSQL — Return a specified ST_Geometry value from GML representation. This is an alias name for ST_GeomFromGML

Synopsis

geometry ST_GMLToSQL(text geomgml);
geometry ST_GMLToSQL(text geomgml, integer srid);

Description

This method implements the SQL/MM specification. SQL-MM 3: 5.1.50 (except for curves support).
Auvailability: 1.5, requires libxml2 1.6+
Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.

Enhanced: 2.0.0 default srid optional parameter added.

See Also

Section 2.2.3, ST _GeomFromGML, ST _AsGML

8.8.3.8 ST_LineFromEncodedPolyline

ST_LineFromEncodedPolyline — Creates a LineString from an Encoded Polyline.

Synopsis

geometry ST_LineFromEncodedPolyline(text polyline, integer precision=5);

PostGIS 3.3.0rc2 Manual 214/ 896

Description

Creates a LineString from an Encoded Polyline string.

Optional precision specifies how many decimal places will be preserved in Encoded Polyline. Value should be the same on
encoding and decoding, or coordinates will be incorrect.

See http://developers.google.com/maps/documentation/utilities/polylinealgorithm

Availability: 2.2.0

Examples

—— Create a line string from a polyline

SELECT ST_ASEWKT (ST_LineFromEncodedPolyline ('_p~iF~ps|U_ulLnngC_mgNvxg @'));
-— result —-—

SRID=4326; LINESTRING (-120.2 38.5,-120.95 40.7,-126.453 43.252)

—— Select different precision that was used for polyline encoding
SELECT ST_ASEWKT (ST_LineFromEncodedPolyline ('_p~iF~ps|U_ulLnngC_mgNvxg @',6));

-— result —-
SRID=4326; LINESTRING (-12.02 3.85,-12.095 4.07,-12.6453 4.3252)

See Also

ST_AsEncodedPolyline

8.8.3.9 ST_PointFromGeoHash

ST_PointFromGeoHash — Return a point from a GeoHash string.

Synopsis

point ST_PointFromGeoHash(text geohash, integer precision=full_precision_of_geohash);

Description

Return a point from a GeoHash string. The point represents the center point of the GeoHash.
If no precision is specified ST_PointFromGeoHash returns a point based on full precision of the input GeoHash string.
If precision is specified ST_PointFromGeoHash will use that many characters from the GeoHash to create the point.

Availability: 2.1.0

Examples

SELECT ST_AsText (ST_PointFromGeoHash ('9qqgj7nmxncgyy4d0dbxqgz0"')) ;
st_astext

POINT (-115.172816 36.114646)

SELECT ST_AsText (ST_PointFromGeoHash ('9qqj7nmxncgyy4d0dbxqgz0', 4));
st_astext

POINT (-115.13671875 36.123046875)

PostGIS 3.3.0rc2 Manual

215/896

SELECT ST_AsText (ST_PointFromGeoHash ('9qqgj7nmxncgyy4d0dbxgz0', 10));
st_astext

POINT (-115.172815918922 36.1146435141563)

See Also

ST _GeoHash, ST_Box2dFromGeoHash, ST _GeomFromGeoHash

8.8.3.10 ST_FromFlatGeobufToTable

ST_FromFlatGeobufToTable — Creates a table based on the structure of FlatGeobuf data.

Synopsis

void ST_FromFlatGeobufToTable(text schemaname, text tablename, bytea FlatGeobuf input data);

Description

Creates a table based on the structure of FlatGeobuf data. (http://flatgeobuf.org).
schema Schema name.

table Table name.

data Input FlatGeobuf data.

Availability: 3.2.0

8.8.3.11 ST_FromFlatGeobuf

ST _FromFlatGeobuf — Reads FlatGeobuf data.

Synopsis

setof anyelement ST_FromFlatGeobuf(anyelement Table reference, bytea FlatGeobuf input data);

Description

Reads FlatGeobuf data (http://flatgeobuf.org). NOTE: PostgreSQL bytea cannot exceed 1GB.
tabletype reference to a table type.

data input FlatGeobuf data.

Auvailability: 3.2.0

8.9 Geometry Output

8.9.1 Well-Known Text (WKT)

8.9.1.1 ST_ASEWKT

ST_ASEWKT — Return the Well-Known Text (WKT) representation of the geometry with SRID meta data.

http://flatgeobuf.org
http://flatgeobuf.org

PostGIS 3.3.0rc2 Manual 216/ 896

Synopsis

text ST_ASEWKT(geometry gl);

text ST_ASEWKT(geometry g1, integer maxdecimaldigits=15);
text ST_AsEWKT(geography g1);

text ST_AsEWKT(geography g1, integer maxdecimaldigits=15);

Description

Returns the Well-Known Text representation of the geometry prefixed with the SRID. The optional maxdecimaldigits argu-
ment may be used to reduce the maximum number of decimal digits after floating point used in output (defaults to 15).

To perform the inverse conversion of EWKT representation to PostGIS geometry use ST_GeomFromEWKT.

Warning
0 Using the maxdecimaldigits parameter can cause output geometry to become invalid. To avoid this use
ST_ReducePrecision with a suitable gridsize first.

Not Note
The WKT spec does not include the SRID. To get the OGC WKT format use ST_AsText.

Warning
0 WKT format does not maintain precision so to prevent floating truncation, use ST_AsBinary or ST_AsEWKB format for
transport.

Enhanced: 3.1.0 support for optional precision parameter.

Enhanced: 2.0.0 support for Geography, Polyhedral surfaces, Triangles and TIN was introduced.
This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

SELECT ST_ASEWKT ('0103000020E61000000100000005000000000000
00
FO3F000000000000F03F000000000000F03F000000000000F03
F00" : : geometry) ;

st_asewkt

SRID=4326;POLYGON((O 0,0 1,1 1,1 0,0 0))
(1 row)

PostGIS 3.3.0rc2 Manual 217 / 896

SELECT ST_ASEWKT ('0108000080030000000000000060 <>
E30A4100000000785C0241000000000000F03F0000000018

E20A4100000000485F024100000000000000400000000018

E20A4100000000305C02410000000000000840")

-—-st_asewkt———
CIRCULARSTRING (220268 150415 1,220227 150505 2,220227 150406 3)

See Also

ST_AsBinary, ST_ASEWKB, ST_AsText, ST_GeomFromEWKT

8.9.1.2 ST_AsText

ST_AsText — Return the Well-Known Text (WKT) representation of the geometry/geography without SRID metadata.

Synopsis

text ST_AsText(geometry gl);

text ST_AsText(geometry gl, integer maxdecimaldigits = 15);
text ST_AsText(geography gl);

text ST_AsText(geography g1, integer maxdecimaldigits = 15);

Description

Returns the OGC Well-Known Text (WKT) representation of the geometry/geography. The optional maxdecimaldigits argu-
ment may be used to limit the number of digits after the decimal point in output ordinates (defaults to 15).

To perform the inverse conversion of WKT representation to PostGIS geometry use ST_GeomFromText.

" Note
Noteh
The standard OGC WKT representation does not include the SRID. To include the SRID as part of the output represen-

tation, use the non-standard PostGIS function ST_AsEWKT

Warning

0 The textual representation of numbers in WKT may not maintain full floating-point precision. To ensure full ac-
curacy for data storage or transport it is best to use Well-Known Binary (WKB) format (see ST_AsBinary and
maxdecimaldigits).

Warning
0 Using the maxdecimaldigits parameter can cause output geometry to become invalid. To avoid this use
ST_ReducePrecision with a suitable gridsize first.

Availability: 1.5 - support for geography was introduced.

Enhanced: 2.5 - optional parameter precision introduced.
ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.1
ﬂ This method implements the SQL/MM specification. SQL-MM 3: 5.1.25

ﬂ This method supports Circular Strings and Curves

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 218 /896

Examples

SELECT ST_AsText ('01030000000100000005000000000000000000
00
FO3F000000000000F03F000000000000F03F000000000000F03
F00") ;

st_astext

POLYGON((O 0,0 1,1 1,1 0,0 0))

Full precision output is the default.

SELECT ST_AsText ('POINT(111.1111111 1.1111111)"));
st_astext

POINT(111.1111111 1.1111111)

The maxdecimaldigits argument can be used to limit output precision.

SELECT ST_AsText ('POINT(111.1111111 1.1111111)"), 2);
st_astext

POINT (111.11 1.11)

See Also

ST_AsBinary, ST_AsEWKB, ST_AsEWKT, ST_GeomFromText

8.9.2 Well-Known Binary (WKB)

8.9.2.1 ST_AsBinary

ST_AsBinary — Return the OGC/ISO Well-Known Binary (WKB) representation of the geometry/geography without SRID
meta data.

Synopsis

bytea ST_AsBinary(geometry gl);

bytea ST_AsBinary(geometry g1, text NDR_or_XDR);
bytea ST_AsBinary(geography gl);

bytea ST_AsBinary(geography g1, text NDR_or_XDR);

Description

Returns the OGC/ISO Well-Known Binary (WKB) representation of the geometry. The first function variant defaults to encoding
using server machine endian. The second function variant takes a text argument specifying the endian encoding, either little-
endian CNDR’) or big-endian " XDR’).

WKB format is useful to read geometry data from the database and maintaining full numeric precision. This avoids the precision
rounding that can happen with text formats such as WKT.

To perform the inverse conversion of WKB to PostGIS geometry use ST_GeomFromWKB.

) Note
Notet
The OGC/ISO WKB format does not include the SRID. To get the EWKB format which does include the SRID use
ST_AseEWKB

PostGIS 3.3.0rc2 Manual 219 /896

4 Note
N The default behavior in PostgreSQL 9.0 has been changed to output bytea in hex encoding. If your GUI tools require
the old behavior, then SET bytea_output="escape’ in your database.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Enhanced: 2.0.0 support for higher coordinate dimensions was introduced.
Enhanced: 2.0.0 support for specifying endian with geography was introduced.
Availability: 1.5.0 geography support was introduced.

Changed: 2.0.0 Inputs to this function can not be unknown -- must be geometry. Constructs such as ST_AsBinary (' POINT (1
2) ") are no longer valid and you will get an n st_asbinary (unknown) is not unique error. Code like that
needs to be changed to ST_AsBinary (' POINT (1 2)’::geometry) ;. If thatis not possible, then install legacy. sql.

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.1
ﬂ This method implements the SQL/MM specification. SQL-MM 3: 5.1.37

ﬂ This method supports Circular Strings and Curves

ﬂ This function supports Polyhedral surfaces.

ﬂ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

ﬂ This function supports 3d and will not drop the z-index.

Examples
SELECT ST_AsBinary (ST_GeomFromText ('POLYGON((O 0,0 1,1 1,1 0,0 0))"',4326));

st_asbinary

\x0103000000010000000500
000000£03£000000000000£03£000000000000£03£000000000000£03£0000000000000000000000
00000000000000000000000000

SELECT ST_AsBinary (ST_GeomFromText ('POLYGON((O 0,0 1,1 1,1 0,0 0))"',4326), 'XDR');
st_asbinary

\x00000000030000000100000005003££000
00000000003££00000000000003££00000000000003££00000000000000000000000000000000000
00000000000000000000000000

See Also
ST _GeomFromWKB, ST _AsEWKB, ST_AsTWKB, ST_AsText,

8.9.2.2 ST_AsEWKB

ST_ASEWKB — Return the Extended Well-Known Binary (EWKB) representation of the geometry with SRID meta data.

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 220/ 896

Synopsis

bytea ST_ASEWKB(geometry gl);
bytea ST_ASEWKB(geometry gl, text NDR_or_XDR);

Description

Returns the Extended Well-Known Binary (EWKB) representation of the geometry with SRID metadata. The first function
variant defaults to encoding using server machine endian. The second function variant takes a text argument specifying the
endian encoding, either little-endian ("NDR’) or big-endian (" XDR’).

WKB format is useful to read geometry data from the database and maintaining full numeric precision. This avoids the precision
rounding that can happen with text formats such as WKT.

To perform the inverse conversion of EWKB to PostGIS geometry use ST_GeomFromEWKB.

Not Note
To get the OGC/ISO WKB format use ST_AsBinary. Note that OGC/ISO WKB format does not include the SRID.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
ﬂ This function supports 3d and will not drop the z-index.

ﬁ This method supports Circular Strings and Curves

ﬂ This function supports Polyhedral surfaces.

ﬂ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
SELECT ST_AsSEWKB (ST_GeomFromText ('POLYGON((O 0,0 1,1 1,1 0,0 0))"',43206));

st_asewkb

\x0103000020e6100000010000000500
00000000000000£03£000000000000£03£000000000000£03£000000000000£03£00000000000000
0000000000000000000000000000000000

SELECT ST_ASEWKB (ST_GeomFromText ('POLYGON((O 0,0 1,1 1,1 0,0 0))"',4326), 'XDR');
st_asewkb

\x0020000003000010e6000000010000000500
003££00000000000003££00000000000003££00000000000003££000000000000000000000000000
0000000000000000000000000000000000

See Also

ST_AsBinary, ST_GeomFromEWKB, ST_SRID

8.9.2.3 ST_AsHEXEWKB

ST_AsHEXEWKB — Returns a Geometry in HEXEWKB format (as text) using either little-endian (NDR) or big-endian (XDR)
encoding.

PostGIS 3.3.0rc2 Manual 221 /896

Synopsis

text ST_AsHEXEWKB(geometry g1, text NDRorXDR);
text ST_AsHEXEWKB(geometry gl);

Description

Returns a Geometry in HEXEWKB format (as text) using either little-endian (NDR) or big-endian (XDR) encoding. If no
encoding is specified, then NDR is used.

Not¢ Note
Availability: 1.2.2

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Examples

SELECT ST_AsSHEXEWKB (ST_GeomFromText ("POLYGON((O 0,0 1,1 1,1 0,0 0))"',4326));
which gives same answer as

SELECT ST_GeomFromText ('POLYGON((O 0,0 1,1 1,1 0,0 0))"',4326)::text;

st_ashexewkb

0103000020E6100000010000000500
00000000000000000000000000000000
00000000000000000000000000000000F03F
000000000000F03F000000000000F03F000000000000F03
F00

8.9.3 Other Formats

8.9.3.1 ST_AsEncodedPolyline

ST_AsEncodedPolyline — Returns an Encoded Polyline from a LineString geometry.

Synopsis

text ST_AsEncodedPolyline(geometry geom, integer precision=5);

Description

Returns the geometry as an Encoded Polyline. This format is used by Google Maps with precision=5 and by Open Source
Routing Machine with precision=5 and 6.

Optional precision specifies how many decimal places will be preserved in Encoded Polyline. Value should be the same on
encoding and decoding, or coordinates will be incorrect.

Availability: 2.2.0

PostGIS 3.3.0rc2 Manual 222/ 896

Examples

Basic

SELECT ST_AsEncodedPolyline (GeomFromEWKT ('SRID=4326; LINESTRING (-120.2 38.5,-120.95 <
40.7,-126.453 43.252)"));

——result—--

|_p~iF~ps|U_ulLnngC_mgNvxqg" @

Use in conjunction with geography linestring and geography segmentize, and put on google maps

—— the SQL for Boston to San Francisco, segments every 100 KM
SELECT ST_AsEncodedPolyline (
ST_Segmentize (
ST_GeogFromText ('LINESTRING(-71.0519 42.4935,-122.4483 37.64)"),
100000) : :geometry) As encodedFlightPath;

javascript will look something like this where $ variable you replace with query result

<script type="text/javascript" src="http://maps.googleapis.com/maps/api/js?libraries= <>
geometry"></script>
<script type="text/javascript">
flightPath = new google.maps.Polyline ({
path: google.maps.geometry.encoding.decodePath ("$encodedFlightPath"),
map: map,
strokeColor: '#0000CC',
strokeOpacity: 1.0,
strokeWeight: 4

b i
</script>

See Also

ST_LineFromEncodedPolyline, ST_Segmentize

8.9.3.2 ST_AsFlatGeobuf

ST_AsFlatGeobuf — Return a FlatGeobuf representation of a set of rows.

Synopsis

bytea ST_AsFlatGeobuf(anyelement set row);
bytea ST_AsFlatGeobuf(anyelement row, bool index);
bytea ST_AsFlatGeobuf(anyelement row, bool index, text geom_name);

Description

Return a FlatGeobuf representation (http://flatgeobuf.org) of a set of rows corresponding to a FeatureCollection. NOTE: Post-
greSQL bytea cannot exceed 1GB.

row row data with at least a geometry column.
index toggle spatial index creation. Default is false.
geom_name is the name of the geometry column in the row data. If NULL it will default to the first found geometry column.

Availability: 3.2.0

http://flatgeobuf.org

PostGIS 3.3.0rc2 Manual 223 /896

8.9.3.3 ST_AsGeobuf

ST_AsGeobuf — Return a Geobuf representation of a set of rows.

Synopsis

bytea ST_AsGeobuf(anyelement set row);
bytea ST_AsGeobuf(anyelement row, text geom_name);

Description

Return a Geobuf representation (https://github.com/mapbox/geobuf) of a set of rows corresponding to a FeatureCollection. Every
input geometry is analyzed to determine maximum precision for optimal storage. Note that Geobuf in its current form cannot be
streamed so the full output will be assembled in memory.

row row data with at least a geometry column.
geom_name is the name of the geometry column in the row data. If NULL it will default to the first found geometry column.

Availability: 2.4.0

Examples

SELECT encode (ST_AsGeobuf (q, 'geom'), 'baseb64')
FROM (SELECT ST_GeomFromText ('POLYGON((O 0,0 1,1 1,1 0,0 0))') AS geom) AS qg;
st_asgeobuf

GAAiEAOOCgwIBBoIAAAAAgIAAAE=

8.9.3.4 ST _AsGeoJSON

ST_AsGeoJSON — Return a geometry as a GeoJSON element.

Synopsis

text ST_AsGeoJSON(record feature, text geomcolumnname, integer maxdecimaldigits=9, boolean pretty_bool=false);
text ST_AsGeoJSON(geometry geom, integer maxdecimaldigits=9, integer options=8);
text ST_AsGeoJSON(geography geog, integer maxdecimaldigits=9, integer options=0);

Description

Returns a geometry as a GeoJSON "geometry", or a row as a GeoJSON "feature". (See the GeoJSON specifications RFC 7946).
2D and 3D Geometries are both supported. GeoJSON only support SFS 1.1 geometry types (no curve support for example).

The maxdecimaldigits argument may be used to reduce the maximum number of decimal places used in output (defaults
to 9). If you are using EPSG:4326 and are outputting the geometry only for display, maxdecimaldigits=6 can be a good
choice for many maps.

Warning
Using the maxdecimaldigits parameter can cause output geometry to become invalid. To avoid this use
ST_ReducePrecision with a suitable gridsize first.

https://github.com/mapbox/geobuf
https://tools.ietf.org/html/rfc7946

PostGIS 3.3.0rc2 Manual 224 / 896

The options argument can be used to add BBOX or CRS in GeoJSON output:

* 0: means no option

1: GeoJSON BBOX

* 2: GeoJSON Short CRS (e.g EPSG:4326)

4: GeoJSON Long CRS (e.g urn:ogc:def:crs:EPSG::4326)

8: GeoJSON Short CRS if not EPSG:4326 (default)

The GeoJSON specification states that polygons are oriented using the Right-Hand Rule, and some clients require this orientation.
This can be ensured by using ST_ForcePolygonCCW . The specification also requires that geometry be in the WGS84 coordinate
system (SRID = 4326). If necessary geometry can be projected into WGS84 using ST_Transform: ST_Transform(geom,
4326).

GeoJSON can be tested and viewed online at geojson.io and geojsonlint.com. It is widely supported by web mapping frameworks:

* OpenLayers GeoJSON Example
e Leaflet GeoJSON Example

* Mapbox GL GeoJSON Example

Availability: 1.3.4

Auvailability: 1.5.0 geography support was introduced.
Changed: 2.0.0 support default args and named args.
Changed: 3.0.0 support records as input

Changed: 3.0.0 output SRID if not EPSG:4326.

ﬂ This function supports 3d and will not drop the z-index.

Examples

Generate a FeatureCollection:

SELECT Jjson_build_object (
'type', 'FeatureCollection',
'features', json_agg(ST_AsGeoJSON (t.x) ::Jjson)
)
FROM (VALUES (1, 'one', 'POINT(1l 1)'::geometry),
(2, 'two', 'POINT(2 2)'"),
(3, 'three', 'POINT (3 3)"')
) as t(id, name, geom);

{"type" : "FeatureCollection", "features" : [{"type": "Feature", "geometry": {"type":"Point <
","coordinates":[1,1]}, "properties": {"id": 1, "name": "one"}}, {"type": "Feature", " &
geometry": {"type":"Point","coordinates":[2,2]}, "properties": {"id": 2, "name": "two
"}}, {"type": "Feature", "geometry": {"type":"Point","coordinates":[3,3]}, "properties": ¢

{"id": 3, "name": "three"}}]}

Generate a Feature:

SELECT ST_AsGeoJSON (t.x)
FROM (VALUES (1, 'one', 'POINT(l 1)'::geometry)) AS t(id, name, geom);

http://geojson.io/
http://geojson.io/
https://openlayers.org/en/latest/examples/geojson.html
https://leafletjs.com/examples/geojson/
https://www.mapbox.com/mapbox-gl-js/example/multiple-geometries/

PostGIS 3.3.0rc2 Manual 225 /896

st_asgeojson

{"type": "Feature", "geometry": {"type":"Point","coordinates":[1l,1]}, "properties": {"id": ¢
1, "name": "one"}}

An alternate way to generate Features with an id property is to use JSONB functions and operators:

SELECT Jjsonb_build_object (

'type', 'Feature',
'id', id,
'geometry’', ST_AsGeoJSON (geom) : : jsonb,
'properties', to_jsonb(t.x) - 'id' - 'geom'
) AS json
FROM (VALUES (1, 'one', 'POINT(1l 1)'::geometry)) AS t(id, name, geom);
json
"id": 1, "type": "Feature", "geometry": {"type": "Point", "coordinates": [1, 11}, " <
properties": {"name": "one"}}

Don’t forget to transform your data to WGS84 longitude, latitude to conform with the GeoJSON specification:

SELECT ST_AsGeoJSON (ST_Transform(geom, 4326)) from fe_edges limit 1;

st_asgeojson

{"type":"MultiLineString", "coordinates":[[[-89.734634999999997,31.492072000000000],
[-89.734955999999997,31.492237999999997]111}

3D geometries are supported:

SELECT ST_AsGeoJSON ('LINESTRING(1 2 3, 4 5 6)"');

{"type":"LineString", "coordinates":[[1,2,3],1[4,5,6]1]}

See Also

ST_GeomFromGeoJSON, ST_ForcePolygonCCW , ST_Transform

8.9.3.5 ST_AsGML

ST_AsGML — Return the geometry as a GML version 2 or 3 element.

Synopsis

text ST_AsGML(geometry geom, integer maxdecimaldigits=15, integer options=0);

text ST_AsGML(geography geog, integer maxdecimaldigits=15, integer options=0, text nprefix=null, text id=null);

text ST_AsGML(integer version, geometry geom, integer maxdecimaldigits=15, integer options=0, text nprefix=null, text id=null);
text ST_AsGML(integer version, geography geog, integer maxdecimaldigits=15, integer options=0, text nprefix=null, text
id=null);

PostGIS 3.3.0rc2 Manual 226 / 896

Description

Return the geometry as a Geography Markup Language (GML) element. The version parameter, if specified, may be either 2 or
3. If no version parameter is specified then the default is assumed to be 2. The maxdecimaldigits argument may be used to
reduce the maximum number of decimal places used in output (defaults to 15).

Warning
Using the maxdecimaldigits parameter can cause output geometry to become invalid. To avoid this use
ST_ReducePrecision with a suitable gridsize first.

GML 2 refer to 2.1.2 version, GML 3 to 3.1.1 version

The ’options’ argument is a bitfield. It could be used to define CRS output type in GML output, and to declare data as lat/lon:

* 0: GML Short CRS (e.g EPSG:4326), default value
* 1: GML Long CRS (e.g urn:ogc:def:crs:EPSG::4326)

2: For GML 3 only, remove srsDimension attribute from output.

4: For GML 3 only, use <LineString> rather than <Curve> tag for lines.

* 16: Declare that datas are lat/lon (e.g srid=4326). Default is to assume that data are planars. This option is useful for GML
3.1.1 output only, related to axis order. So if you set it, it will swap the coordinates so order is lat lon instead of database lon
lat.

* 32: Output the box of the geometry (envelope).

The *namespace prefix’ argument may be used to specify a custom namespace prefix or no prefix (if empty). If null or omitted
*gml’ prefix is used

Availability: 1.3.2
Auvailability: 1.5.0 geography support was introduced.

Enhanced: 2.0.0 prefix support was introduced. Option 4 for GML3 was introduced to allow using LineString instead of Curve
tag for lines. GML3 Support for Polyhedral surfaces and TINS was introduced. Option 32 was introduced to output the box.

Changed: 2.0.0 use default named args
Enhanced: 2.1.0 id support was introduced, for GML 3.

Not? Note
Only version 3+ of ST_AsGML supports Polyhedral Surfaces and TINS.

This method implements the SQL/MM specification. SQL-MM IEC 13249-3: 17.2
This function supports 3d and will not drop the z-index.
This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

PostGIS 3.3.0rc2 Manual 227 / 896

Examples: Version 2

SELECT ST_AsGML (ST_GeomFromText ('POLYGON((O 0,0 1,1 1,1 0,0 0))"',4326));
st_asgml
<gml:Polygon srsName="EPSG:4326"><gml:outerBoundaryIs><gml:LinearRing><gml:coordinates <>
>0,0 0,1 1,1 1,0 0,0</gml:coordinates></gml:LinearRing></gml:outerBoundaryIs></gml: <
Polygon>

Examples: Version 3

—— Flip coordinates and output extended EPSG (16 | 1)--—
SELECT ST_AsGML (3, ST_GeomFromText ('POINT (5.234234233242 6.34534534534) ',4326), 5, 17);
st_asgml
<gml:Point srsName="urn:ogc:def:crs:EPSG::4326"><gml:pos>6.34535 5.23423</gml:pos></gml <
:Point>

—— Output the envelope (32) —-
SELECT ST_ASGML (3, ST_GeomFromText ('LINESTRING(l1 2, 3 4, 10 20)',4326), 5, 32);
st_asgml
<gml:Envelope srsName="EPSG:4326">
<gml:lowerCorner>1 2</gml:lowerCorner>
<gml:upperCorner>10 20</gml:upperCorner>
</gml:Envelope>

—— Output the envelope (32) , reverse (lat lon instead of lon lat) (16), long srs (l)= 32 | ¢
16 | 1 = 49 —-
SELECT ST _AsGML (3, ST_GeomFromText ('LINESTRING(l1 2, 3 4, 10 20)',4326), 5, 49);
st_asgml
<gml:Envelope srsName="urn:ogc:def:crs:EPSG::4326">
<gml:lowerCorner>2 1</gml:lowerCorner>
<gml:upperCorner>20 10</gml:upperCorner>
</gml:Envelope>

—— Polyhedral Example —-
SELECT ST_AsGML (3, ST_GeomFromEWKT ('POLYHEDRALSURFACE(((O0 0 0, 0 0 1, 011, 010, 00 0) ¢

(¢<0o o0, 010,110,100, 000O0)), (COOCO0CG, 2 00, 101, 001, 000,

(210,111, 101, 1 00, 1 0)),

(¢<0120, 011,111,110, 010), (¢(OO1, 1201, 111, 011, 001)))"));
st_asgml

<gml:PolyhedralSurface>
<gml:polygonPatches>
<gml:PolygonPatch>
<gml:exterior>
<gml:LinearRing>
<gml:posList srsDimension="3">0 0 0 0 0 1 0 1 1 0 1 0 O O O</gml:posList>
</gml:LinearRing>
</gml:exterior>
</gml:PolygonPatch>
<gml:PolygonPatch>
<gml:exterior>
<gml:LinearRing>
<gml:posList srsDimension="3">0 0 0 0 1 0 1 1 0 1 0 0 O O O</gml:posList>
</gml:LinearRing>

PostGIS 3.3.0rc2 Manual

228 / 896

</gml:exterior>
</gml:PolygonPatch>
<gml:PolygonPatch>

<gml:exterior>

<gml:LinearRing>
<gml:posList srsDimension="3">0 0
</gml:LinearRing>

</gml:exterior>
</gml:PolygonPatch>
<gml:PolygonPatch>

<gml:exterior>

<gml:LinearRing>
<gml:posList srsDimension="3">1 1
</gml:LinearRing>

</gml:exterior>
</gml:PolygonPatch>
<gml:PolygonPatch>

<gml:exterior>

<gml:LinearRing>
<gml:posList srsDimension="3">0 1
</gml:LinearRing>

</gml:exterior>
</gml:PolygonPatch>
<gml:PolygonPatch>

<gml:exterior>

<gml:LinearRing>
<gml:posList srsDimension="3">0 0
</gml:LinearRing>

</gml:exterior>
</gml:PolygonPatch>
</gml:polygonPatches>
</gml:PolyhedralSurface>

See Also

ST _GeomFromGML

8.9.3.6 ST_AsKML

ST_AsKML — Return the geometry as a KML element.

Synopsis

text ST_AsKML(geometry geom, integer maxdecimaldigits=15, text nprefix=NULL);
text ST_AsKML(geography geog, integer maxdecimaldigits=15, text nprefix=NULL);

Description

0</gml:posList>

0</gml:posList>

0</gml:posList>

1</gml:posList>

Return the geometry as a Keyhole Markup Language (KML) element. default maximum number of decimal places is 15, default
namespace is no prefix.

Warning

Using the maxdecimaldigits parameter can cause output geometry to become invalid. To avoid this use

ST_ReducePrecision with a suitable gridsize first.

PostGIS 3.3.0rc2 Manual 229/ 896

NO‘M Note
Requires PostGIS be compiled with Proj support. Use PostGIS_Full_Version to confirm you have proj support compiled
in.

Net Note

Availability: 1.2.2 - later variants that include version param came in 1.3.2

Not? Note

Enhanced: 2.0.0 - Add prefix namespace, use default and named args

Not? Note

Changed: 3.0.0 - Removed the "versioned" variant signature

Not? Note

AsKML output will not work with geometries that do not have an SRID

This function supports 3d and will not drop the z-index.

Examples
SELECT ST_AsKML (ST_GeomFromText ('"POLYGON((0 0,0 1,1 1,1 0,0 0))"',4326));
st_askml

<Polygon><outerBoundaryIs><LinearRing><coordinates>0,0 0,1 1,1 1,0 0,0</coordinates></ ¢
LinearRing></outerBoundaryIs></Polygon>

—--3d linestring

SELECT ST_AsSKML ('SRID=4326; LINESTRING(1 2 3, 4 5 6)"');
<LineString><coordinates>1,2,3 4,5, 6</coordinates></LineString>

See Also

ST_AsSVG, ST_AsGML

8.9.3.7 ST_AslLatLonText

ST_AsLatLonText — Return the Degrees, Minutes, Seconds representation of the given point.

Synopsis

text ST_AsLatLonText(geometry pt, text format=");

PostGIS 3.3.0rc2 Manual 230/ 896

Description

Returns the Degrees, Minutes, Seconds representation of the point.

N;‘“’! Note

It is assumed the point is in a lat/lon projection. The X (lon) and Y (lat) coordinates are normalized in the output to the
"normal" range (-180 to +180 for lon, -90 to +90 for lat).

The text parameter is a format string containing the format for the resulting text, similar to a date format string. Valid tokens
are "D" for degrees, "M" for minutes, "S" for seconds, and "C" for cardinal direction (NSEW). DMS tokens may be repeated to
indicate desired width and precision ("SSS.SSSS" means " 1.0023").

"M", "S", and "C" are optional. If "C" is omitted, degrees are shown with a "-" sign if south or west. If "S" is omitted, minutes
will be shown as decimal with as many digits of precision as you specify. If "M" is also omitted, degrees are shown as decimal
with as many digits precision as you specify.

If the format string is omitted (or zero-length) a default format will be used.

Awailability: 2.0

Examples

Default format.

SELECT (ST_AsLatLonText ('POINT (-3.2342342 -2.32498)"));
st_aslatlontext

2\textdegree{}19'29.928"S 3\textdegree{}14'3.243"W

Providing a format (same as the default).

SELECT (ST_AsLatLonText ('POINT (-3.2342342 -2.32498)"', 'D\textdegree{}M''S.SSS"C'));
st_aslatlontext

2\textdegree{}19'29.928"S 3\textdegree{}14'3.243"W

Characters other than D, M, S, C and . are just passed through.

SELECT (ST_AsLatLonText ('POINT (-3.2342342 -2.32498)', 'D degrees, M minutes, S seconds to <>
the C"));
st_aslatlontext

2 degrees, 19 minutes, 30 seconds to the S 3 degrees, 14 minutes, 3 seconds to the W

Signed degrees instead of cardinal directions.

SELECT (ST_AsLatLonText ('POINT (-3.2342342 -2.32498)"', 'D\textdegree{}M''S.SSS"'"));
st_aslatlontext

—-2\textdegree{}19'29.928" -3\textdegree{}14'3.243"

Decimal degrees.

SELECT (ST_AsLatLonText ('"POINT (-3.2342342 -2.32498)', 'D.DDDD degrees C'));
st_aslatlontext

2.3250 degrees S 3.2342 degrees W

Excessively large values are normalized.

PostGIS 3.3.0rc2 Manual 231/896

SELECT (ST_AsLatLonText ('POINT (-302.2342342 -792.32498)"));
st_aslatlontext

72\textdegree{}19'29.928"S 57\textdegree{}45'56.757"E

8.9.3.8 ST _AsMVTGeom

ST_AsMVTGeom — Transform a geometry into the coordinate space of a Mapbox Vector Tile.

Synopsis

geometry ST_AsMVTGeom(geometry geom, box2d bounds, integer extent=4096, integer buffer=256, boolean clip_geom=true);

Description

Transform a geometry into the coordinate space of a Mapbox Vector Tile of a set of rows corresponding to a Layer. Makes best
effort to keep and even correct validity and might collapse geometry into a lower dimension in the process.

geom is the geometry to transform.

bounds is the geometric bounds of the tile contents without buffer.

extent is the tile extent in tile coordinate space as defined by the specification. If NULL it will default to 4096.
buffer is the buffer distance in tile coordinate space to optionally clip geometries. If NULL it will default to 256.
clip_geomis a boolean to control if geometries should be clipped or encoded as is. If NULL it will default to true.

Availability: 2.4.0

st¢} Note
N From 3.0, Wagyu can be chosen at configure time to clip and validate MVT polygons. This library is faster and produces
more correct results than the GEOS default, but it might drop small polygons.

Examples

SELECT ST_AsText (ST_AsMVTGeom (
ST_GeomFromText ('POLYGON ((O O, 10 0O, 10 5, 0 -5, 0 0))"),
ST_MakeBox2D (ST_Point (0, 0), ST_Point (4096, 4096)),
4096, 0, false));
st_astext

MULTIPOLYGON (((5 4096,10 4091,10 4096,5 4096)), ((5 4096,0 4101,0 4096,5 4096)))

See Also

ST_AsMVT, ST_TileEnvelope, PostGIS_Wagyu_Version

8.9.3.9 ST _AsMVT

ST_AsMVT — Aggregate function returning a Mapbox Vector Tile representation of a set of rows.

https://www.mapbox.com/vector-tiles/
https://www.mapbox.com/vector-tiles/
https://www.mapbox.com/vector-tiles/specification/

PostGIS 3.3.0rc2 Manual 232 /896

Synopsis

bytea ST_AsMVT(anyelement set row);

bytea ST_AsMVT(anyelement row, text name);

bytea ST_AsMVT(anyelement row, text name, integer extent);

bytea ST_AsMVT(anyelement row, text name, integer extent, text geom_name);

bytea ST_AsMVT(anyelement row, text name, integer extent, text geom_name, text feature_id_name);

Description

An aggregate function which returns a binary Mapbox Vector Tile representation of a set of rows corresponding to a tile layer. The
rows should contain a geometry column which will be encoded as a feature geometry. The geometry should be in tile coordinate
space and valid as per the MVT specification. ST_AsMVTGeom can be used to transform geometry into tile coordinate space.
Other row columns are encoded as feature attributes.

The Mapbox Vector Tile format can store features with varying sets of attributes. To use this capability supply a JSONB column
in the row data containing Json objects one level deep. The keys and values in the JSONB values will be encoded as feature
attributes.

Tiles with multiple layers can be created by concatenating multiple calls to this function using | | or STRING_AGG.

Important
Do not call with a GEOMETRYCOLLECTION as an element in the row. However you can use ST_AsMVTGeom to
prepare a geometry collection for inclusion.

row row data with at least a geometry column.
name is the name of the layer. Default is the string "default".
extent is the tile extent in screen space as defined by the specification. Default is 4096.

geom_name is the name of the geometry column in the row data. Default is the first geometry column. Note that PostgreSQL
by default automatically folds unquoted identifiers to lower case, which means that unless the geometry column is quoted, e.g.
"MyMVTGeomnm", this parameter must be provided as lowercase.

feature_id_name is the name of the Feature ID column in the row data. If NULL or negative the Feature ID is not set. The
first column matching name and valid type (smallint, integer, bigint) will be used as Feature ID, and any subsequent column will
be added as a property. JSON properties are not supported.

Enhanced: 3.0 - added support for Feature ID.
Enhanced: 2.5.0 - added support parallel query.
Auvailability: 2.4.0

Examples

WITH mvtgeom AS
(
SELECT ST_AsMVTGeom (geom, ST_TileEnvelope (12, 513, 412), extent => 4096, buffer => 64) AS <
geom, name, description
FROM points_of_interest
WHERE geom && ST_TileEnvelope (12, 513, 412, margin => (64.0 / 4096))
)
SELECT ST_AsMVT (mvtgeom. x)
FROM mvtgeom;

https://www.mapbox.com/vector-tiles/
https://www.mapbox.com/vector-tiles/specification/
https://www.mapbox.com/vector-tiles/
https://www.postgresql.org/docs/current/sql-syntax-lexical.html#SQL-SYNTAX-IDENTIFIERS

PostGIS 3.3.0rc2 Manual 233 /896

See Also

ST_AsMVTGeom, ST_TileEnvelope

8.9.3.10 ST_AsSVG

ST_AsSVG — Returns SVG path data for a geometry.

Synopsis

text ST_AsSVG(geometry geom, integer rel=0, integer maxdecimaldigits=15);
text ST_AsSVG(geography geog, integer rel=0, integer maxdecimaldigits=15);

Description

Return the geometry as Scalar Vector Graphics (SVG) path data. Use 1 as second argument to have the path data implemented
in terms of relative moves, the default (or 0) uses absolute moves. Third argument may be used to reduce the maximum number
of decimal digits used in output (defaults to 15). Point geometries will be rendered as cx/cy when ’rel’ arg is 0, x/y when ’rel’ is

non

1. Multipoint geometries are delimited by commas (","), GeometryCollection geometries are delimited by semicolons (";").

ot¢} Note
N Availability: 1.2.2. Availability: 1.4.0 Changed in PostGIS 1.4.0 to include L command in absolute path to conform to
http://www.w3.0rg/TR/SVG/paths.html#PathDataBNF

Changed: 2.0.0 to use default args and support named args

Examples
SELECT ST_AsSVG('POLYGON((O 0,0 1,1 1,1 0,0 0))");
st_assvg

MOOLO-11-110 2

8.9.3.11 ST_AsTWKB

ST_AsTWKB — Returns the geometry as TWKB, aka "Tiny Well-Known Binary"

Synopsis

bytea ST_AsTWKB(geometry g1, integer decimaldigits_xy=0, integer decimaldigits_z=0, integer decimaldigits_m=0, boolean
include_sizes=false, boolean include_bounding boxes=false);

bytea ST_AsTWKB(geometry[] geometries, bigint[] unique_ids, integer decimaldigits_xy=0, integer decimaldigits_z=0, integer
decimaldigits_m=0, boolean include_sizes=false, boolean include_bounding_boxes=false);

http://www.w3.org/TR/SVG/paths.html#PathDataBNF

PostGIS 3.3.0rc2 Manual 234 / 896

Description

Returns the geometry in TWKB (Tiny Well-Known Binary) format. TWKB is a compressed binary format with a focus on
minimizing the size of the output.

The decimal digits parameters control how much precision is stored in the output. By default, values are rounded to the nearest
unit before encoding. If you want to transfer more precision, increase the number. For example, a value of 1 implies that the first
digit to the right of the decimal point will be preserved.

The sizes and bounding boxes parameters control whether optional information about the encoded length of the object and the
bounds of the object are included in the output. By default they are not. Do not turn them on unless your client software has a
use for them, as they just use up space (and saving space is the point of TWKB).

The array-input form of the function is used to convert a collection of geometries and unique identifiers into a TWKB collection
that preserves the identifiers. This is useful for clients that expect to unpack a collection and then access further information
about the objects inside. You can create the arrays using the array_agg function. The other parameters operate the same as for
the simple form of the function.

4 Note
N The format specification is available online at https://github.com/TWKB/Specification, and code for building a JavaScript
client can be found at https://github.com/TWKB/twkb.js.

Enhanced: 2.4.0 memory and speed improvements.

Availability: 2.2.0

Examples

SELECT ST_AsSTWKB ('LINESTRING(1 1,5 5)'::geometry);
st_astwkb

\x02000202020808

To create an aggregate TWKB object including identifiers aggregate the desired geometries and objects first, using "array_agg()",
then call the appropriate TWKB function.

SELECT ST_AsSTWKB (array_agg(geom), array_agg(gid)) FROM mytable;
st_astwkb

\x040402020400000202

See Also

ST_GeomFromTWKB, ST_AsBinary, ST_AsEWKB, ST_AsEWKT, ST_GeomFromText

8.9.3.12 ST_AsX3D

ST_AsX3D — Returns a Geometry in X3D xml node element format: ISO-IEC-19776-1.2-X3DEncodings-XML

Synopsis

text ST_AsX3D(geometry gl, integer maxdecimaldigits=15, integer options=0);

https://github.com/TWKB/Specification/blob/master/twkb.md
https://www.postgresql.org/docs/current/functions-aggregate.html
https://github.com/TWKB/Specification
https://github.com/TWKB/twkb.js

PostGIS 3.3.0rc2 Manual 235 /896

Description

Returns a geometry as an X3D xml formatted node element http://www.web3d.org/standards/number/19776-1. If maxdecimaldigit:
(precision) is not specified then defaults to 15.

Note
. There are various options for translating PostGIS geometries to X3D since X3D geometry types don’t map directly
N”’M to PostGIS geometry types and some newer X3D types that might be better mappings we have avoided since most
rendering tools don’t currently support them. These are the mappings we have settled on. Feel free to post a bug ticket
if you have thoughts on the idea or ways we can allow people to denote their preferred mappings.
Below is how we currently map PostGIS 2D/3D types to X3D types

The options’ argument is a bitfield. For PostGIS 2.2+, this is used to denote whether to represent coordinates with X3D
GeoCoordinates Geospatial node and also whether to flip the x/y axis. By default, ST_AsX3D outputs in database form (long,lat
or X,Y), but X3D default of lat/lon, y/x may be preferred.

* 0: X/Y in database order (e.g. long/lat = X,Y is standard database order), default value, and non-spatial coordinates (just
regular old Coordinate tag).

e 1: Flip X and Y. If used in conjunction with the GeoCoordinate option switch, then output will be default "latitude_first" and
coordinates will be flipped as well.

* 2: Output coordinates in GeoSpatial GeoCoordinates. This option will throw an error if geometries are not in WGS 84 long
lat (srid: 4326). This is currently the only GeoCoordinate type supported. Refer to X3D specs specifying a spatial reference
system.. Default output will be GeoCoordinate geoSystem=’"GD" "WE" "longitude_first"’. If you prefer
the X3D default of GeoCoordinate geoSystem=’/"GD" "WE" "latitude_first"’ use (2 + 1) =3

PostGIS Type 2D X3D Type 3D X3D Type
not yet implemented - will be .
LINESTRING PolyLine2D LineSet
MULTILINESTRING not yet implemented - will be IndexedLineSet
PolyLine2D
MULTIPOINT Polypoint2D PointSet
outputs the space delimited outputs the space delimited
POINT . .
coordinates coordinates
(MULTI) POLYGON, . IndexedFaceSet (inner rings currently
POLYHEDRALSURFACE Tnvalid X3D markup output as another faceset)
TIN TriangleSet2D (Not Yet Implemented) | IndexedTriangleSet
N;H’! Note
2D geometry support not yet complete. Inner rings currently just drawn as separate polygons. We are working on
these.

Lots of advancements happening in 3D space particularly with X3D Integration with HTML5

There is also a nice open source X3D viewer you can use to view rendered geometries. Free Wrl http://freewrl.sourceforge.net/
binaries available for Mac, Linux, and Windows. Use the FreeWRL_Launcher packaged to view the geometries.

Also check out PostGIS minimalist X3D viewer that utilizes this function and x3dDom html/js open source toolkit.
Availability: 2.0.0: ISO-IEC-19776-1.2-X3DEncodings-XML
Enhanced: 2.2.0: Support for GeoCoordinates and axis (x/y, long/lat) flipping. Look at options for details.

This function supports 3d and will not drop the z-index.

http://www.web3d.org/standards/number/19776-1
http://www.web3d.org/documents/specifications/19775-1/V3.2/Part01/components/geodata.html#Specifyingaspatialreference
http://www.web3d.org/documents/specifications/19775-1/V3.2/Part01/components/geodata.html#Specifyingaspatialreference
https://www.web3d.org/wiki/index.php/X3D_and_HTML5
http://freewrl.sourceforge.net/
https://git.osgeo.org/gitea/robe/postgis_x3d_viewer
http://www.x3dom.org/

PostGIS 3.3.0rc2 Manual 236 / 896

3

This function supports Polyhedral surfaces.

F

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Example: Create a fully functional X3D document - This will generate a cube that is viewable in FreeWrl and other X3D
viewers.

SELECT '<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE X3D PUBLIC "ISO//Web3D//DTD X3D 3.0//EN" "http://www.web3d.org/specifications/x3d <
-3.0.dtd">
<X3D>
<Scene>
<Transform>
<Shape>
<Appearance>
<Material emissiveColor=''0 0 1''/>
</Appearance> ' ||

ST_AsX3D(ST_GeomFromEWKT ('POLYHEDRALSURFACE (((010, 00 0)),

= o
o O
= O

~

((0 o0, 020,110,100, 000)), ((00O0, 100, , ,
((10, 111, 101, 1 00, 110)),
(¢<0120, 011,111,110, 010)), (¢cOO1, 1201, 111, 011, 001)))")) II
'</Shape>
</Transform>
</Scene>

</X3D>' As x3ddoc;

x3ddoc
<?xml version="1.0" encoding="UTF-8"7?>
<!DOCTYPE X3D PUBLIC "ISO//Web3D//DTD X3D 3.0//EN" "http://www.web3d.org/specifications/x3d <
-3.0.dtd">
<X3D>
<Scene>
<Transform>
<Shape>
<Appearance>
<Material emissiveColor='0 0 1'/>
</Appearance>
<IndexedFaceSet coordIndex='0 1 2 3 -1 4 5 6 7 -1 8 9 10 11 -1 12 13 14 15 -1 16 17 <
18 19 -1 20 21 22 23'>
<Coordinate point='0 0 0 0 0 1 01 1 01 00000101101 00000100 <«
1010011101111 0110001001111111000110111 <«
1011" />
</IndexedFaceSet>
</Shape>
</Transform>
</Scene>
</X3D>

PostGIS buildings

Copy and paste the output of this query to x3d scene viewer and click Show

SELECT string_agg('<Shape>"' || ST_AsX3D(ST_Extrude (geom, 0,0, ix0.5)) ||
'<Appearance>
<Material diffuseColor=""' || (0.01l%i)::text || ' 0.8 0.2" specularColor=""' || —
(0.05%i) ::text || " O 0.5"/>
</Appearance>

</Shape>', ''")

http://postgis.net/docs/support/viewers/x3d_viewer.htm

PostGIS 3.3.0rc2 Manual 237 /896

FROM ST_Subdivide (ST_Letters('PostGIS'),20) WITH ORDINALITY AS f (geom,1i);

Buildings formed by subdividing PostGIS and extrusion

Example: An Octagon elevated 3 Units and decimal precision of 6

SELECT ST_AsX3D (
ST_Translate (
ST_Force_3d(
ST_Buffer (ST_Point (10,10),5, 'quad_segs=2')), 0,0,
3)
,6) As x3dfrag;

<IndexedFaceSet coordIndex="0 1 2 3 4 5 6 7">
<Coordinate point="15 10 3 13.535534 6.464466 3 10 5 3 6.464466 6.464466 3 5 10 3 <
6.464466 13.535534 3 10 15 3 13.535534 13.535534 3 " />
</IndexedFaceSet>

Example: TIN

SELECT ST_AsX3D (ST_GeomFromEWKT ('TIN (((
0,

14

1
0,
0

o r o ol

~

~

~
O R OO ~ O O O O
—

O = P O
O O O O
~

)) As x3dfrag;

<IndexedTriangleSet index='0 1 2 3 4 5'><Coordinate point='0 0 0 0 0 1 01 0 0 0 0 01 0 1 ¢«
1 0'/></IndexedTriangleSet>

Example: Closed multilinestring (the boundary of a polygon with holes)

PostGIS 3.3.0rc2 Manual 238 /896

SELECT ST_AsX3D(
ST_GeomFromEWKT ('MULTILINESTRING((20 0 10,16 -12 10,0 -16 10,-12 -12 10,-20 O —
10,-12 16 10,0 24 10,16 16 10,20 0 10),
(12 0 10,8 8 10,0 12 10,-8 8 10,-8 0 10,-8 -4 10,0 -8 10,8 -4 10,12 0 10))")
) As x3dfrag;

<IndexedLineSet coordIndex='0 1 2 3 45 6 7 0 -1 8 9 10 11 12 13 14 15 8'>
<Coordinate point='20 0 10 16 -12 10 0 -16 10 -12 -12 10 -20 0 10 -12 16 10 0 24 10 16 <
16 10 12 0 10 8 8 10 0 12 10 -8 8 10 -8 0 10 -8 -4 10 0 -8 10 8 -4 10 ' />
</IndexedLineSet>

8.9.3.13 ST_GeoHash

ST_GeoHash — Return a GeoHash representation of the geometry.

Synopsis

text ST_GeoHash(geometry geom, integer maxchars=full_precision_of_point);

Description

Return a GeoHash representation (http://en.wikipedia.org/wiki/Geohash) of the geometry. A GeoHash encodes a point into a text
form that is sortable and searchable based on prefixing. A shorter GeoHash is a less precise representation of a point. It can also
be thought of as a box, that contains the actual point.

If no maxchars is specified ST_GeoHash returns a GeoHash based on full precision of the input geometry type. Points return
a GeoHash with 20 characters of precision (about enough to hold the full double precision of the input). Other types return a
GeoHash with a variable amount of precision, based on the size of the feature. Larger features are represented with less precision,
smaller features with more precision. The idea is that the box implied by the GeoHash will always contain the input feature.

If maxchars is specified ST_GeoHash returns a GeoHash with at most that many characters so a possibly lower precision
representation of the input geometry. For non-points, the starting point of the calculation is the center of the bounding box of the
geometry.

Availability: 1.4.0

N-ﬂ'l"! Note

ST_GeoHash will not work with geometries that are not in geographic (lon/lat) coordinates.

This method supports Circular Strings and Curves

Examples
SELECT ST_GeoHash (ST_SetSRID (ST_Point (-126,48),4326));
st_geohash

cOw3hfls70w3hfls70w3

SELECT ST_GeoHash (ST_SetSRID(ST_Point (-126,48),4326),5);

http://en.wikipedia.org/wiki/Geohash

PostGIS 3.3.0rc2 Manual

239/ 896

st_geohash

See Also

ST_GeomFromGeoHash

8.10 Operators

8.10.1 Bounding Box Operators

8.10.1.1 &&

&& — Returns TRUE if A’s 2D bounding box intersects B’s 2D bounding box.

Synopsis

boolean &&(geometry A , geometry B);
boolean &&(geography A , geography B);

Description

The && operator returns TRUE if the 2D bounding box of geometry A intersects the 2D bounding box of geometry B.

N;’""! Note

This operand will make use of any indexes that may be available on the geometries.

Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.

Availability: 1.5.0 support for geography was introduced.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Examples

SELECT tbll.columnl,
FROM (VALUES

(1, 'LINESTRING (0

(2, '"LINESTRING (0
(VALUES

(3, '"LINESTRING (1

tbl2.columnl,

0, 3 3)'::geometry),
1, 0 5)'::geometry))
2, 4 6)'::geometry))
overlaps

tbll.column2 && tbl2.column2 AS overlaps

AS tbll,

AS tbl2;

PostGIS 3.3.0rc2 Manual 240/ 896

See Also

ST Intersects, ST_Extent, |&>, &>, &<l, &<, ~, @

8.10.1.2 &&(geometry,box2df)

&&(geometry,box2df) — Returns TRUE if a geometry’s (cached) 2D bounding box intersects a 2D float precision bounding box
(BOX2DF).
Synopsis

boolean &&(geometry A , box2df B);

Description

The && operator returns TRUE if the cached 2D bounding box of geometry A intersects the 2D bounding box B, using float
precision. This means that if B is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box
(BOX2DF)

N;'R’! Note

This operand is intended to be used internally by BRIN indexes, more than by users.

Auvailability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.
ﬂ This method supports Circular Strings and Curves

ﬂ This function supports Polyhedral surfaces.

Examples
SELECT ST_Point(1l,1) && ST_MakeBox2D(ST_Point (0,0), ST_Point(2,2)) AS overlaps;

overlaps

See Also

&&(box2df,geometry), &&(box2df,box2df), ~(geometry,box2df), ~(box2df,geometry), ~(box2df,box2df), @(geometry,box2df),
@ (box2df,geometry), @(box2df,box2df)

8.10.1.3 &&(box2df,geometry)

&&(box2df,geometry) — Returns TRUE if a 2D float precision bounding box (BOX2DF) intersects a geometry’s (cached) 2D
bounding box.

Synopsis

boolean &&(box2df A , geometry B);

PostGIS 3.3.0rc2 Manual 241/ 896

Description

The && operator returns TRUE if the 2D bounding box A intersects the cached 2D bounding box of geometry B, using float
precision. This means that if A is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box
(BOX2DF)

N_ﬁﬂ’! Note

This operand is intended to be used internally by BRIN indexes, more than by users.

Auvailability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.
This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Examples

SELECT ST_MakeBox2D (ST_Point (0,0), ST_Point(2,2)) && ST_Point(l,1) AS overlaps;

overlaps

See Also

&&(geometry,box2df), &&(box2df,box2df), ~(geometry,box2df), ~(box2df,geometry), ~(box2df,box2df), @(geometry,box2df),
@(box2df,geometry), @ (box2df,box2df)

8.10.1.4 &&(box2df,box2df)

&&(box2df,box2df) — Returns TRUE if two 2D float precision bounding boxes (BOX2DF) intersect each other.

Synopsis

boolean &&(box2df A , box2df B);

Description

The && operator returns TRUE if two 2D bounding boxes A and B intersect each other, using float precision. This means that if
A (or B) is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box (BOX2DF)

N;*'l"! Note

This operator is intended to be used internally by BRIN indexes, more than by users.

Auvailability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.
This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

PostGIS 3.3.0rc2 Manual 242 / 896

Examples

SELECT ST_MakeBox2D (ST_Point (0,0), ST_Point (2,2)) && ST _MakeBox2D (ST_Point (1,1), ST_Point <+
(3,3)) AS overlaps;

overlaps

See Also

&&(geometry,box2df), &&(box2df,geometry), ~(geometry,box2df), ~(box2df,geometry), ~(box2df,box2df), @(geometry,box2df),
@ (box2df,geometry), @(box2df,box2df)

8.10.1.5 &&&

&&& — Returns TRUE if A’s n-D bounding box intersects B’s n-D bounding box.

Synopsis

boolean & & &(geometry A , geometry B);

Description

The && & operator returns TRUE if the n-D bounding box of geometry A intersects the n-D bounding box of geometry B.

N;'“’! Note

This operand will make use of any indexes that may be available on the geometries.

Availability: 2.0.0

ﬂ This method supports Circular Strings and Curves

ﬂ This function supports Polyhedral surfaces.

ﬂ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

ﬂ This function supports 3d and will not drop the z-index.

Examples: 3D LineStrings

SELECT tbll.columnl, tbl2.columnl, tbll.column2 &&& tbl2.column2 AS overlaps_3d,
tbll.column2 && tbl2.column2 AS overlaps_2d
FROM (VALUES

(1, '"LINESTRING Z(0 0 1, 3 3 2)'::geometry),
(2, 'LINESTRING Z(1 2 0, 0 5 -1)'::geometry)) AS tbll,
(VALUES
(3, '"LINESTRING Z(1 2 1, 4 6 1)'::geometry)) AS tbl2;
columnl | columnl | overlaps_3d | overlaps_2d
————————— e
1 | 3| t | t
2 | 3 | f | t

PostGIS 3.3.0rc2 Manual 243 /896

Examples: 3M LineStrings

SELECT tbll.columnl, tbl2.columnl, tbll.column2 &&& tbl2.column2 AS overlaps_3zm,
tbll.column2 && tbl2.column2 AS overlaps_2d
FROM (VALUES

(1, '"LINESTRING M(0O 0 1, 3 3 2)'::geometry),
(2, '"LINESTRING M(1 2 0, 0 5 -1)'::geometry)) AS tbll,
(VALUES
(3, 'LINESTRING M(1 2 1, 4 6 1)'::geometry)) AS tbl2;
columnl | columnl | overlaps_3zm | overlaps_2d
————————— et et
1 | 3 |t | €
2 | 3 | £ | €
See Also
&&

8.10.1.6 &&&(geometry,gidx)

&&&(geometry,gidx) — Returns TRUE if a geometry’s (cached) n-D bounding box intersects a n-D float precision bounding
box (GIDX).
Synopsis

boolean &&&(geometry A , gidx B);

Description

The &&& operator returns TRUE if the cached n-D bounding box of geometry A intersects the n-D bounding box B, using float
precision. This means that if B is a (double precision) box3d, it will be internally converted to a float precision 3D bounding box
(GIDX)

N;"l"! Note

This operator is intended to be used internally by BRIN indexes, more than by users.

Auvailability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

This function supports 3d and will not drop the z-index.

PostGIS 3.3.0rc2 Manual 244 / 896

Examples

SELECT ST_MakePoint(1,1,1) &&& ST_3DMakeBox (ST_MakePoint (0,0,0), ST_MakePoint (2,2,2)) AS <
overlaps;

overlaps

See Also

&&&(gidx,geometry), &&&(gidx,gidx)

8.10.1.7 &&&(gidx,geometry)

&&&(gidx,geometry) — Returns TRUE if a n-D float precision bounding box (GIDX) intersects a geometry’s (cached) n-D
bounding box.
Synopsis

boolean &&&(gidx A , geometry B);

Description

The &&& operator returns TRUE if the n-D bounding box A intersects the cached n-D bounding box of geometry B, using float
precision. This means that if A is a (double precision) box3d, it will be internally converted to a float precision 3D bounding box
(GIDX)

N;ﬂ"! Note

This operator is intended to be used internally by BRIN indexes, more than by users.

Auvailability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

This function supports 3d and will not drop the z-index.

Examples

SELECT ST_3DMakeBox (ST_MakePoint (0,0,0), ST_MakePoint(2,2,2)) &&& ST_MakePoint(1l,1,1) AS <
overlaps;

overlaps

PostGIS 3.3.0rc2 Manual 245/ 896

See Also

&&&(geometry,gidx), &&&(gidx,gidx)

8.10.1.8 &&&(gidx,gidx)

&&&(gidx,gidx) — Returns TRUE if two n-D float precision bounding boxes (GIDX) intersect each other.

Synopsis

boolean &&&(gidx A , gidx B);

Description

The & && operator returns TRUE if two n-D bounding boxes A and B intersect each other, using float precision. This means that
if A (or B) is a (double precision) box3d, it will be internally converted to a float precision 3D bounding box (GIDX)

N;’H’! Note

This operator is intended to be used internally by BRIN indexes, more than by users.

Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.
ﬂ This method supports Circular Strings and Curves

ﬂ This function supports Polyhedral surfaces.

ﬂ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

ﬂ This function supports 3d and will not drop the z-index.

Examples

SELECT ST_3DMakeBox (ST_MakePoint (0,0,0), ST_MakePoint (2,2,2)) &&& ST_3DMakeBox (ST_MakePoint <
(1,1,1), ST_MakePoint (3,3,3)) AS overlaps;

overlaps

See Also

&& &(geometry,gidx), &&&(gidx,geometry)

8.10.1.9 &<

&< — Returns TRUE if A’s bounding box overlaps or is to the left of B’s.

Synopsis

boolean &<(geometry A , geometry B);

PostGIS 3.3.0rc2 Manual 246 / 896

Description

The &< operator returns TRUE if the bounding box of geometry A overlaps or is to the left of the bounding box of geometry B,
or more accurately, overlaps or is NOT to the right of the bounding box of geometry B.

N:"""! Note

This operand will make use of any indexes that may be available on the geometries.

Examples

SELECT tbll.columnl, tbl2.columnl, tbll.column2 &< tbl2.column2 AS overleft
FROM

(VALUES
(1, '"LINESTRING(1l 2, 4 6)'::geometry)) AS tbll,
(VALUES
(2, 'LINESTRING(0O 0, 3 3)'::geometry),
(3, '"LINESTRING(O 1, 0 5)'::geometry),
(4, '"LINESTRING(6 0, 6 1)'::geometry)) AS tbl2;
columnl | columnl | overleft
,,,,,,,,, B T
1 | 2 | £
1 | 3 | f
1 | 4 |t
(3 rows)
See Also

&&, 1&>, &>, &<l

8.10.1.10 &<|

&<| — Returns TRUE if A’s bounding box overlaps or is below B’s.

Synopsis

boolean &<I(geometry A , geometry B);

Description

The &< | operator returns TRUE if the bounding box of geometry A overlaps or is below of the bounding box of geometry B, or
more accurately, overlaps or is NOT above the bounding box of geometry B.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

N;’t"! Note

This operand will make use of any indexes that may be available on the geometries.

PostGIS 3.3.0rc2 Manual

247 / 896

Examples

SELECT tbll.columnl,

FROM
(VALUES

VALUES

columnl | columnl
,,,,,,,,, o
1 | 2 |
1 | 3 |
1 | 4 |
(3 rows)
See Also

&&, 1&>, &>, &<

8.10.1.11 &>

1, 'LINESTRING (6

2, '"LINESTRING (0
3, 'LINESTRING(O
4, 'LINESTRING (1

tbl2.columnl,

tbll.column2 &<| tbl2.column2 AS overbelow

0, 6 4)'::geometry)) AS tbll,
0, 3 3)'::geometry),

1, 0 5)'::geometry),

2, 4 6)'::geometry)) AS tbl2;
overbelow

&> — Returns TRUE if A’ bounding box overlaps or is to the right of B’s.

Synopsis

boolean &>(geometry A , geometry B);

Description

The &> operator returns TRUE if the bounding box of geometry A overlaps or is to the right of the bounding box of geometry B,
or more accurately, overlaps or is NOT to the left of the bounding box of geometry B.

N;ﬂ"! Note

This operand will make use of any indexes that may be available on the geometries.

Examples

SELECT tbll.columnl, tbl2.columnl,

FROM
(VALUES

VALUES

columnl | columnl

1, 'LINESTRING (1

2, 'LINESTRING (O
3, 'LINESTRING (0
4, 'LINESTRING (6

tbll.column2 &> tbl2.column2 AS overright

:geometry)) AS tbll,

::geometry),
::geometry),
::geometry)) AS tbl2;

PostGIS 3.3.0rc2 Manual

248 / 896

See Also

&&, 1&>, &<I, &<

8.10.1.12 <<

<< — Returns TRUE if A’s bounding box is strictly to the left of B’s.

Synopsis

boolean <<(geometry A , geometry B);

Description

The << operator returns TRUE if the bounding box of geometry A is strictly to the left of the bounding box of geometry B.

N;l"! Note

This operand will make use of any indexes that may be available on the geometries.

Examples

SELECT tbll.columnl,

FROM
(VALUES

(
(VALUES
(
(
(

columnl | columnl

See Also

>>, >>, <<|

8.10.1.13 <<

1, 'LINESTRING

2, 'LINESTRING
3, 'LINESTRING
4, 'LINESTRING

tbl2.columnl, tbll.column2 << tbl2.column2 AS left

2, 1 5)'::geometry)) AS tbll,
0, 4 3)'::geometry),

0, 6 5)'::geometry),

2, 5 6)'::geometry)) AS tbl2;
left

<<| — Returns TRUE if A’s bounding box is strictly below B’s.

Synopsis

boolean <<I(geometry A , geometry B);

PostGIS 3.3.0rc2 Manual

249 / 896

Description

The << | operator returns TRUE if the bounding box of geometry A is strictly below the bounding box of geometry B.

N;"H’! Note

This operand will make use of any indexes that may be available on the geometries.

Examples

SELECT tbll.columnl,

FROM
(VALUES

(
(VALUES
(
(
(

columnl | columnl

See Also

<<, >>, [>>

8.10.1.14 =

1, 'LINESTRING

2, 'LINESTRING
3, 'LINESTRING
4, 'LINESTRING

tbl2.columnl, tbll.column2 <<| tbl2.column2 AS below

0, 4 3)'::geometry)) AS tbll,
4, 1 7)'::geometry),

1, 6 5)'::geometry),

3, 5 6)'::geometry)) AS tbl2;
below

=— Returns TRUE if the coordinates and coordinate order geometry/geography A are the same as the coordinates and coordinate
order of geometry/geography B.

Synopsis

boolean =(geometry A , geometry B);
boolean =(geography A , geography B);

Description

The = operator returns TRUE if the coordinates and coordinate order geometry/geography A are the same as the coordinates and
coordinate order of geometry/geography B. PostgreSQL uses the =, <, and > operators defined for geometries to perform internal
orderings and comparison of geometries (ie. in a GROUP BY or ORDER BY clause).

& Note

N"‘l"! Only geometry/geography that are exactly equal in all respects, with the same coordinates, in the same order, are
considered equal by this operator. For "spatial equality”, that ignores things like coordinate order, and can detect
features that cover the same spatial area with different representations, use ST_OrderingEquals or ST_Equals

PostGIS 3.3.0rc2 Manual 250/ 896

e"'"i Caution

-
This operand will NOT make use of any indexes that may be available on the geometries. For an index assisted exact

equality test, combine = with &&.

Changed: 2.4.0, in prior versions this was bounding box equality not a geometric equality. If you need bounding box equality,
use ~= instead.

ﬂ This method supports Circular Strings and Curves

ﬂ This function supports Polyhedral surfaces.

Examples

SELECT 'LINESTRING(O 0, 0 1, 1 0)'::geometry = 'LINESTRING(1 1, 0 0)'::geometry;
?column?

SELECT ST_AsText (columnl)
FROM (VALUES
("LINESTRING (O 0, 1 1)'::geometry),
("LINESTRING (1 1, O 0)'::geometry)) AS foo;
st_astext
LINESTRING(O 0,1 1)
LINESTRING(1 1,0 0)
(2 rows)

—— Note: the GROUP BY uses the "=" to compare for geometry equivalency.
SELECT ST_AsText (columnl)
FROM (VALUES
("LINESTRING (0O 0, 1 1)'::geometry),
('LINESTRING(1 1, 0 0)'::geometry)) AS foo
GROUP BY columnl;
st_astext
LINESTRING(O 0,1 1)
LINESTRING(1 1,0 0)
(2 rows)

—-— In versions prior to 2.0, this used to return true —-
SELECT ST_GeomFromText ("POINT (1707296.37 4820536.77)"'") =
ST_GeomFromText ('POINT (1707296.27 4820536.87) ') As pt_intersect;

—-—-pt_intersect —-—
f

See Also
ST_Equals, ST_OrderingEquals, ~=

8.10.1.15 >>

>> — Returns TRUE if A’s bounding box is strictly to the right of B’s.

PostGIS 3.3.0rc2 Manual 251 /896

Synopsis

boolean >>(geometry A , geometry B);

Description

The >> operator returns TRUE if the bounding box of geometry A is strictly to the right of the bounding box of geometry B.

N;ﬂ"! Note

This operand will make use of any indexes that may be available on the geometries.

Examples

SELECT tbll.columnl, tbl2.columnl, tbll.column2 >> tbl2.column2 AS right
FROM

(VALUES
(1, '"LINESTRING (2 3, 5 6)'::geometry)) AS tbll,
(VALUES
(2, '"LINESTRING (1 4, 1 7)'::geometry),
(3, 'LINESTRING (6 1, 6 5)'::geometry),
(4, 'LINESTRING (0 0, 4 3)'::geometry)) AS tbl2;
columnl | columnl | right
_________ +_________+_______
1] 2 |t
1 | 3 | £
1 | 4 | £
(3 rows)
See Also
<<, I>>, <<l
8.10.1.16 @

@ — Returns TRUE if A’s bounding box is contained by B’s.

Synopsis

boolean @(geometry A , geometry B);

Description

The @ operator returns TRUE if the bounding box of geometry A is completely contained by the bounding box of geometry B.

N;"""! Note

This operand will make use of any indexes that may be available on the geometries.

PostGIS 3.3.0rc2 Manual 252 / 896

Examples

SELECT tbll.columnl, tbl2.columnl, tbll.column2 @ tbl2.column2 AS contained
FROM

(VALUES
(1, 'LINESTRING (1 1, 3 3)'::geometry)) AS tbll,
(VALUES
(2, '"LINESTRING (0 0, 4 4)'::geometry),
(3, '"LINESTRING (2 2, 4 4)'::geometry),
(4, '"LINESTRING (1 1, 3 3)'::geometry)) AS tbl2;
columnl | columnl | contained
_________ T
1 | 2 |t
1 | 3 | £
1 | 4 | t
(3 rows)
See Also
~, &&

8.10.1.17 @(geometry,box2df)

@(geometry,box2df) — Returns TRUE if a geometry’s 2D bounding box is contained into a 2D float precision bounding box
(BOX2DF).
Synopsis

boolean @(geometry A , box2df B);

Description

The @ operator returns TRUE if the A geometry’s 2D bounding box is contained the 2D bounding box B, using float precision.
This means that if B is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box (BOX2DF)

N;*'M Note

This operand is intended to be used internally by BRIN indexes, more than by users.

Auvailability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.
This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Examples

SELECT ST_Buffer (ST_GeomFromText ('"POINT (2 2)'), 1) @ ST_MakeBox2D (ST_Point (0,0), ST_Point <
(5,5)) AS is_contained;

is_contained

PostGIS 3.3.0rc2 Manual 253 /896

See Also
&&(geometry,box2df), &&(box2df,geometry), &&(box2df,box2df), ~(geometry,box2df), ~(box2df,geometry), ~(box2df,box2df),
@(box2df,geometry), @ (box2df,box2df)

8.10.1.18 @(box2df,geometry)

@(box2df,geometry) — Returns TRUE if a 2D float precision bounding box (BOX2DF) is contained into a geometry’s 2D
bounding box.
Synopsis

boolean @(box2df A, geometry B);

Description

The @ operator returns TRUE if the 2D bounding box A is contained into the B geometry’s 2D bounding box, using float precision.
This means that if B is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box (BOX2DF)

N;'l"! Note

This operand is intended to be used internally by BRIN indexes, more than by users.

Auvailability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.
ﬂ This method supports Circular Strings and Curves

ﬂ This function supports Polyhedral surfaces.

Examples

SELECT ST_MakeBox2D (ST_Point (2,2), ST_Point (3,3)) @ ST _Buffer (ST_GeomFromText ("POINT (1 1)') <«
, 10) AS is_contained;

is_contained

See Also

&&(geometry,box2df), &&(box2df,geometry), &&(box2df,box2df), ~(geometry,box2df), ~(box2df,geometry), ~(box2df,box2df),
@(geometry,box2df), @(box2df,box2df)

8.10.1.19 @(box2df,box2df)

@ (box2df,box2df) — Returns TRUE if a 2D float precision bounding box (BOX2DF) is contained into another 2D float precision
bounding box.

Synopsis

boolean @(box2df A , box2df B);

PostGIS 3.3.0rc2 Manual 254 / 896

Description

The @ operator returns TRUE if the 2D bounding box A is contained into the 2D bounding box B, using float precision. This means
that if A (or B) is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box (BOX2DF)

N;'l"! Note

This operand is intended to be used internally by BRIN indexes, more than by users.

Auvailability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.
ﬂ This method supports Circular Strings and Curves

ﬂ This function supports Polyhedral surfaces.

Examples

SELECT ST_MakeBox2D (ST_Point (2,2), ST_Point (3,3)) @ ST _MakeBox2D (ST_Point (0,0), ST_Point <
(5,5)) AS is_contained;

is_contained

See Also

&&(geometry,box2df), &&(box2df,geometry), &&(box2df,box2df), ~(geometry,box2df), ~(box2df,geometry), ~(box2df,box2df),
@(geometry,box2df), @(box2df,geometry)

8.10.1.20 |&>
|&> — Returns TRUE if A’s bounding box overlaps or is above B’s.

Synopsis

boolean |&>(geometry A , geometry B);

Description

The | &> operator returns TRUE if the bounding box of geometry A overlaps or is above the bounding box of geometry B, or
more accurately, overlaps or is NOT below the bounding box of geometry B.

N;'l"! Note

This operand will make use of any indexes that may be available on the geometries.

PostGIS 3.3.0rc2 Manual

255/ 896

Examples

SELECT tbll.columnl,

FROM
(VALUES

VALUES

columnl | columnl
_________ I,
1 | 2 |
1 | 3 |
1| 4 |
(3 rows)
See Also

&&, &>, &<l, &<

8.10.1.21 |>>

1, 'LINESTRING (6

2, 'LINESTRING (O
3, 'LINESTRING (O
4, 'LINESTRING (1

tbl2.columnl,

=

~
o
(€3]

::geometry))

tbll.column2

AS tbll

:geometry),
::geometry),
::geometry)) AS tbl2

[>> — Returns TRUE if A’s bounding box is strictly above B’s.

Synopsis

boolean I>>(geometry A , geometry B);

Description

The | >> operator returns TRUE if the bounding box of geometry A is strictly above the bounding box of geometry B.

| &> tbl2.column2 AS overabove

4

’

N;'R’! Note

This operand will make use of any indexes that may be available on the geometries.

Examples

SELECT tbll.columnl,

FROM

(VALUES
1, 'LINESTRING
VALUES
2, 'LINESTRING
3, 'LINESTRING
4, 'LINESTRING

columnl | columnl

tbl2.columnl,

tbll.column2

::geometry),
::geometry),

|>> tbl2.column2 AS above

::geometry)) AS tbll,

:geometry)) AS tbl2;

PostGIS 3.

3.0rc2 Manual

256 / 896

See Also

<<, >>, <<

8.10.1.22

~

~— Returns TRUE if A’s bounding box contains B’s.

Synopsis

boolean ~(geometry A , geometry B);

Description

The ~ operator returns TRUE if the bounding box of geometry A completely contains the bounding box of geometry B.

Note!

Note

This operand will make use of any indexes that may be available on the geometries.

Examples
SELECT tbll.columnl, tbl2.columnl,
FROM
(VALUES
(1, 'LINESTRING (0 0, 3 3)'::geometry)) AS tbll,
(VALUES
(2, '"LINESTRING (0O 0, 4 4)'::geometry),
(3, '"LINESTRING (1 1, 2 2)'::geometry),
(4, 'LINESTRING (0 0, 3 3)'::geometry)) AS tbl2;
columnl | columnl | contains
777777777 +777777777+7777777777
1| 2 | £
1| 31t
1| 4 | t
(3 rows)
See Also
@, &&
8.10.1.23 ~(geometry,box2df)

tbll.column2 ~ tbl2.column2 AS contains

~(geometry,box2df) — Returns TRUE if a geometry’s 2D bonding box contains a 2D float precision bounding box (GIDX).

Synopsis

boolean ~(geometry A , box2df B);

PostGIS 3.3.0rc2 Manual 257 / 896

Description

The ~ operator returns TRUE if the 2D bounding box of a geometry A contains the 2D bounding box B, using float precision.
This means that if B is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box (BOX2DF)

N;ﬂ"! Note

This operand is intended to be used internally by BRIN indexes, more than by users.

Auvailability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.
This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Examples

SELECT ST_Buffer (ST_GeomFromText ('"POINT (1 1)'), 10) ~ ST_MakeBox2D (ST _Point (0,0), ST _Point <
(2,2)) AS contains;

contains

See Also

&&(geometry,box2df), &&(box2df,geometry), &&(box2df,box2df), ~(box2df,geometry), ~(box2df,box2df), @(geometry,box2df),
@(box2df,geometry), @ (box2df,box2df)

8.10.1.24 ~(box2df,geometry)

~(box2df,geometry) — Returns TRUE if a 2D float precision bounding box (BOX2DF) contains a geometry’s 2D bonding box.

Synopsis

boolean ~(box2df A , geometry B);

Description

The ~ operator returns TRUE if the 2D bounding box A contains the B geometry’s bounding box, using float precision. This
means that if A is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box (BOX2DF)

N;ﬂ"’! Note

This operand is intended to be used internally by BRIN indexes, more than by users.

Auvailability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.
This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

PostGIS 3.3.0rc2 Manual 258 / 896

Examples

SELECT ST_MakeBox2D (ST_Point (0,0), ST_Point (5,5)) ~ ST _Buffer (ST_GeomFromText ("POINT (2 2)"') <«
, 1) AS contains;

contains

See Also
&&(geometry,box2df), &&(box2df,geometry), &&(box2df,box2df), ~(geometry,box2df), ~(box2df,box2df), @(geometry,box2df),
@(box2df,geometry), @ (box2df,box2df)

8.10.1.25 ~(box2df,box2df)

~(box2df,box2df) — Returns TRUE if a 2D float precision bounding box (BOX2DF) contains another 2D float precision bounding
box (BOX2DF).
Synopsis

boolean ~(box2df A , box2df B);

Description

The ~ operator returns TRUE if the 2D bounding box A contains the 2D bounding box B, using float precision. This means that
if A is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box (BOX2DF)

N;'l"! Note

This operand is intended to be used internally by BRIN indexes, more than by users.

Auvailability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.
ﬁ This method supports Circular Strings and Curves

ﬁ This function supports Polyhedral surfaces.

Examples

SELECT ST_MakeBox2D (ST_Point (0,0), ST_Point (5,5)) ~ ST_MakeBox2D (ST_Point (2,2), ST_Point <
(3,3)) AS contains;

contains

See Also

&&(geometry,box2df), &&(box2df,geometry), &&(box2df,box2df), ~(geometry,box2df), ~(box2df,geometry), @(geometry,box2df),
@(box2df,geometry), @(box2df,box2df)

PostGIS 3.3.0rc2 Manual 259 / 896

8.10.1.26 ~=

~=— Returns TRUE if A’s bounding box is the same as B’s.

Synopsis

boolean ~=(geometry A , geometry B);

Description

The ~= operator returns TRUE if the bounding box of geometry/geography A is the same as the bounding box of geometry/geog-
raphy B.

N;ﬂd Note

This operand will make use of any indexes that may be available on the geometries.

Auvailability: 1.5.0 changed behavior

This function supports Polyhedral surfaces.

Warning

0 This operator has changed behavior in PostGIS 1.5 from testing for actual geometric equality to only checking for
bounding box equality. To complicate things it also depends on if you have done a hard or soft upgrade which behavior
your database has. To find out which behavior your database has you can run the query below. To check for true
equality use ST_OrderingEquals or ST_Equals.

Examples
select 'LINESTRING(O 0, 1 1)'::geometry ~= 'LINESTRING(O 1, 1 0)'::geometry as equality;
equality \
_________________ +
t |
See Also

ST_Equals, ST_OrderingEquals, =

8.10.2 Distance Operators

8.10.21 <->

<->— Returns the 2D distance between A and B.

Synopsis

double precision <->(geometry A , geometry B);
double precision <->(geography A , geography B);

PostGIS 3.3.0rc2 Manual 260/ 896

Description

The <-> operator returns the 2D distance between two geometries. Used in the "ORDER BY" clause provides index-assisted
nearest-neighbor result sets. For PostgreSQL below 9.5 only gives centroid distance of bounding boxes and for PostgreSQL 9.5+,
does true KNN distance search giving true distance between geometries, and distance sphere for geographies.

N:"R’! Note

This operand will make use of 2D GiST indexes that may be available on the geometries. It is different from other
operators that use spatial indexes in that the spatial index is only used when the operator is in the ORDER BY clause.

o) Note
N Index only kicks in if one of the geometries is a constant (not in a subquery/cte). e.g. 'SRID=3005;POINT(1011102

450541)’::geometry instead of a.geom

Refer to PostGIS workshop: Nearest-Neighbor Searching for a detailed example.

Enhanced: 2.2.0 -- True KNN ("K nearest neighbor") behavior for geometry and geography for PostgreSQL 9.5+. Note for
geography KNN is based on sphere rather than spheroid. For PostgreSQL 9.4 and below, geography support is new but only
supports centroid box.

Changed: 2.2.0 -- For PostgreSQL 9.5 users, old Hybrid syntax may be slower, so you’ll want to get rid of that hack if you are
running your code only on PostGIS 2.2+ 9.5+. See examples below.

Availability: 2.0.0 -- Weak KNN provides nearest neighbors based on geometry centroid distances instead of true distances.
Exact results for points, inexact for all other types. Available for PostgreSQL 9.1+

Examples
SELECT ST_Distance (geom, 'SRID=3005;POINT (1011102 450541)'::geometry) as d,edabbr, vaabbr

FROM vaz2005
ORDER BY d limit 10;

d | edabbr | wvaabbr
__________________ I
0 | ALQ | 128
5541.57712511724 | ALQ | 129A
5579.67450712005 | ALQ | 001
6083.4207708641 | ALQ | 131
7691.2205404848 | ALQ | 003
7900.75451037313 | ALQ | 122
8694.20710669982 | ALQ | 129B
9564.24289057111 | ALQ | 130
12089.665931705 | ALQ | 127
18472.5531479404 | ALQ | 002
(10 rows)
Then the KNN raw answer:
SELECT st_distance (geom, 'SRID=3005;POINT (1011102 450541)'::geometry) as d,edabbr, vaabbr
FROM va2005
ORDER BY geom <-> 'SRID=3005;POINT (1011102 450541) '::geometry limit 10;
d | edabbr | vaabbr
__________________ T
0 | ALQ | 128
5541.57712511724 | ALQ | 129A

https://postgis.net/workshops/postgis-intro/knn.html

PostGIS 3.3.0rc2 Manual 261 /896

5579.67450712005 | ALQ [001
6083.4207708641 | ALQ | 131
7691.2205404848 | ALQ | 003

7900.75451037313 | ALQ | 122

8694.20710669982 | ALQ | 129B

9564.24289057111 | ALQ | 130
12089.665931705 | ALQ | 127

18472.5531479404 | ALQ | 002

(10 rows)

If you run "EXPLAIN ANALYZE" on the two queries you would see a performance improvement for the second.

For users running with PostgreSQL < 9.5, use a hybrid query to find the true nearest neighbors. First a CTE query using the
index-assisted KNN, then an exact query to get correct ordering:

WITH index_query AS (

SELECT ST_Distance (geom, 'SRID=3005;POINT (1011102 450541)'::geometry) as d,edabbr, wvaabbr
FROM vaz2005

ORDER BY geom <-> 'SRID=3005;POINT (1011102 450541) '::geometry LIMIT 100)

SELECT =«

FROM index_qguery
ORDER BY d limit 10;

d | edabbr | wvaabbr
__________________ o
0 | ALQ | 128
5541.57712511724 | ALQ | 129A
5579.67450712005 | ALQ | 001
6083.4207708641 | ALQ | 131
7691.2205404848 | ALQ | 003
7900.75451037313 | ALQ | 122
8694.20710669982 | ALQ | 129B
9564.24289057111 | ALQ | 130
12089.665931705 | ALQ | 127
18472.5531479404 | ALQ | 002
(10 rows)
See Also

ST _DWithin, ST_Distance, <#>

8.10.2.2 ||

I= — Returns the distance between A and B trajectories at their closest point of approach.

Synopsis

double precision |=I(geometry A , geometry B);

Description

The | =| operator returns the 3D distance between two trajectories (See ST_IsValidTrajectory). This is the same as ST_DistanceCPA
but as an operator it can be used for doing nearest neighbor searches using an N-dimensional index (requires PostgreSQL 9.5.0
or higher).

PostGIS 3.3.0rc2 Manual 262/ 896

N:"""! Note

This operand will make use of ND GiST indexes that may be available on the geometries. It is different from other
operators that use spatial indexes in that the spatial index is only used when the operator is in the ORDER BY clause.

ot Note
N Index only kicks in if one of the geometries is a constant (not in a subquery/cte). e.g. 'SRID=3005;LINESTRINGM(0 0

0,0 0 1)’::geometry instead of a.geom

Auvailability: 2.2.0. Index-supported only available for PostgreSQL 9.5+

Examples

—-— Save a literal query trajectory in a psgl variable...
\set gt 'ST_AddMeasure (ST_MakeLine (ST_MakePointM(-350,300,0),ST_MakePointM(-410,490,0)) <«
,10,20)"
-— Run the query !
SELECT track_id, dist FROM (
SELECT track_id, ST_DistanceCPA(tr,:gt) dist
FROM trajectories

ORDER BY tr |=]| :gt
LIMIT 5
) foo;
track_id dist
__________ o
395 | 0.576496831518066
380 | 5.06797130410151
390 | 7.72262293958322
385 | 9.8004461358071
405 | 10.9534397988433
(5 rows)
See Also

ST_DistanceCPA, ST_ClosestPointOfApproach, ST_IsValidTrajectory

8.10.2.3 <i#>

<#>— Returns the 2D distance between A and B bounding boxes.

Synopsis

double precision <#>(geometry A , geometry B);

Description

The <#> operator returns distance between two floating point bounding boxes, possibly reading them from a spatial index
(PostgreSQL 9.1+ required). Useful for doing nearest neighbor approximate distance ordering.

N;ld Note

This operand will make use of any indexes that may be available on the geometries. It is different from other operators
that use spatial indexes in that the spatial index is only used when the operator is in the ORDER BY clause.

PostGIS 3.3.0rc2 Manual 263/ 896

4 Note
N Index only kicks in if one of the geometries is a constant e.g. ORDER BY (ST_GeomFromText('POINT(1 2)’) <#> geom)

instead of g1.geom <#>.

Availability: 2.0.0 -- KNN only available for PostgreSQL 9.1+

Examples

SELECT «

FROM (

SELECT b.tlid, b.mtfcc,

b.geom <#> ST_GeomFromText ('LINESTRING (746149 2948672,745954 2948576,

745787 2948499, 745740 2948468, 745712 2948438,
745690 2948384, 745677 2948319) ',2249) As b_dist,
ST_Distance (b.geom, ST_GeomFromText ('LINESTRING (746149 2948672,745954 2948576,
745787 2948499, 745740 2948468, 745712 2948438,
745690 2948384, 745677 2948319) ',2249)) As act_dist
FROM bos_roads As b
ORDER BY b_dist, b.tlid
LIMIT 100) As foo
ORDER BY act_dist, tlid LIMIT 10;

tlid | mtfcc | b_dist | act_dist

——————————— e
85732027 | S1400 | 0 | 0
85732029 | S1400 | 0 | 0
85732031 | S1400 | 0 | 0
85734335 | S1400 | 0 | 0
85736037 | S1400 | 0 | 0
624683742 | S1400 | 0 | 128.528874268666
85719343 | S1400 | 260.839270432962 | 260.839270432962
85741826 | S1400 | 164.759294123275 | 260.839270432962
85732032 | S1400 | 277.75 | 311.830282365264
85735592 | S1400 | 222.25 | 311.830282365264

(10 rows)

See Also

ST _DWithin, ST_Distance, <->

8.10.24 <<->>

<<->> — Returns the n-D distance between the centroids of A and B bounding boxes.

Synopsis

double precision <<->>(geometry A , geometry B);

Description

The <<—>> operator returns the n-D (euclidean) distance between the centroids of the bounding boxes of two geometries. Useful
for doing nearest neighbor approximate distance ordering.

PostGIS 3.3.0rc2 Manual 264 / 896

N:"""! Note

This operand will make use of n-D GiST indexes that may be available on the geometries. It is different from other
operators that use spatial indexes in that the spatial index is only used when the operator is in the ORDER BY clause.

ot¢t Note
N Index only kicks in if one of the geometries is a constant (not in a subquery/cte). e.g. 'SRID=3005;POINT(1011102

450541)’::geometry instead of a.geom

Availability: 2.2.0 -- KNN only available for PostgreSQL 9.1+

See Also

<<H#>>, <->

8.10.2.5 <<i#>>

<<#>>— Returns the n-D distance between A and B bounding boxes.

Synopsis

double precision <<#>>(geometry A , geometry B);

Description

The <<#>> operator returns distance between two floating point bounding boxes, possibly reading them from a spatial index
(PostgreSQL 9.1+ required). Useful for doing nearest neighbor approximate distance ordering.

N;'M Note

This operand will make use of any indexes that may be available on the geometries. It is different from other operators
that use spatial indexes in that the spatial index is only used when the operator is in the ORDER BY clause.

ot Note
N Index only kicks in if one of the geometries is a constant e.g. ORDER BY (ST_GeomFromText(POINT(1 2)") <<#>>

geom) instead of g1.geom <<#>>.

Availability: 2.2.0 -- KNN only available for PostgreSQL 9.1+

See Also

<<->>, <#>

PostGIS 3.3.0rc2 Manual 265/ 896

8.11 Spatial Relationships

8.11.1 Topological Relationships
8.11.1.1 ST_3DIntersects

ST_3DlIntersects — Tests if two geometries spatially intersect in 3D - only for points, linestrings, polygons, polyhedral surface
(area).

Synopsis

boolean ST_3DIntersects(geometry geomA , geometry geomB);

Description

Overlaps, Touches, Within all imply spatial intersection. If any of the aforementioned returns true, then the geometries also
spatially intersect. Disjoint implies false for spatial intersection.

1 Note
Nete Tote
This function automatically includes a bounding box comparison that makes use of any spatial indexes that are available
on the geometries.

Changed: 3.0.0 SFCGAL backend removed, GEOS backend supports TINs.
Availability: 2.0.0

This function supports 3d and will not drop the z-index.
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

This method implements the SQL/MM specification. SQL-MM IEC 13249-3: 5.1

Geometry Examples

SELECT ST_3DIntersects(pt, line), ST_Intersects(pt, line)

FROM (SELECT 'POINT(O O 2)'::geometry As pt, 'LINESTRING (0 O 1, 0 2 3)'::geometry As <
line) As foo;
st_3dintersects | st_intersects
77777777777777777 +777777777777777
f | t
(1 row)
TIN Examples
SELECT ST_3DIntersects('TIN(((0 O 0,1 0 0,0 1 0,0 O 0)))'::geometry, 'POINT(.1 .1 0)':: ¢«

geometry) ;
st_3dintersects

PostGIS 3.3.0rc2 Manual 266 / 896

See Also

ST Intersects

8.11.1.2 ST _Contains

ST_Contains — Tests if no points of B lie in the exterior of A, and A and B have at least one interior point in common.

Synopsis

boolean ST_Contains(geometry geomA, geometry geomB);

Description

Returns TRUE if geometry B is completely inside geometry A. A contains B if and only if no points of B lie in the exterior of A,
and at least one point of the interior of B lies in the interior of A.

A subtlety of the definition is that a geometry does not contain things in its boundary. Thus polygons and lines do nof contain lines
and points lying in their boundary. For further details see Subtleties of OGC Covers, Contains, Within. (The ST_Covers predicate
provides a more inclusive relationship.) However, a geometry does contain itself. (In contrast, in the ST_ContainsProperly
predicate a geometry does not properly contain itself.)

ST_Contains is the inverse of ST_Within. So, ST_Contains (A,B) = ST_Within (B, A).

1) Note
Note O _
This function automatically includes a bounding box comparison that makes use of any spatial indexes that are available
on the geometries. To avoid index use, use the function _ST_Contains.

Performed by the GEOS module

Enhanced: 2.3.0 Enhancement to PIP short-circuit extended to support MultiPoints with few points. Prior versions only supported
point in polygon.

Important
Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

Important
Do not use this function with invalid geometries. You will get unexpected results.

NOTE: this is the "allowable" version that returns a boolean, not an integer.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.2 // s2.1.13.3 - same
as within(geometry B, geometry A)

This method implements the SQL/MM specification. SQL-MM 3: 5.1.31

Examples

ST_Contains returns TRUE in the following situations:

http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-spatial.html
http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual

267 / 896

LINESTRING/MULTIPOINT POLYGON/POINT
POLYGON/LINESTRING POLYGON/POLYGON

The ST_Contains predicate returns FALSE in the following situations:

PostGIS 3.3.0rc2 Manual

268 / 896

POLYGON/MULTIPOINT POLYGON/ LINESTRING

—— A circle within a circle
SELECT ST_Contains(smallc, bigc) As smallcontainsbig,
ST_Contains (bigc,smallc) As bigcontainssmall,
ST_Contains (bigc, ST_Union(smallc, bigc)) as bigcontainsunion,
ST_Equals (bigc, ST_Union(smallc, bigc)) as bigisunion,
ST_Covers (bigc, ST_ExteriorRing(bigc)) As bigcoversexterior,
ST_Contains (bigc, ST_ExteriorRing(bigc)) As bigcontainsexterior
FROM (SELECT ST _Buffer (ST_GeomFromText ('POINT(1 2)'), 10) As smallc,
ST_Buffer (ST_GeomFromText ('POINT (1 2)'), 20) As bigc) As foo;

—-— Result
smallcontainsbig | bigcontainssmall | bigcontainsunion | bigisunion
bigcontainsexterior

—-— Example demonstrating difference between contains and contains properly
SELECT ST_GeometryType (geomA) As geomtype, ST_Contains (geomA,geomA) AS acontainsa,
ST_ContainsProperly (geomA, geomA) AS acontainspropa,
ST_Contains (geomA, ST_Boundary(geomA)) As acontainsba, ST_ContainsProperly (geomA,
ST_Boundary (geomA)) As acontainspropba
FROM (VALUES (ST_Buffer(ST_Point(1,1), 5,1)),
(ST_MakeLine(ST_Point (1,1), ST_Point (-1,-1))),
(ST_Point (1,1))
) As foo(geomd) ;

geomtype | acontainsa | acontainspropa | acontainsba | acontainspropba
—————————————— e B Attt
ST_Polygon | t | £ | £ | £
ST_LineString | t | £ | £ | £
ST_Point | t |t | £ | £

4+

bigcoversexterior | <«

PostGIS 3.3.0rc2 Manual 269 / 896

See Also

ST_Boundary, ST_ContainsProperly, ST_Covers, ST_CoveredBy, ST_Equals, ST_Within

8.11.1.3 ST_ContainsProperly

ST_ContainsProperly — Tests if B intersects the interior of A but not the boundary or exterior.

Synopsis

boolean ST_ContainsProperly(geometry geomA, geometry geomB);

Description

Returns true if B intersects the interior of A but not the boundary or exterior.
A does not properly contain itself, but does contain itself.

Every point of the other geometry is a point of this geometry’s interior. The DE-9IM Intersection Matrix for the two geometries
matches [T**FF*FF*] used in ST_Relate

An example use case for this predicate is computing the intersections of a set of geometries with a large polygonal geometry.
Since intersection is a fairly slow operation, it can be more efficient to use containsProperly to filter out test geometries which lie
wholly inside the area. In these cases the intersection is known a priori to be exactly the original test geometry.

N;ld Note

This function automatically includes a bounding box comparison that makes use of any spatial indexes that are available
on the geometries. To avoid index use, use the function _ST_ContainsProperly.

i

N"R’! Note

The advantage of this predicate over ST_Contains and ST_Intersects is that it can be computed more efficiently, with
no need to compute topology at individual points.

Performed by the GEOS module.
Availability: 1.4.0

Important
Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

Important
Do not use this function with invalid geometries. You will get unexpected results.

PostGIS 3.3.0rc2 Manual 270/ 896

Examples

—-—a circle within a circle

SELECT ST_ContainsProperly(smallc, bigc) As smallcontainspropbig,
ST_ContainsProperly (bigc,smallc) As bigcontainspropsmall,
ST_ContainsProperly (bigc, ST_Union(smallc, bigc)) as bigcontainspropunion,
ST_Equals (bigc, ST_Union(smallc, bigc)) as bigisunion,

ST_Covers (bigc, ST_ExteriorRing(bigc)) As bigcoversexterior,
ST_ContainsProperly (bigc, ST_ExteriorRing(bigc)) As bigcontainsexterior
FROM (SELECT ST_Buffer (ST_GeomFromText ('POINT (1 2)"'), 10) As smallc,
ST_Buffer (ST_GeomFromText ('POINT (1 2)'), 20) As bigc) As foo;

——Result
smallcontainspropbig | bigcontainspropsmall | bigcontainspropunion | bigisunion | <+
bigcoversexterior | bigcontainsexterior
—————————————————— B e e Tt
f | t | £ [t It ¢
| £

——example demonstrating difference between contains and contains properly

SELECT ST_GeometryType (geomA) As geomtype, ST_Contains (geomA,geomA) AS acontainsa, <~
ST_ContainsProperly (geomA, geomA) AS acontainspropa,

ST_Contains (geomA, ST_Boundary (geomA)) As acontainsba, ST_ContainsProperly (geomA, —
ST_Boundary (geomA)) As acontainspropba

FROM (VALUES (ST_Buffer(ST_Point(1l,1), 5,1)),

(ST_MakeLine (ST_Point (1,1), ST_Point (-1,-1))),
(ST_Point(1,1))
) As foo (geomd) ;

geomtype | acontainsa | acontainspropa | acontainsba | acontainspropba
77777777777777 TP e e e e e e e e e e e e P e e e e e e e e e e e e P e e e e e e e e P e e e e eI
ST_Polygon | t | £ | £ | £
ST_LineString | t | £ | £ | £
ST_Point | t | t | £ | £
See Also

ST_GeometryType, ST_Boundary, ST_Contains, ST_Covers, ST_CoveredBy, ST_Equals, ST_Relate, ST_Within

8.11.1.4 ST_CoveredBy

ST_CoveredBy — Tests if no point in A is outside B

Synopsis

boolean ST_CoveredBy(geometry geomA, geometry geomB);
boolean ST_CoveredBy(geography geogA, geography geogB);
Description

Returns t rue if no point in Geometry/Geography A lies outside Geometry/Geography B. Equivalently, tests if every point of
geometry A is inside (i.e. intersects the interior or boundary of) geometry B.

" Note
Noteh O _—
This function automatically includes a bounding box comparison that makes use of any spatial indexes that are available
on the geometries. To avoid index use, use the function _ST_CoveredBy.

PostGIS 3.3.0rc2 Manual

271 /896

Important
Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

Important
Do not use this function with invalid geometries. You will get unexpected results.

Performed by the GEOS module
Availability: 1.2.2
NOTE: this is the "allowable" version that returns a boolean, not an integer.

Not an OGC standard, but Oracle has it too.

Examples

—-—a circle coveredby a circle

SELECT ST_CoveredBy (smallc,smallc) As smallinsmall,
ST_CoveredBy (smallc, bigc) As smallcoveredbybig,
ST_CoveredBy (ST_ExteriorRing(bigc), bigc) As exteriorcoveredbybig,
ST_Within (ST_ExteriorRing(bigc),bigc) As exeriorwithinbig

FROM (SELECT ST _Buffer (ST_GeomFromText ('POINT(1 2)'), 10) As smallc,
ST_Buffer (ST_GeomFromText ('POINT (1 2)'), 20) As bigc) As foo;

——-Result
smallinsmall | smallcoveredbybig | exteriorcoveredbybig | exeriorwithinbig
—————————————— SR
t | t | t | £
(1 row)
See Also

ST_Contains, ST_Covers, ST_ExteriorRing, ST_Within

8.11.1.5 ST Covers

ST_Covers — Tests if no point in B is outside A

Synopsis

boolean ST_Covers(geometry geomA, geometry geomB);
boolean ST_Covers(geography geogpolyA, geography geogpointB);

Description

Returns true if no point in Geometry/Geography B is outside Geometry/Geography A. Equivalently, tests if every point of

geometry B is inside (i.e. intersects the interior or boundary of) geometry A.

N;‘R’! Note

This function automatically includes a bounding box comparison that makes use of any spatial indexes that are available

on the geometries. To avoid index use, use the function _ST_Covers.

PostGIS 3.3.0rc2 Manual 272/ 896

Important
Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

Important
Do not use this function with invalid geometries. You will get unexpected results.

Performed by the GEOS module
Enhanced: 2.4.0 Support for polygon in polygon and line in polygon added for geography type

Enhanced: 2.3.0 Enhancement to PIP short-circuit for geometry extended to support MultiPoints with few points. Prior versions
only supported point in polygon.

Auvailability: 1.5 - support for geography was introduced.
Availability: 1.2.2
NOTE: this is the "allowable" version that returns a boolean, not an integer.

Not an OGC standard, but Oracle has it too.

Examples

Geometry example

——a circle covering a circle
SELECT ST_Covers(smallc,smallc) As smallinsmall,
ST_Covers (smallc, bigc) As smallcoversbig,

ST_Covers (bigc, ST_ExteriorRing(bigc)) As bigcoversexterior,
ST_Contains (bigc, ST_ExteriorRing(bigc)) As bigcontainsexterior
FROM (SELECT ST _Buffer (ST_GeomFromText ('POINT (1 2)'), 10) As smallc,

ST_Buffer (ST_GeomFromText ('POINT (1 2)'), 20) As bigc) As foo;

——Result

smallinsmall | smallcoversbig | bigcoversexterior | bigcontainsexterior
77777777777777 et e Rttt
t | £ | t | £
(1 row)
Geeography Example

-— a point with a 300 meter buffer compared to a point, a point and its 10 meter buffer
SELECT ST_Covers (geog_poly, geog_pt) As poly_covers_pt,

ST_Covers (ST_Buffer (geog_pt,10), geog_pt) As buff_10m_covers_cent

FROM (SELECT ST_Buffer (ST_GeogFromText ('SRID=4326;POINT (-99.327 31.4821)"'), 300) As <

geog_poly,
ST_GeogFromText ('SRID=4326;POINT (-99.33 31.483)') As geog_pt) As foo;
poly_covers_pt | buff_10m_covers_cent
________________ +__________________
f |t
See Also

ST_Contains, ST_CoveredBy, ST_Within

PostGIS 3.3.0rc2 Manual 273 /896

8.11.1.6 ST_Crosses

ST_Crosses — Tests if two geometries have some, but not all, interior points in common.

Synopsis

boolean ST_Crosses(geometry gl, geometry g2);

Description

Compares two geometry objects and returns t rue if their intersection "spatially cross", that is, the geometries have some, but
not all interior points in common. The intersection of the interiors of the geometries must be non-empty and must have dimension
less than the maximum dimension of the two input geometries. Additionally, the intersection of the two geometries must not
equal either of the source geometries. Otherwise, it returns false.

In mathematical terms, this is:

i Crosses(h) = fdimilva) — feh)) = maxidimiTia)), dimebn) ~fa b =a) A fa— b =h)

Geometries cross if their DE-9IM Intersection Matrix matches:

e TxTx*x**xxx for Point/Line, Point/Area, and Line/Area situations
e Txx*%**Txx for Line/Point, Area/Point, and Area/Line situations

e O******** for Line/Line situations

For Point/Point and Area/Area situations this predicate returns false.

The OpenGIS Simple Features Specification defines this predicate only for Point/Line, Point/Area, Line/Line, and Line/Area
situations. JTS / GEOS extends the definition to apply to Line/Point, Area/Point and Area/Line situations as well. This makes
the relation symmetric.

N;‘R’! Note

This function automatically includes a bounding box comparison that makes use of any spatial indexes that are available
on the geometries.

Important
Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.13.3

This method implements the SQL/MM specification. SQL-MM 3: 5.1.29

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 274 / 896
Examples
The following situations all return t rue.
MULTIPOINT/ LINESTRING MULTIPOINT/POLYGON
LINESTRING/POLYGON LINESTRING/LINESTRING
Consider a situation where a user has two tables: a table of roads and a table of highways.
CREATE TABLE roads (CREATE TABLE highways (
id serial NOT NULL, id serial NOT NULL,
geom geometry, the_gem geometry,
CONSTRAINT roads_pkey PRIMARY KEY (< CONSTRAINT roads_pkey PRIMARY KEY (<>
road_id) road_id)
)i)i

PostGIS 3.3.0rc2 Manual 275 /896

To determine a list of roads that cross a highway, use a query similiar to:

SELECT roads.id
FROM roads, highways
WHERE ST_Crosses (roads.geom, highways.geom) ;

See Also

ST_Contains, ST_Overlaps

8.11.1.7 ST _Disjoint

ST_Disjoint — Tests if two geometries are disjoint (they have no point in common).

Synopsis

boolean ST_Disjoint(geometry A , geometry B);

Description

Overlaps, Touches, Within all imply geometries are not spatially disjoint. If any of the aforementioned returns true, then the
geometries are not spatially disjoint. Disjoint implies false for spatial intersection.

Important
Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

Performed by the GEOS module

N;"ld Note

This function call does not use indexes

N-ﬁ'l"! Note

NOTE: this is the "allowable" version that returns a boolean, not an integer.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.2 //s2.1.13.3 -
a.Relate(b, "FF*FF#*%%*)

This method implements the SQL/MM specification. SQL-MM 3: 5.1.26

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 276 / 896

Examples

SELECT ST_Disjoint ('"POINT (0O 0)'::geometry, 'LINESTRING (2 0, 0 2)'::geometry);
st_disjoint

(1 row)
SELECT ST_Disjoint ('POINT (0 0)'::geometry, 'LINESTRING (0 0, 0 2)'::geometry);
st_disjoint

See Also

ST Intersects

8.11.1.8 ST_Equals

ST_Equals — Tests if two geometries include the same set of points.

Synopsis

boolean ST_Equals(geometry A, geometry B);

Description

Returns t rue if the given geometries are "spatially equal”. Use this for a *better’ answer than ’=’. Note by spatially equal we
mean ST_Within(A,B) = true and ST_Within(B,A) = true and also mean ordering of points can be different but represent the same
geometry structure. To verify the order of points is consistent, use ST_OrderingEquals (it must be noted ST_OrderingEquals is
a little more stringent than simply verifying order of points are the same).

Important
Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

%" This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.2
-\

N This method implements the SQL/MM specification. SQL-MM 3: 5.1.24

Changed: 2.2.0 Returns true even for invalid geometries if they are binary equal

Examples

SELECT ST_Equals (ST_GeomFromText ('LINESTRING(O O, 10 10)"'),
ST_GeomFromText ('LINESTRING(O 0, 5 5, 10 10)"));
st_equals

SELECT ST_Equals (ST_Reverse (ST_GeomFromText ('LINESTRING(O 0, 10 10)"')),
ST_GeomFromText ('LINESTRING(O 0, 5 5, 10 10)"));

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 277 / 896

st_equals

See Also

ST_IsValid, ST_OrderingEquals, ST_Reverse, ST_Within

8.11.1.9 ST Intersects

ST_Intersects — Tests if two geometries intersect (they have at least one point in common).

Synopsis

boolean ST_Intersects(geometry geomA , geometry geomB);
boolean ST_Intersects(geography geogA , geography geogB);

Description

Compares two geometries and returns t rue if they intersect. Geometries intersect if they have any point in common.
For geography, a distance tolerance of 0.00001 meters is used (so points that are very close are considered to intersect).

Geometries intersect if their DE-9IM Intersection Matrix matches one of:

® Trrxkkhkkrk
o xTxkxkxk*
® kkxThk*K*
® xkxkTh*k*

Spatial intersection is implied by all the other spatial relationship tests, except ST_Disjoint, which tests that geometries do NOT
intersect.

) Note
Note!
This function automatically includes a bounding box comparison that makes use of any spatial indexes that are available
on the geometries.

Changed: 3.0.0 SFCGAL version removed and native support for 2D TINS added.
Enhanced: 2.5.0 Supports GEOMETRYCOLLECTION.

Enhanced: 2.3.0 Enhancement to PIP short-circuit extended to support MultiPoints with few points. Prior versions only supported
point in polygon.

Performed by the GEOS module (for geometry), geography is native
Availability: 1.5 support for geography was introduced.

N;l-e! Note

For geography, this function has a distance tolerance of about 0.00001 meters and uses the sphere rather than spheroid
calculation.

PostGIS 3.3.0rc2 Manual 278 /896

N;'R’! Note

NOTE: this is the "allowable" version that returns a boolean, not an integer.

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.2 //s2.1.13.3 -
ST_Intersects(gl, g2) --> Not (ST_Disjoint(g1, g2))

ﬂ This method implements the SQL/MM specification. SQL-MM 3: 5.1.27
ﬂ This method supports Circular Strings and Curves

ﬂ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Geometry Examples

SELECT ST_Intersects ('POINT(0 0)'::geometry, 'LINESTRING (2 0, 0 2)'::geometry);
st_intersects

(1 row)
SELECT ST_Intersects ('POINT(0 0)'::geometry, 'LINESTRING (0 0, 0O 2)'::geometry);
st_intersects

—-— Look up in table. Make sure table has a GiST index on geometry column for faster lookup.
SELECT id, name FROM cities WHERE ST_Intersects (geom, 'SRID=4326;POLYGON ((28 53,27.707 <+
52.293,27 52,26.293 52.293,26 53,26.293 53.707,27 54,27.707 53.707,28 53))"');
id | name
____+ _______
2 | Minsk
(1 row)

Geography Examples
SELECT ST_Intersects(
'SRID=4326; LINESTRING (-43.23456 72.4567,-43.23456 72.4568) '::geography,

'SRID=4326;POINT (-43.23456 72.4567772) '::geography
)i

st_intersects

See Also

&&, ST_3DlIntersects, ST_Disjoint

8.11.1.10 ST_LineCrossingDirection

ST_LineCrossingDirection — Returns a number indicating the crossing behavior of two LineStrings.

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 279 /896

Synopsis

integer ST_LineCrossingDirection(geometry linestringA, geometry linestringB);

Description

Given two linestrings returns an integer between -3 and 3 indicating what kind of crossing behavior exists between them. 0
indicates no crossing. This is only supported for LINESTRINGS.

The crossing number has the following meaning:

0: LINE NO CROSS

-1: LINE CROSS LEFT

1: LINE CROSS RIGHT

-2: LINE MULTICROSS END LEFT

2: LINE MULTICROSS END RIGHT

-3: LINE MULTICROSS END SAME FIRST LEFT

3: LINE MULTICROSS END SAME FIRST RIGHT

Availability: 1.4

Examples

Example: LINE CROSS LEFT and LINE CROSS RIGHT

Blue: Line A; Green: Line B

SELECT ST_LineCrossingDirection(lineA, lineB) As A_cross_B,
ST_LineCrossingDirection(lineB, lineA) As B_cross_A
FROM (SELECT

ST_GeomFromText ('LINESTRING (25 169,89 114,40 70,86 43)') As lineA,
ST_GeomFromText ('LINESTRING (20 140, 71 74, 161 53)') As lineB
) As foo;

A_cross_B | B_cross_A

PostGIS 3.3.0rc2 Manual 280 /896

Example: LINE MULTICROSS END SAME FIRST LEFT and LINE MULTICROSS END SAME FIRST RIGHT

\

Blue: Line A; Green: Line B

SELECT ST_LineCrossingDirection(lineA, lineB) As A_cross_B,
ST_LineCrossingDirection(lineB, lineA) As B_cross_A
FROM (SELECT

ST_GeomFromText ('LINESTRING (25 169,89 114,40 70,86 43)') As lineA,
ST_GeomFromText ('LINESTRING (171 154,20 140,71 74,161 53)') As lineB
) As foo;

A_cross_B | B_cross_A
___________ +___________
3 | =3

Example: LINE MULTICROSS END LEFT and LINE MULTICROSS END RIGHT

.\

Blue: Line A; Green: Line B

SELECT ST_LineCrossingDirection(lineA, lineB) As A_cross_B,
ST_LineCrossingDirection(lineB, lineA) As B_cross_A
FROM (SELECT

PostGIS 3.3.0rc2 Manual 281 /896

ST_GeomFromText ('LINESTRING (25 169,89 114,40 70,86 43)') As lineA,
ST_GeomFromText ('LINESTRING (5 90, 71 74, 20 140, 171 154)') As lineB
) As foo;

Example: LINE MULTICROSS END LEFT and LINE MULTICROSS END RIGHT

Blue: Line A; Green: Line B

SELECT ST_LineCrossingDirection(lineA, lineB) As A_cross_B,
ST_LineCrossingDirection(lineB, lineA) As B_cross_A
FROM (SELECT
ST_GeomFromText ('LINESTRING (25 169,89 114,40 70,86 43)') As lineA,
ST_GeomFromText ('LINESTRING (171 154, 20 140, 71 74, 2.99 90.16)"') As lineB
) As foo;

SELECT sl.gid, s2.gid, ST_LineCrossingDirection(sl.geom, s2.geom)
FROM streets sl CROSS JOIN streets s2
ON (sl.gid != s2.gid AND sl.geom && s2.geom)
WHERE ST_LineCrossingDirection(sl.geom, s2.geom) > O0;

See Also
ST_Crosses

8.11.1.11 ST_OrderingEquals

ST_OrderingEquals — Tests if two geometries represent the same geometry and have points in the same directional order.

Synopsis

boolean ST_OrderingEquals(geometry A, geometry B);

PostGIS 3.3.0rc2 Manual 282 /896

Description

ST_OrderingEquals compares two geometries and returns t (TRUE) if the geometries are equal and the coordinates are in the
same order; otherwise it returns f (FALSE).

N:ﬂ"! Note
This function is implemented as per the ArcSDE SQL specification rather than SQL-MM.
http://edndoc.esri.com/arcsde/9.1/sql_api/sqlapi3.htm#ST_OrderingEquals

This method implements the SQL/MM specification. SQL-MM 3: 5.1.43

Examples
SELECT ST_OrderingEquals (ST_GeomFromText ('LINESTRING(O 0, 10 10)"'),

ST_GeomFromText ('LINESTRING(O 0, 5 5, 10 10)"));
st_orderingequals

SELECT ST_OrderingEquals (ST_GeomFromText ('LINESTRING(O 0, 10 10)"'"),
ST_GeomFromText ('LINESTRING(O 0, 0O O, 10 10)"));
st_orderingequals

SELECT ST_OrderingEquals (ST_Reverse (ST_GeomFromText ('LINESTRING(0O 0, 10 10)")),
ST_GeomFromText ('LINESTRING(O 0, 0 0, 10 10)"));
st_orderingequals

See Also

&&, ST_Equals, ST_Reverse

8.11.1.12 ST_Overlaps

ST_Overlaps — Tests if two geometries intersect and have the same dimension, but are not completely contained by each other.

Synopsis

boolean ST_Overlaps(geometry A, geometry B);

Description

Returns TRUE if geometry A and B "spatially overlap". Two geometries overlap if they have the same dimension, each has at
least one point not shared by the other (or equivalently neither covers the other), and the intersection of their interiors has the
same dimension. The overlaps relationship is symmetrical.

PostGIS 3.3.0rc2 Manual 283 /896

N\;‘l"‘! Note
This function automatically includes a bounding box comparison that makes use of any spatial indexes that are available
on the geometries. To avoid index use, use the function _ST_Overlaps.

Performed by the GEOS module

Important
Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

NOTE: this is the "allowable" version that returns a boolean, not an integer.
0 This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.2 // s2.1.13.3

0 This method implements the SQL/MM specification. SQL-MM 3: 5.1.32

Examples

ST_Overlaps returns TRUE in the following situations:

@ C)

e @

MULTIPOINT/MULTIPOINT LINESTRING/LINESTRING POLYGON /POLYGON

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 284 / 896

A Point on a LineString is contained, but since it has lower dimension it does not overlap or cross.

SELECT ST_Overlaps(a,b) AS overlaps, ST_Crosses (a,b) AS crosses,
ST_Intersects(a, b) AS intersects, ST_Contains(b,a) AS b_contains_a
FROM (SELECT ST_GeomFromText ('POINT (100 100)'"') As a,

ST_GeomFromText ('LINESTRING (30 50, 40 160, 160 40, 180 160)') AS b) AS t

overlaps | crosses | intersects | b_contains_a

A LineString that partly covers a Polygon intersects and crosses, but does not overlap since it has different dimension.

SELECT ST_Overlaps (a,b) AS overlaps, ST_Crosses (a,b) AS crosses,
ST_Intersects(a, b) AS intersects, ST_Contains (a,b) AS contains
FROM (SELECT ST_GeomFromText ('POLYGON ((40 170, 90 30, 180 100, 40 170))"') AS a,
ST_GeomFromText ('LINESTRING (10 10, 190 190)') AS b) AS t;

overlap | crosses | intersects | contains

PostGIS 3.3.0rc2 Manual 285 /896

Two Polygons that intersect but with neither contained by the other overlap, but do not cross because their intersection has the
same dimension.

SELECT ST_Overlaps(a,b) AS overlaps, ST_Crosses(a,b) AS crosses,
ST_Intersects(a, b) AS intersects, ST _Contains (b, a) AS b_contains_a,
ST_Dimension(a) AS dim_a, ST_Dimension(b) AS dim_b,
ST_Dimension (ST_Intersection(a,b)) AS dim_int
FROM (SELECT ST_GeomFromText ('POLYGON ((40 170, 90 30, 180 100, 40 170))"') AS a,
ST_GeomFromText ('POLYGON ((110 180, 20 60, 130 90, 110 180))') AS b) As t;

overlaps | crosses | intersects | b_contains_a | dim_a | dim_b | dim_int
7777777777 B i e et e e
= | £ | t | £ | 2 | 2 | 2
See Also

ST Contains, ST _Crosses, ST_Dimension, ST_Intersects

8.11.1.13 ST_Relate

ST_Relate — Tests if two geometries have a topological relationship matching an Intersection Matrix pattern, or computes their
Intersection Matrix

Synopsis

boolean ST_Relate(geometry geomA, geometry geomB, text intersectionMatrixPattern);
text ST_Relate(geometry geomA, geometry geomB);
text ST_Relate(geometry geomA, geometry geomB, integer boundaryNodeRule);

Description

These functions allow testing and evaluating the spatial (topological) relationship between two geometries, as defined by the
Dimensionally Extended 9-Intersection Model (DE-9IM).

The DE-9IM is specified as a 9-element matrix indicating the dimension of the intersections between the Interior, Boundary and
Exterior of two geometries. It is represented by a 9-character text string using the symbols "F*,’0’,°1°,°2’ (e.g. "FF1FF0102").

http://en.wikipedia.org/wiki/DE-9IM

PostGIS 3.3.0rc2 Manual 286 / 896

A specific kind of spatial relationships is evaluated by comparing the intersection matrix to an intersection matrix pattern.
A pattern can include the additional symbols T” and **’. Common spatial relationships are provided by the named func-
tions ST_Contains, ST_ContainsProperly, ST_Covers, ST_CoveredBy, ST_Crosses, ST_Disjoint, ST_Equals, ST_Intersects,
ST_Overlaps, ST _Touches, and ST_Within. Using an explicit pattern allows testing multiple conditions of intersects, crosses,
etc in one step. It also allows testing spatial relationships which do not have a named spatial relationship function. For example,
the relationship "Interior-Intersects" has the DE-9IM pattern T * » » % « x =, which is not evaluated by any named predicate.

For more information refer to Section 5.1.

Variant 1: Tests if two geometries are spatially related according to the given intersectionMatrixPattern.

. Note
N”’M Unlike most of the named spatial relationship predicates, this does NOT automatically include an index call. The reason
is that some relationships are true for geometries which do NOT intersect (e.g. Disjoint). If you are using a relationship
pattern that requires intersection, then include the && index call.

i

Ncrld Note

It is better to use a named relationship function if available, since they automatically use a spatial index where one
exists. Also, they may implement performance optimizations which are not available with full relate evalation.

Variant 2: Returns the DE-9IM matrix string for the spatial relationship between the two input geometries. The matrix string
can be tested for matching a DE-9IM pattern using ST_RelateMatch.

Variant 3: Like variant 2, but allows specifying a Boundary Node Rule. A boundary node rule allows finer control over whether
geometry boundary points are considered to lie in the DE-9IM Interior or Boundary. The boundaryNodeRule code is: 1:
OGC/MOD2, 2: Endpoint, 3: MultivalentEndpoint, 4: MonovalentEndpoint.

This function is not in the OGC spec, but is implied. see s2.1.13.2
This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.2 // s2.1.13.3

This method implements the SQL/MM specification. SQL-MM 3: 5.1.25
Performed by the GEOS module
Enhanced: 2.0.0 - added support for specifying boundary node rule.

Important
Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

Examples

Using the boolean-valued function to test spatial relationships.

SELECT ST_Relate ('POINT(1 2)', ST_Buffer('POINT(1l 2)', 2), 'OFFFFF212');
st_relate

SELECT ST_Relate (POINT(1 2)', ST_Buffer('POINT(l 2)', 2), '+«FExFF212');
st_relate

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 287 /896

Testing a custom spatial relationship pattern as a query condition, with && to enable using a spatial index.

—-— Find compounds that properly intersect (not just touch) a poly (Interior Intersects)

SELECT c.x , p.name As poly_name
FROM polys AS p
INNER JOIN compounds As cC
ON c.geom && p.geom
AND ST_Relate(p.geom, c.geom, 'Txxk**%x*x*x"');

Computing the intersection matrix for spatial relationships.

SELECT ST_Relate('POINT(1l 2)°',
ST_Buffer ("POINT(1 2)', 2));
st_relate

OFFFFF212
SELECT ST_Relate('LINESTRING(1 2, 3 4)°',

'LINESTRING(5 6, 7 8)"');
st_relate

FF1FF0102

See Also
Section 5.1, ST_RelateMatch, ST_Contains, ST_ContainsProperly, ST_Covers, ST_CoveredBy, ST_Crosses, ST_Disjoint, ST_Equals,
ST_Intersects, ST_Overlaps, ST_Touches, ST_Within

8.11.1.14 ST_RelateMatch

ST_RelateMatch — Tests if a DE-9IM Intersection Matrix matches an Intersection Matrix pattern

Synopsis

boolean ST_RelateMatch(text intersectionMatrix, text intersectionMatrixPattern);

Description

Tests if a Dimensionally Extended 9-Intersection Model (DE-9IM) intersectionMatrix value satisfiesan intersectionMatr
Intersection matrix values can be computed by ST_Relate.

For more information refer to Section 5.1.
Performed by the GEOS module
Availability: 2.0.0

Examples

SELECT ST_RelateMatch ('101202FFF', 'TTTTTTFFF') ;
-— result —-
t

Patterns for common spatial relationships matched against intersection matrix values, for a line in various positions relative to a
polygon

http://en.wikipedia.org/wiki/DE-9IM

PostGIS 3.3.0rc2 Manual

288 / 896

SELECT pat.name AS relationship,
mat .name AS position,

pat.val AS pattern,
mat.val AS matrix,

ST_RelateMatch (mat.val, pat.val) AS match
FROM (VALUES ('Equality', 'TlFF1FFF1'),

CROSS JOIN

(VALUE

relationship
Equality
Equality
Equality
Overlaps
Overlaps
Overlaps
Within
Within
Within
Disjoint
Disjoint
Disjoint

See Also

S

— e e e e e = = = = = = db =

('"Overlaps', '"TxTxxxTxx'
('within',
('Disjoint', 'FExFFxxxx'

’

)
"TxEx*F*xx"')
)

('"non-intersecting', 'FF1lFF0212'),
('overlapping', '1010F0212")
('inside', '1IFFOFF212")
pattern | position | matrix
___________ S
TIFF1FFF1l | non-intersecting | FF1FF0212
T1FF1FFF1 | overlapping | 1010F0212
T1FF1FFF1 | inside | 1FFOFF212
TxT***xTx* | non—-intersecting | FF1FF0212
T+Txx*Txx | overlapping [1010F0212
TxT*x*x*Txx | inside | 1FFOFF212
TxF**xF*x*x* | non—-intersecting | FF1FF0212
T+xF*x*xF+xx%x | overlapping | 1010F0212
TxEx*xFx*+x | inside | 1FFOFF212
FExFFxxxx | non-intersecting | FF1FF0212
FExFFx*** | overlapping | 1010F0212
FExFFxxxx | inside | 1FFOFF212

Section 5.1, ST _Relate

8.11.1.15 ST_Touches

ST_Touches — Tests if two geometries have at least one point in common, but their interiors do not intersect.

Synopsis

boolean ST_Touches(geometry A, geometry B);

Description

|
+
|
|
|
|
|
|
|
|
|
|
|
|

4
) AS pat (name,val)

4
) AS mat (name,val);

e e e e o A e

Returns TRUE if A and B intersect, but their interiors do not intersect. Equivalently, A and B have at least one point in common,
and the common points lie in at least one boundary. For Point/Point inputs the relationship is always FALSE, since points do not

have a boundary.

In mathematical terms, this relationship is:

This relationship holds if the DE-9IM Intersection Matrix for the two geometries matches one of:

o Fsksksksoksk
o kT kKKK

o [k kkskok

a. Touchesih) < (Tia)~Ib) = &) A fa — bl =

PostGIS 3.3.0rc2 Manual 289 /896

N;.l.,,; Note

This function automatically includes a bounding box comparison that makes use of any spatial indexes that are available
on the geometries. To avoid using an index, use _ST_Touches instead.

Important
Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

0 This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.2 //s2.1.13.3

0 This method implements the SQL/MM specification. SQL-MM 3: 5.1.28

Examples

The ST_Touches predicate returns TRUE in the following examples.

POLYGON/POLYGON POLYGON/POLYGON POLYGON/ LINESTRING

LINESTRING/LINESTRING LINESTRING/LINESTRING POLYGON/POINT

SELECT ST_Touches ('LINESTRING(O 0, 1 1, O 2)'::geometry, 'POINT(l 1)'::geometry);

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 290/ 896

st_touches

SELECT ST_Touches ('LINESTRING(O 0, 1 1, 0 2)'::geometry, 'POINT(O 2)'::geometry);
st_touches

8.11.1.16 ST_Within

ST_Within — Tests if no points of A lie in the exterior of B, and A and B have at least one interior point in common.

Synopsis

boolean ST_Within(geometry A, geometry B);

Description

Returns TRUE if geometry A is completely inside geometry B. For this function to make sense, the source geometries must both
be of the same coordinate projection, having the same SRID. It is a given that if ST_Within(A,B) is true and ST_Within(B,A) is
true, then the two geometries are considered spatially equal.

A subtlety of this definition is that the boundary of a geometry is not within the geometry. This means that lines and points lying
in the boundary of a polygon or line are not within the geometry. For further details see Subtleties of OGC Covers, Contains,
Within. (The ST_CoveredBy predicate provides a more inclusive relationship).

ST_Within is the inverse of ST_Contains. So, ST_Within (A,B) = ST_Contains (B,A).

) Note
Notet Ot
This function automatically includes a bounding box comparison that makes use of any spatial indexes that are available
on the geometries. To avoid index use, use the function _ST_Within.

Performed by the GEOS module

Enhanced: 2.3.0 Enhancement to PIP short-circuit for geometry extended to support MultiPoints with few points. Prior versions
only supported point in polygon.

Important
Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

Important
Do not use this function with invalid geometries. You will get unexpected results.

NOTE: this is the "allowable" version that returns a boolean, not an integer.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.2 // s2.1.13.3 -
a.Relate(b, "T*F**F***)

This method implements the SQL/MM specification. SQL-MM 3: 5.1.30

http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-spatial.html
http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-spatial.html
http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual

291 /896

Examples

—-—a circle within a circle

SELECT ST_Within(smallc,smallc) As smallinsmall,
ST_Within(smallc, bigc) As smallinbig,
ST_Within (bigc,smallc) As biginsmall,
ST_Within (ST_Union(smallc, bigc), bigc) as unioninbig,
ST_Within(bigc, ST_Union(smallc, bigc)) as biginunion,
ST_Equals (bigc, ST_Union(smallc, bigc)) as bigisunion

FROM

(

SELECT ST_Buffer (ST_GeomFromText ('"POINT (50 50) '), 20) As smallc,
ST_Buffer (ST_GeomFromText ('POINT (50 50) '), 40) As bigc) As foo;

—-—Result

bigisunion

smallinsmall | smallinbig | biginsmall | unioninbig | biginunion
77777777777777 ettt e
t | € | £ | t | t

(1 row)
See Also

ST_Contains, ST_CoveredBy, ST_Equals, ST_IsValid

8.11.2 Distance Relationships

8.11.2.1 ST_3DDWithin

ST_3DDWithin — Tests if two 3D geometries are within a given 3D distance

Synopsis

boolean ST_3DDWithin(geometry g1, geometry g2, double precision distance_of_srid);

Description

Returns true if the 3D distance between two geometry values is no larger than distance distance_of_srid. The distance is
specified in units defined by the spatial reference system of the geometries. For this function to make sense the source geometries

must be in the same coordinate system (have the same SRID).

PostGIS 3.3.0rc2 Manual 292/ 896

4 Note
N This function automatically includes a bounding box comparison that makes use of any spatial indexes that are available
on the geometries.

ﬂ This function supports 3d and will not drop the z-index.
ﬂ This function supports Polyhedral surfaces.

ﬂ This method implements the SQL/MM specification. SQL-MM ?
Availability: 2.0.0

Examples

—— Geometry example - units in meters (SRID: 2163 US National Atlas Equal area) (3D point <+
and line compared 2D point and line)
—-— Note: currently no vertical datum support so Z is not transformed and assumed to be same
units as final.
SELECT ST_3DDWithin (
ST_Transform(ST_GeomFromEWKT ('SRID=4326;POINT (-72.1235 42.3521 4)'),2163),
ST _Transform (ST_GeomFromEWKT ('SRID=4326; LINESTRING (-72.1260 42.45 15, -72.123 42.1546 <+
20)"'),2163),
126.8
) As within_dist_3d,
ST_DWithin (
ST_Transform(ST_GeomFromEWKT ('SRID=4326; POINT (-72.1235 42.3521 4)'),2163),
ST _Transform (ST_GeomFromEWKT ('SRID=4326; LINESTRING (-72.1260 42.45 15, -72.123 42.1546 <«
20)"),2163),
126.8
) As within_dist_2d;

within_dist_3d | within_dist_2d

________________ +________________
il | t

See Also

ST_3DDFullyWithin, ST_DWithin, ST_DFullyWithin, ST_3DDistance, ST_Distance, ST_3DMaxDistance, ST_Transform

8.11.2.2 ST_3DDFullyWithin

ST_3DDFullyWithin — Tests if two 3D geometries are entirely within a given 3D distance

Synopsis

boolean ST_3DDFullyWithin(geometry g1, geometry g2, double precision distance);

Description

Returns true if the 3D geometries are fully within the specified distance of one another. The distance is specified in units defined
by the spatial reference system of the geometries. For this function to make sense, the source geometries must both be of the
same coordinate projection, having the same SRID.

PostGIS 3.3.0rc2 Manual 293 /896

otet Note
N This function automatically includes a bounding box comparison that makes use of any spatial indexes that are available
on the geometries.

Auvailability: 2.0.0
This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

Examples

—— This compares the difference between fully within and distance within as well
—— as the distance fully within for the 2D footprint of the line/point vs. the 3d fully ¢
within
SELECT ST_3DDFullyWithin (geom_a, geom_)b, 10) as D3DFullyWithinl0O, ST_3DDWithin (geom_a, +—
geom_b, 10) as D3DWithinlOQ,
ST_DFullyWithin (geom_a, geom_b, 20) as D2DFullyWithin20,
ST_3DDFullyWithin (geom_a, geom_b, 20) as D3DFullyWithin20 from
(select ST_GeomFromEWKT ('POINT(1 1 2)') as geom_a,

ST_GeomFromEWKT ('LINESTRING(1 5 2, 2 7 20, 1 9 100, 14 12 3)') as geom_b) tl;
d3dfullywithinl0 | d3dwithinlO | d2dfullywithin20 | d3dfullywithin20
—————————————————— e St A
bil |t |t f
See Also

ST_3DDWithin, ST_DWithin, ST_DFullyWithin, ST_3DMaxDistance

8.11.2.3 ST_DFullyWithin

ST_DFullyWithin — Tests if two geometries are entirely within a given distance

Synopsis

boolean ST_DFullyWithin(geometry g1, geometry g2, double precision distance);

Description

Returns true if the geometries are entirely within the specified distance of one another. The distance is specified in units defined
by the spatial reference system of the geometries. For this function to make sense, the source geometries must both be of the
same coordinate projection, having the same SRID.

) Note
Note!
This function automatically includes a bounding box comparison that makes use of any spatial indexes that are available
on the geometries.

Availability: 1.5.0

PostGIS 3.3.0rc2 Manual 294 / 896

Examples
postgis=# SELECT ST_DFullyWithin (geom_a, geom_b, 10) as DFullyWithinl0O, ST_DWithin (geom_a, <>
geom_b, 10) as DWithinl0, ST_DFullyWithin(geom_a, geom_b, 20) as DFullyWithin20 from
(select ST_GeomFromText ('POINT(1 1)') as geom_a,ST_GeomFromText ('LINESTRING(1 5, 2 7, 1 ¢
9, 14 12)') as geom_b) tl;

DFullyWithinlO | DWithinlO | DFullyWithin20 |

See Also

ST_MaxDistance, ST_DWithin, ST_3DDWithin, ST_3DDFullyWithin

8.11.2.4 ST_DWithin

ST_DWithin — Tests if two geometries are within a given distance

Synopsis

boolean ST_DWithin(geometry g1, geometry g2, double precision distance_of_srid);
boolean ST_DWithin(geography ggl, geography gg2, double precision distance_meters, boolean use_spheroid = true);

Description

Returns true if the geometries are within a given distance

For geometry: The distance is specified in units defined by the spatial reference system of the geometries. For this function to
make sense, the source geometries must be in the same coordinate system (have the same SRID).

For geography: units are in meters and distance measurement defaults to use_spheroid=true. For faster evaluation use
use_spheroid=false to measure on the sphere.

Not? Note
Use ST_3DDWithin for 3D geometries.

No.l-g,! Note
This function call includes a bounding box comparison that makes use of any indexes that are available on the geome-
tries.

% This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
Awailability: 1.5.0 support for geography was introduced

Enhanced: 2.1.0 improved speed for geography. See Making Geography faster for details.
Enhanced: 2.1.0 support for curved geometries was introduced.

Prior to 1.3, ST_Expand was commonly used in conjunction with && and ST_Distance to test for distance, and in pre-1.3.4 this
function used that logic. From 1.3.4, ST_DWithin uses a faster short-circuit distance function.

http://www.opengeospatial.org/standards/sfs
http://blog.opengeo.org/2012/07/12/making-geography-faster/

PostGIS 3.3.0rc2 Manual 295 /896

Examples

—— Find the nearest hospital to each school
—— that is within 3000 units of the school.
—— We do an ST_DWithin search to utilize indexes to limit our search list
—— that the non-indexable ST_Distance needs to process
—— If the units of the spatial reference is meters then units would be meters
SELECT DISTINCT ON (s.gid) s.gid, s.school_name, s.geom, h.hospital_name

FROM schools s

LEFT JOIN hospitals h ON ST _DWithin(s.geom, h.geom, 3000)
ORDER BY s.gid, ST_Distance(s.geom, h.geom);

—— The schools with no close hospitals
—-— Find all schools with no hospital within 3000 units
—-— away from the school. Units is in units of spatial ref (e.g. meters, feet, degrees)
SELECT s.gid, s.school_name
FROM schools s
LEFT JOIN hospitals h ON ST_DWithin (s.geom, h.geom, 3000)
WHERE h.gid IS NULL;

—-— Find broadcasting towers that receiver with limited range can receive.
—-— Data is geometry in Spherical Mercator (SRID=3857), ranges are approximate.

—— Create geometry index that will check proximity limit of user to tower
CREATE INDEX ON broadcasting_towers using gist (geom);

—— Create geometry index that will check proximity limit of tower to user
CREATE INDEX ON broadcasting_towers using gist (ST_Expand(geom, sending_range));

—— Query towers that 4-kilometer receiver in Minsk Hackerspace can get
—— Note: two conditions, because shorter LEAST (b.sending_range, 4000) will not use index.
SELECT b.tower_id, b.geom

FROM broadcasting_towers b

WHERE ST_DWithin (b.geom, 'SRID=3857;POINT(3072163.4 7159374.1)', 4000)
AND ST_DWithin (b.geom, 'SRID=3857;POINT(3072163.4 7159374.1)"', b.sending_range);

See Also

ST Distance, ST_3DDWithin

8.11.2.5 ST_PointinsideCircle

ST_PointInsideCircle — Tests if a point geometry is inside a circle defined by a center and radius.

Synopsis

boolean ST_PointInsideCircle(geometry a_point, float center_x, float center_y, float radius);

Description

Returns true if the geometry is a point and is inside the circle with center center_x,center_y and radius radius.

0 Warning

Does not use spatial indexes. Use ST_DWithin instead.

PostGIS 3.3.0rc2 Manual

296 / 896

Awailability: 1.2

Changed: 2.2.0 In prior versions this was called ST_Point_Inside_Circle

Examples

SELECT ST_PointInsideCircle(ST_Point (1,2), 0.5, 2, 3);
st_pointinsidecircle

See Also

ST_DWithin

8.12 Measurement Functions

8.12.1 ST_Area

ST_Area — Returns the area of a polygonal geometry.

Synopsis

float ST_Area(geometry gl);
float ST_Area(geography geog, boolean use_spheroid=true);

Description

Returns the area of a polygonal geometry. For geometry types a 2D Cartesian (planar) area is computed, with units specified by
the SRID. For geography types by default area is determined on a spheroid with units in square meters. To compute the area

using the faster but less accurate spherical model use ST_Area (geog, false).

Enhanced: 2.0.0 - support for 2D polyhedral surfaces was introduced.

Enhanced: 2.2.0 - measurement on spheroid performed with GeographicLib for improved accuracy and robustness. Requires

PROJ >=4.9.0 to take advantage of the new feature.
Changed: 3.0.0 - does not depend on SFCGAL anymore.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: 8.1.2,9.5.3

This function supports Polyhedral surfaces.

N:ﬂ"! Note

For polyhedral surfaces, only supports 2D polyhedral surfaces (not 2.5D). For 2.5D, may give a non-zero answer, but

only for the faces that sit completely in XY plane.

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 297 / 896

Examples

Return area in square feet for a plot of Massachusetts land and multiply by conversion to get square meters. Note this is in square
feet because EPSG:2249 is Massachusetts State Plane Feet

select ST_Area(geom) sqgft,
ST_Area (geom) = 0.3048 "~ 2 sgm

from (

select 'SRID=2249;POLYGON ((743238 2967416,743238 2967450,

743265 2967450, 743265.625 2967416,743238 2967416)) "' :: geometry geom

) subquery;

┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ɒ¢c; ─ & #x2
│ sqgft │ sqgm │
├ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┼ ─ & #x2
│ 928.625 │ 86.27208552 │
└ ─ ─ ─ ─ ─ ─ & #x2500; ─ ─ ┴ ─ & #x2

Return area square feet and transform to Massachusetts state plane meters (EPSG:26986) to get square meters. Note this is in
square feet because 2249 is Massachusetts State Plane Feet and transformed area is in square meters since EPSG:26986 is state
plane Massachusetts meters

select ST_Area(geom) sqgft,
ST_Area (ST_Transform(geom, 26986)) As sgm

from (
select
'SRID=2249; POLYGON ((743238 2967416, 743238 2967450,
743265 2967450,743265.625 2967416, 743238 2967416)) "' :: geometry geom
) subquery;
┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┬ ─ & #x2
│ sqgft │ sqm │

├ ─ ─ ─ ─ ─ ─ ─ ─ ─ ɓ¢c; ─ & #x2
│ 928.625 │ 86.272430607008 │
§#x2514; ─ ─ ─ ─ ─ ─ ─ ─ ─ ┴ ─ & #x2

Return area square feet and square meters using geography data type. Note that we transform to our geometry to geography
(before you can do that make sure your geometry is in WGS 84 long lat 4326). Geography always measures in meters. This is
just for demonstration to compare. Normally your table will be stored in geography data type already.

select ST_Area(geog) / 0.3048 ~ 2 sqgft_spheroid,
ST_Area(geog, false) / 0.3048 ~ 2 sqgft_sphere,
ST_Area (geog) sgm_spheroid
from (
select ST_Transform/(
'SRID=2249; POLYGON ((743238 2967416, 743238 2967450,743265 <+
2967450,743265.625 2967416,743238 2967416)) '::geometry,
4326
) :: geography geog
) as subquery;
┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ & #x2
│ sqgft_spheroid │ sgft_sphere │ sgm_spheroid │
├ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ & #x2
│ 928.684405784452 │ 927.049336105925 │ 86.2776044979692 │
└ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ & #x2

If your data is in geography already:

select ST_Area(geog) / 0.3048 ~ 2 sqgft,
ST_Area (the_geog) sam
from somegeogtable;

PostGIS 3.3.0rc2 Manual 298 / 896

See Also

ST_3DArea, ST_GeomFromText, ST_GeographyFromText, ST_SetSRID, ST_Transform

8.12.2 ST_Azimuth

ST_Azimuth — Returns the north-based azimuth of a line between two points.

Synopsis

float ST_Azimuth(geometry origin, geometry target);
float ST_Azimuth(geography origin, geography target);

Description

Returns the azimuth in radians of the target point from the origin point, or NULL if the two points are coincident. The azimuth
angle is a positive clockwise angle referenced from the positive Y axis (geometry) or the North meridian (geography): North =
0; Northeast = /4; East = /2; Southeast = 37/4; South = 7; Southwest 57/4; West = 37/2; Northwest = 77/4.

For the geography type, the azimuth solution is known as the inverse geodesic problem.

The azimuth is a mathematical concept defined as the angle between a reference vector and a point, with angular units in radians.
The result value in radians can be converted to degrees using the PostgreSQL function degrees ().

Azimuth can be used in conjunction with ST_Translate to shift an object along its perpendicular axis. See the upgis_lineshift ()
function in the PostGIS wiki for an implementation of this.

Availability: 1.1.0
Enhanced: 2.0.0 support for geography was introduced.

Enhanced: 2.2.0 measurement on spheroid performed with GeographicLib for improved accuracy and robustness. Requires
PROJ >=4.9.0 to take advantage of the new feature.

Examples

Geometry Azimuth in degrees

SELECT degrees (ST_Azimuth(ST_Point (25, 45), ST_Point (75, 100))) AS degA_B,
degrees (ST_Azimuth (ST_Point (75, 100), ST_Point (25, 45))) AS degB_A;

42.2736890060937 | 222.273689006094

https://en.wikipedia.org/wiki/Geodesics_on_an_ellipsoid
http://trac.osgeo.org/postgis/wiki/UsersWikiplpgsqlfunctions

PostGIS 3.3.0rc2 Manual 299 / 896

Blue: origin Point(25,45); Green: target Point(75, 100); Blue: origin Point(75, 100); Green: target Point(25, 45);
Yellow: Y axis or North; Red: azimuth angle. Yellow: Y axis or North; Red: azimuth angle.

See Also

ST_Angle, ST_Point, ST_Translate, ST_Project, PostgreSQL Math Functions

8.12.3 ST_Angle

ST_Angle — Returns the angle between two vectors defined by 3 or 4 points, or 2 lines.

Synopsis

float ST_Angle(geometry pointl, geometry point2, geometry point3, geometry point4);
float ST_Angle(geometry linel, geometry line2);

Description

Computes the clockwise angle between two vectors.

Variant 1: computes the angle enclosed by the points P1-P2-P3. If a 4th point provided computes the angle points P1-P2 and
P3-P4

Variant 2: computes the angle between two vectors S1-E1 and S2-E2, defined by the start and end points of the input lines

The result is a positive angle between 0 and 27 radians. The radian result can be converted to degrees using the PostgreSQL
function degrees ().

Note that ST_Angle (P1,P2,P3) = ST_Angle(P2,P1,P2,P3).
Availability: 2.5.0

Examples

Angle between three points

http://www.postgresql.org/docs/current/interactive/functions-math.html

PostGIS 3.3.0rc2 Manual 300/ 896

SELECT degrees(ST_Angle ('POINT (0O 0)', 'POINT(10 10)', 'POINT (20 0)'"'));

Angle between vectors defined by four points

SELECT degrees(ST_Angle ('POINT (10 10)', 'POINT (0 0)', 'POINT(S0 90)', 'POINT (100 80)'"') <
)i

degrees

269.9999999999999

Angle between vectors defined by the start and end points of lines

SELECT degrees(ST_Angle('LINESTRING(O O, 0.3 0.7, 1 1)', 'LINESTRING(O 0, 0.2 0.5, 1 0)'") <«

See Also

ST _Azimuth

8.12.4 ST ClosestPoint

ST_ClosestPoint — Returns the 2D point on g1 that is closest to g2. This is the first point of the shortest line from one geometry
to the other.

Synopsis

geometry ST_ClosestPoint(geometry geoml, geometry geom?2);

Description

Returns the 2-dimensional point on geoml that is closest to geom2. This is the first point of the shortest line between the
geometries (as computed by ST_ShortestLine).

N;ﬂ"! Note

If you have a 3D Geometry, you may prefer to use ST_3DClosestPoint.

Availability: 1.5.0

PostGIS 3.3.0rc2 Manual

301 /896

Examples

The closest point for a Point and a LineString is the point itself. The closest point for a LineString and a Point is a point on the

line.
SELECT ST_AsText (ST_ClosestPoint (pt,line)) AS cp_pt_line,
ST_AsText (ST_ClosestPoint (line,pt)) AS cp_line_pt
FROM (SELECT 'POINT (160 40)'::geometry AS pt,
'LINESTRING (10 30, 50 50, 30 110, 70 90, 180 140, 130 190)'::geometry AS <+
line) AS t;
cp_pt_line | cp_line_pt
________________ +__
POINT (160 40) | POINT (125.75342465753425 115.34246575342466)

The closest point on polygon A to polygon B

SELECT ST_AsText (ST_ClosestPoint (
'"POLYGON ((190 150, 20 10, 160 70,
ST_Buffer ('"POINT (80 160)"', 30)))

POINT (131.59149149528952 101.89887534906197)

190 150))"',
As ptwkt;

PostGIS 3.3.0rc2 Manual 302 /896

See Also

ST_3DClosestPoint, ST_Distance, ST_LongestLine, ST_ShortestLine, ST_MaxDistance

8.12.5 ST_3DClosestPoint

ST_3DClosestPoint — Returns the 3D point on g1 that is closest to g2. This is the first point of the 3D shortest line.

Synopsis

geometry ST_3DClosestPoint(geometry g1, geometry g2);

Description

Returns the 3-dimensional point on gl that is closest to g2. This is the first point of the 3D shortest line. The 3D length of the
3D shortest line is the 3D distance.

ﬂ This function supports 3d and will not drop the z-index.

ﬂ This function supports Polyhedral surfaces.
Auvailability: 2.0.0

Changed: 2.2.0 - if 2 2D geometries are input, a 2D point is returned (instead of old behavior assuming O for missing Z). In case
of 2D and 3D, Z is no longer assumed to be O for missing Z.

Examples

linestring and point -- both 3d and 2d closest point

SELECT ST_ASEWKT (ST_3DClosestPoint (line,pt)) AS cp3d_line_pt,
ST_ASEWKT (ST_ClosestPoint (line,pt)) As cp2d_line_pt
FROM (SELECT 'POINT (100 100 30)'::geometry As pt,

'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 1000)"':: <«
geometry As line
) As foo;
cp3d_line_pt \ «
cp2d_line_pt
___ +_______________________________________

POINT (54.6993798867619 128.935022917228 11.5475869506606) | POINT (73.0769230769231 <=
115.384615384615)

linestring and multipoint -- both 3d and 2d closest point

SELECT ST_ASEWKT (ST_3DClosestPoint (line,pt)) AS cp3d_line_pt,
ST_ASEWKT (ST_ClosestPoint (line,pt)) As cp2d_line_pt
FROM (SELECT 'MULTIPOINT (100 100 30, 50 74 1000)'::geometry As pt,
'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 900)':: ¢
geometry As line
) As foo;

cp3d_line_pt | cp2d_line_pt
___ +______________
POINT (54.6993798867619 128.935022917228 11.5475869506606) | POINT (50 75)

PostGIS 3.3.0rc2 Manual 303 /896

Multilinestring and polygon both 3d and 2d closest point

SELECT ST_ASEWKT (ST_3DClosestPoint (poly, mline)) As cp3d,
ST_ASEWKT (ST_ClosestPoint (poly, mline)) As cp2d
FROM (SELECT ST_GeomFromEWKT ('POLYGON((175 150 5, 20 40 5, 35 45 5, 50 60 5, —
100 100 5, 175 150 5))') As poly,
ST_GeomFromEWKT ('MULTILINESTRING((175 155 2, 20 40 20, 50 60 -2, 125 <
100 1, 175 155 1),
(1 10 2, 5 20 1))'") As mline) As foo;
cp3d | cp2d
___ B,
POINT (39.993580415989 54.1889925532825 5) | POINT (20 40)

See Also

ST _ASEWKT, ST ClosestPoint, ST 3DDistance, ST 3DShortestLine

8.12.6 ST_Distance

ST_Distance — Returns the distance between two geometry or geography values.

Synopsis

float ST_Distance(geometry g1, geometry g2);
float ST_Distance(geography geogl, geography geog2, boolean use_spheroid=true);

Description

For geometry types returns the minimum 2D Cartesian (planar) distance between two geometries, in projected units (spatial ref
units).

For geography types defaults to return the minimum geodesic distance between two geographies in meters, compute on the
spheroid determined by the SRID. If use_spheroid is false, a faster spherical calculation is used.

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1.

ﬂ This method implements the SQL/MM specification. SQL-MM 3: 5.1.23

ﬂ This method supports Circular Strings and Curves

Availability: 1.5.0 geography support was introduced in 1.5. Speed improvements for planar to better handle large or many vertex
geometries

Enhanced: 2.1.0 improved speed for geography. See Making Geography faster for details.
Enhanced: 2.1.0 - support for curved geometries was introduced.

Enhanced: 2.2.0 - measurement on spheroid performed with GeographicLib for improved accuracy and robustness. Requires
PROJ >=4.9.0 to take advantage of the new feature.

Changed: 3.0.0 - does not depend on SFCGAL anymore.

http://www.opengeospatial.org/standards/sfs
http://boundlessgeo.com/2012/07/making-geography-faster/

PostGIS 3.3.0rc2 Manual 304 / 896

Geometry Examples

Geometry example - units in planar degrees 4326 is WGS 84 long lat, units are degrees.

SELECT ST_Distance (
'SRID=4326;POINT (-72.1235 42.3521) '::geometry,
'SRID=4326; LINESTRING (-72.1260 42.45, -72.123 42.1546) '::geometry);

0.00150567726382282

Geometry example - units in meters (SRID: 3857, proportional to pixels on popular web maps). Although the value is off, nearby
ones can be compared correctly, which makes it a good choice for algorithms like KNN or KMeans.

SELECT ST_Distance (
ST_Transform('SRID=4326;POINT (-72.1235 42.3521) '::geometry, 3857),
ST_Transform('SRID=4326; LINESTRING (-72.1260 42.45, -72.123 42.1546) '::geometry, 3857)) <

167.441410065196

Geometry example - units in meters (SRID: 3857 as above, but corrected by cos(lat) to account for distortion)

SELECT ST_Distance (
ST_Transform('SRID=4326;POINT (-72.1235 42.3521) '::geometry, 3857),
ST_Transform('SRID=4326; LINESTRING (=72.1260 42.45, -72.123 42.1546) '::geometry, 3857)
) * cosd(42.3521);

123.742351254151

Geometry example - units in meters (SRID: 26986 Massachusetts state plane meters) (most accurate for Massachusetts)

SELECT ST_Distance (
ST_Transform('SRID=4326;POINT (-72.1235 42.3521) '::geometry, 26986),
ST_Transform('SRID=4326; LINESTRING (=72.1260 42.45, -72.123 42.1546) '::geometry, 26986) <

123.797937878454

Geometry example - units in meters (SRID: 2163 US National Atlas Equal area) (least accurate)

SELECT ST_Distance (
ST_Transform('SRID=4326;POINT (-72.1235 42.3521) '::geometry, 2163),
ST_Transform('SRID=4326; LINESTRING (-72.1260 42.45, -72.123 42.1546) '::geometry, 2163)) <

126.664256056812

Geography Examples

Same as geometry example but note units in meters - use sphere for slightly faster and less accurate computation.

SELECT ST_Distance(ggl, gg2) As spheroid_dist, ST_Distance(ggl, gg2, false) As sphere_dist
FROM (SELECT
'SRID=4326;POINT (-72.1235 42.3521) '::geography as ggl,
'SRID=4326; LINESTRING (=72.1260 42.45, -72.123 42.1546) '::geography as gg2
) As foo ;

spheroid_dist | sphere_dist
__________________ +__________________
123.802076746848 | 123.475736916397

PostGIS 3.3.0rc2 Manual 305 /896

See Also

ST_3DDistance, ST_DWithin, ST_DistanceSphere, ST_DistanceSpheroid, ST_MaxDistance, ST_HausdorffDistance, ST_FrechetDistas
ST Transform

8.12.7 ST_3DDistance

ST_3DDistance — Returns the 3D cartesian minimum distance (based on spatial ref) between two geometries in projected units.

Synopsis

float ST_3DDistance(geometry g1, geometry g2);

Description

Returns the 3-dimensional minimum cartesian distance between two geometries in projected units (spatial ref units).
ﬂ This function supports 3d and will not drop the z-index.

ﬂ This function supports Polyhedral surfaces.

ﬂ This method implements the SQL/MM specification. SQL-MM ISO/IEC 13249-3
Availability: 2.0.0

Changed: 2.2.0 - In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.
Changed: 3.0.0 - SFCGAL version removed

Examples

—— Geometry example — units in meters (SRID: 2163 US National Atlas Equal area) (3D point <>
and line compared 2D point and line)

—— Note: currently no vertical datum support so Z is not transformed and assumed to be same <
units as final.

SELECT ST_3DDistance (

ST_Transform('SRID=4326;POINT (-72.1235 42.3521 4)'::geometry,2163),
ST_Transform('SRID=4326; LINESTRING (-72.1260 42.45 15, -72.123 42.1546 20)'::geometry <>
,2163)

) As dist_3d,
ST_Distance (
ST_Transform('SRID=4326;POINT (-72.1235 42.3521)'::geometry, 2163),
ST_Transform('SRID=4326; LINESTRING (-72.1260 42.45, -72.123 42.1546) '::geometry,2163)
) As dist_2d;

127.295059324629 | 126.66425605671

—— Multilinestring and polygon both 3d and 2d distance
—— Same example as 3D closest point example
SELECT ST_3DDistance (poly, mline) As dist3d,
ST_Distance (poly, mline) As dist2d
FROM (SELECT 'POLYGON((175 150 5, 20 40 5, 35 45 5, 50 60 5, 100 100 5, 175 150 5) ¢
) '::geometry as poly,
'MULTILINESTRING((175 155 2, 20 40 20, 50 60 -2, 125 100 1, 175 155 1), (1 <
10 2, 5 20 1)) '::geometry as mline) as foo;

PostGIS 3.3.0rc2 Manual 306 / 896

dist3d | dist2d
___________________ +________
0.716635696066337 | 0
See Also

ST Distance, ST_3DClosestPoint, ST_3DDWithin, ST_3DMaxDistance, ST_3DShortestLine, ST_Transform

8.12.8 ST_DistanceSphere

ST_DistanceSphere — Returns minimum distance in meters between two lon/lat geometries using a spherical earth model.

Synopsis

float ST_DistanceSphere(geometry geomlonlatA, geometry geomlonlatB, float8 radius=6371008);

Description

Returns minimum distance in meters between two lon/lat points. Uses a spherical earth and radius derived from the spheroid
defined by the SRID. Faster than ST_DistanceSpheroid, but less accurate. PostGIS Versions prior to 1.5 only implemented for
points.

Awailability: 1.5 - support for other geometry types besides points was introduced. Prior versions only work with points.

Changed: 2.2.0 In prior versions this used to be called ST_Distance_Sphere

Examples

SELECT round (CAST (ST_DistanceSphere (ST_Centroid(geom), ST_GeomFromText ('POINT(-118 38) <«
',4326)) As numeric),2) As dist_meters,
round (CAST (ST_Distance (ST_Transform(ST_Centroid(geom),32611),
ST _Transform(ST_GeomFromText ("POINT (-118 38)"', 4326),32611)) As numeric),2) As <+
dist_utmll_meters,
round (CAST (ST_Distance (ST_Centroid(geom), ST_GeomFromText ('POINT(-118 38)', 4326)) As <>
numeric),5) As dist_degrees,
round (CAST (ST_Distance (ST_Transform(geom, 32611),
ST_Transform (ST_GeomFromText ("POINT (-118 38)', 4326),32611)) As numeric),2) As <
min_dist_line_point_meters

FROM
(SELECT ST_GeomFromText ('LINESTRING(-118.584 38.374,-118.583 38.5)', 4326) As geom) as <
foo;
dist_meters | dist_utmll_meters | dist_degrees | min_dist_line_point_meters
7777777777777 e
70424.47 | 70438.00 | 0.72900 | 65871.18
See Also

ST_Distance, ST_DistanceSpheroid

8.12.9 ST_DistanceSpheroid

ST_DistanceSpheroid — Returns the minimum distance between two lon/lat geometries using a spheroidal earth model.

PostGIS 3.3.0rc2 Manual 307 / 896

Synopsis

float ST_DistanceSpheroid(geometry geomlonlatA, geometry geomlonlatB, spheroid measurement_spheroid=WGS84);

Description

Returns minimum distance in meters between two lon/lat geometries given a particular spheroid. See the explanation of spheroids
given for ST_LengthSpheroid.

) Note
Note!
This function does not look at the SRID of the geometry. It assumes the geometry coordinates are based on the
provided spheroid.

Availability: 1.5 - support for other geometry types besides points was introduced. Prior versions only work with points.

Changed: 2.2.0 In prior versions this was called ST_Distance_Spheroid

Examples

SELECT round (CAST (
ST_DistanceSpheroid(ST_Centroid(geom), ST_GeomFromText ('POINT (-118 38)',4326), ' «
SPHEROID["WGS 84",6378137,298.257223563]")
As numeric),2) As dist_meters_spheroid,
round (CAST (ST_DistanceSphere (ST_Centroid(geom), ST_GeomFromText ('POINT (-118 38)',4326)) ¢«
As numeric),2) As dist_meters_sphere,
round (CAST (ST_Distance (ST_Transform(ST_Centroid(geom),32611),
ST _Transform(ST_GeomFromText ("POINT (-118 38)"', 4326),32611)) As numeric),2) As <+
dist_utmll_meters

FROM
(SELECT ST_GeomFromText ('LINESTRING(-118.584 38.374,-118.583 38.5)"', 4326) As geom) as <
foo;
dist_meters_spheroid | dist_meters_sphere | dist_utmll_meters
______________________ T
70454.92 | 70424 .47 | 70438.00
See Also

ST_Distance, ST_DistanceSphere

8.12.10 ST_FrechetDistance

ST_FrechetDistance — Returns the Fréchet distance between two geometries.

Synopsis

float ST_FrechetDistance(geometry gl, geometry g2, float densifyFrac = -1);

PostGIS 3.3.0rc2 Manual 308 /896

Description

Implements algorithm for computing the Fréchet distance restricted to discrete points for both geometries, based on Computing
Discrete Fréchet Distance. The Fréchet distance is a measure of similarity between curves that takes into account the location
and ordering of the points along the curves. Therefore it is often better than the Hausdorff distance.

When the optional densifyFrac is specified, this function performs a segment densification before computing the discrete Fréchet
distance. The densifyFrac parameter sets the fraction by which to densify each segment. Each segment will be split into a number
of equal-length subsegments, whose fraction of the total length is closest to the given fraction.

Units are in the units of the spatial reference system of the geometries.

N;‘“’! Note

The current implementation supports only vertices as the discrete locations. This could be extended to allow an arbitrary
density of points to be used.

N"M Note

The smaller densifyFrac we specify, the more acurate Fréchet distance we get. But, the computation time and the
memory usage increase with the square of the number of subsegments.

Performed by the GEOS module.
Auvailability: 2.4.0 - requires GEOS >=3.7.0

Examples
postgres=# SELECT st_frechetdistance ('LINESTRING (0 0, 100 0)'::geometry, 'LINESTRING (0 0, <
50 50, 100 0) '::geometry);

st_frechetdistance

70.7106781186548

(1 row)
SELECT st_frechetdistance ('LINESTRING (0 0, 100 0)'::geometry, 'LINESTRING (0 0, 50 50, 100 ¢
0)'::geometry, 0.5);

st_frechetdistance

See Also

ST_HausdorffDistance

8.12.11 ST_HausdorffDistance

ST_HausdorffDistance — Returns the Hausdorff distance between two geometries.

Synopsis

float ST_HausdorffDistance(geometry gl, geometry g2);
float ST_HausdorffDistance(geometry g1, geometry g2, float densifyFrac);

http://www.kr.tuwien.ac.at/staff/eiter/et-archive/cdtr9464.pdf
http://www.kr.tuwien.ac.at/staff/eiter/et-archive/cdtr9464.pdf

PostGIS 3.3.0rc2 Manual 309/ 896

Description

Returns the Hausdorff distance between two geometries. The Hausdorff distance is a measure of how similar or dissimilar 2
geometries are.

The function actually computes the "Discrete Hausdorff Distance". This is the Hausdorff distance computed at discrete points on
the geometries. The densi fyFrac parameter can be specified, to provide a more accurate answer by densifying segments before
computing the discrete Hausdorff distance. Each segment is split into a number of equal-length subsegments whose fraction of
the segment length is closest to the given fraction.

Units are in the units of the spatial reference system of the geometries.

- Note
N"‘R’! This algorithm is NOT equivalent to the standard Hausdorff distance. However, it computes an approximation that is
correct for a large subset of useful cases. One important case is Linestrings that are roughly parallel to each other, and
roughly equal in length. This is a useful metric for line matching.

Availability: 1.5.0

Examples

Hausdortf distance (red) and distance (yellow) between two lines

SELECT ST_HausdorffDistance (geomA, geomB),
ST_Distance (geomA, geomB)

FROM (SELECT 'LINESTRING (20 70, 70 60, 110 70, 170 70)'::geometry AS geomA,
'LINESTRING (20 90, 130 90, 60 100, 190 100) '::geometry AS geomB) AS t;
st_hausdorffdistance | st_distance
,,,,,,,,,,,,,,,,,,,,,, b
37.26206567625497 | 20

Example: Hausdorff distance with densification.

SELECT ST_HausdorffDistance (

'LINESTRING (130 0, 0 O, 0 150)'::geometry,
'LINESTRING (10 10, 10 150, 130 10)'::geometry,
0.5);

http://en.wikipedia.org/wiki/Hausdorff_distance

PostGIS 3.3.0rc2 Manual 310/896

Example: For each building, find the parcel that best represents it. First we require that the parcel intersect with the building
geometry. DISTINCT ON guarantees we get each building listed only once. ORDER BY .. ST_HausdorffDistance
selects the parcel that is most similar to the building.

SELECT DISTINCT ON (buildings.gid) buildings.gid, parcels.parcel_id
FROM buildings
INNER JOIN parcels
ON ST_Intersects (buildings.geom, parcels.geom)
ORDER BY buildings.gid, ST_HausdorffDistance (buildings.geom, parcels.geom);

See Also

ST _FrechetDistance

8.12.12 ST_Length

ST_Length — Returns the 2D length of a linear geometry.

Synopsis

float ST_Length(geometry a_2dlinestring);
float ST_Length(geography geog, boolean use_spheroid=true);

Description

For geometry types: returns the 2D Cartesian length of the geometry if it is a LineString, MultiLineString, ST_Curve, ST_MultiCurve.
For areal geometries O is returned; use ST_Perimeter instead. The units of length is determined by the spatial reference system
of the geometry.

For geography types: computation is performed using the inverse geodesic calculation. Units of length are in meters. If PostGIS
is compiled with PROJ version 4.8.0 or later, the spheroid is specified by the SRID, otherwise it is exclusive to WGS84. If
use_spheroid=false, then the calculation is based on a sphere instead of a spheroid.

Currently for geometry this is an alias for ST_Length2D, but this may change to support higher dimensions.

Warning

Changed: 2.0.0 Breaking change -- in prior versions applying this to a MULTI/POLYGON of type geography would give
you the perimeter of the POLYGON/MULTIPOLYGON. In 2.0.0 this was changed to return 0 to be in line with geometry
behavior. Please use ST_Perimeter if you want the perimeter of a polygon

Ncrld Note

For geography the calculation defaults to using a spheroidal model. To use the faster but less accurate spherical
calculation use ST_Length(gg,false);

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.5.1

This method implements the SQL/MM specification. SQL-MM 3: 7.1.2,9.3.4
Auwailability: 1.5.0 geography support was introduced in 1.5.

This method is also provided by SFCGAL backend.

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 311/896

Geometry Examples

Return length in feet for line string. Note this is in feet because EPSG:2249 is Massachusetts State Plane Feet

SELECT ST_Length (ST_GeomFromText ('LINESTRING (743238 2967416,743238 2967450,743265 2967450,
743265.625 2967416,743238 2967416) ',2249));

st_length

122.630744000095

——Transforming WGS 84 LineString to Massachusetts state plane meters
SELECT ST_Length (
ST_Transform (
ST_GeomFromEWKT ('SRID=4326; LINESTRING (-72.1260 42.45, -72.1240 42.45666, -72.123 <+
42.1546) "),
26986
)
)i

st_length

34309.4563576191

Geography Examples

Return length of WGS 84 geography line

—— the default calculation uses a spheroid

SELECT ST_Length (the_geog) As length_spheroid, ST_Length (the_geog, false) As length_sphere
FROM (SELECT ST_GeographyFromText (

'SRID=4326; LINESTRING (-72.1260 42.45, -72.1240 42.45666, —-72.123 42.1546)"') As the_geoq)
As foo;

length_spheroid | length_sphere
__________________ +__________________
34310.5703627288 | 34346.2060960742

See Also

ST_GeographyFromText, ST_GeomFromEWKT, ST_LengthSpheroid, ST_Perimeter, ST_Transform

8.12.13 ST_Length2D

ST_Length2D — Returns the 2D length of a linear geometry. Alias for ST_Length

Synopsis

float ST_Length2D(geometry a_2dlinestring);

Description

Returns the 2D length of the geometry if it is a linestring or multi-linestring. This is an alias for ST_Length

PostGIS 3.3.0rc2 Manual 312/896

See Also

ST_Length, ST_3DLength

8.12.14 ST_3DLength

ST_3DLength — Returns the 3D length of a linear geometry.

Synopsis

float ST_3DLength(geometry a_3dlinestring);

Description

Returns the 3-dimensional or 2-dimensional length of the geometry if it is a LineString or MultiLineString. For 2-d lines it will
just return the 2-d length (same as ST_Length and ST_Length2D)

This function supports 3d and will not drop the z-index.

This method implements the SQL/MM specification. SQL-MM IEC 13249-3: 7.1, 10.3
Changed: 2.0.0 In prior versions this used to be called ST_Length3D
Examples

Return length in feet for a 3D cable. Note this is in feet because EPSG:2249 is Massachusetts State Plane Feet

SELECT ST_3DLength (ST_GeomFromText ('LINESTRING (743238 2967416 1,743238 2967450 1,743265 <+
2967450 3,

743265.625 2967416 3,743238 2967416 3)',2249));

ST_3DLength

122.704716741457

See Also

ST_Length, ST_Length2D

8.12.15 ST_LengthSpheroid

ST_LengthSpheroid — Returns the 2D or 3D length/perimeter of a lon/lat geometry on a spheroid.

Synopsis

float ST_LengthSpheroid(geometry a_geometry, spheroid a_spheroid);

PostGIS 3.3.0rc2 Manual 313/896

Description
Calculates the length or perimeter of a geometry on an ellipsoid. This is useful if the coordinates of the geometry are in longi-
tude/latitude and a length is desired without reprojection. The spheroid is specified by a text value as follows:

SPHEROID [<NAME>, <SEMI-MAJOR AXIS>, <INVERSE FLATTENING>]

For example:

SPHEROID["GRS_1980",6378137,298.257222101]

Availability: 1.2.2
Changed: 2.2.0 In prior versions this was called ST_Length_Spheroid and had the alias ST_3DLength_Spheroid

ﬂ This function supports 3d and will not drop the z-index.

Examples

SELECT ST_LengthSpheroid(geometry_column,
'SPHEROID["GRS_1980",6378137,298.2572221011")
FROM geometry_table;

SELECT ST_LengthSpheroid(geom, sph_m) As tot_len,
ST_LengthSpheroid (ST_GeometryN (geom,1l), sph_m) As len_linel,
ST_LengthSpheroid (ST_GeometryN (geom,?2), sph_m) As len_line?2
FROM (SELECT ST_GeomFromText ('MULTILINESTRING((-118.584 38.374,-118.583 38.5),

(=71.05957 42.3589 , -71.061 43))') As geom,

CAST ('SPHEROID["GRS_1980", 6378137,298.257222101]"' As spheroid) As sph_m) as foo;
tot_len | len_1linel | len_1line2

777777777777777777 +777777777777777777+777777777777777777

85204.5207562955 | 13986.8725229309 | 71217.6482333646

--3D
SELECT ST_LengthSpheroid(geom, sph_m) As tot_len,
ST_LengthSpheroid (ST_GeometryN (geom, 1), sph_m) As len_linel,
ST_LengthSpheroid (ST_GeometryN (geom,2), sph_m) As len_line?2
FROM (SELECT ST_GeomFromEWKT ("MULTILINESTRING((-118.584 38.374 20,-118.583 38.5 30) <«

’

(-=71.05957 42.3589 75, -71.061 43 90))') As geom,
CAST ('"SPHEROID["GRS_1980",6378137,298.257222101]"' As spheroid) As sph_m) as foo;

tot_len | len_linel | len_line2
__________________ +_________________+__________________
85204.5259107402 | 13986.876097711 | 71217.6498130292

See Also

ST_GeometryN, ST_Length

8.12.16 ST_LongestLine

ST_LongestLine — Returns the 2D longest line between two geometries.

Synopsis

geometry ST _LongestLine(geometry g1, geometry g2);

PostGIS 3.3.0rc2 Manual 314 /896

Description

Returns the 2-dimensional longest line between the points of two geometries. The line returned starts on g1 and ends on g2.

The longest line always occurs between two vertices. The function returns the first longest line if more than one is found. The
length of the line is equal to the distance returned by ST_MaxDistance.

If g1 and g2 are the same geometry, returns the line between the two vertices farthest apart in the geometry. This is a diameter of
the circle computed by ST_MinimumBoundingCircle

Availability: 1.5.0

Examples

Longest line between a point and a line

SELECT ST_AsText (ST_LongestLine (
'"POINT (160 40)°',
'LINESTRING (10 30, 50 50, 30 110, 70 90, 180 140, 130 190)"')
) AS lline;

LINESTRING (160 40,130 190)

Longest line between two polygons

PostGIS 3.3.0rc2 Manual

315/896

SELECT ST_AsText (ST_LongestLine (
'POLYGON ((190 150, 20 10, 160 70, 190 150))"',
ST_Buffer ('"POINT (80 160)"', 30)
)) AS llinewkt;

LINESTRING (20 10,105.3073372946034 186.95518130045156)

Longest line across a single geometry. The length of the line is equal to the Maximum Distance. The line is a diameter of the

Minimum Bounding Circle.

SELECT ST_AsText (ST_LongestLine(geom, geom)) AS llinewkt,
ST_MaxDistance (geom, geom) AS max_dist,
ST_Length(ST_LongestLine (geom, geom))

FROM (SELECT 'POLYGON ((40 180, 110 160, 180 180, 180 120,

50, 40 180),

(60 140, 99 77.5, 90 140, 60 140))'::geometry AS geom)

llinewkt | max_dist |

___________________________ +____________________+____________________
LINESTRING (20 50,180 180) | 206.15528128088303 | 206.15528128088303

See Also

ST_MaxDistance, ST_ShortestLine, ST_3DLongestLine, ST_MinimumBoundingCircle

8.12.17 ST _3DLongestLine

ST_3DLongestLine — Returns the 3D longest line between two geometries

Synopsis

geometry ST_3DLongestLine(geometry gl, geometry g2);

20 <

PostGIS 3.3.0rc2 Manual 316 /896

Description

Returns the 3-dimensional longest line between two geometries. The function returns the first longest line if more than one. The
line returned starts in g1 and ends in g2. The 3D length of the line is equal to the distance returned by ST_3DMaxDistance.

Auwailability: 2.0.0

Changed: 2.2.0 - if 2 2D geometries are input, a 2D point is returned (instead of old behavior assuming O for missing Z). In case
of 2D and 3D, Z is no longer assumed to be 0 for missing Z.

ﬂ This function supports 3d and will not drop the z-index.

ﬂ This function supports Polyhedral surfaces.

Examples

linestring and point -- both 3d and 2d longest line

SELECT ST_ASEWKT (ST_3DLongestLine (line,pt)) AS lol3d_line_pt,
ST_ASEWKT (ST_LongestLine (line,pt)) As lol2d_line_pt
FROM (SELECT 'POINT (100 100 30)'::geometry As pt,

'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 1000)':: <«
geometry As line
) As foo;
lol3d_line_pt | lol2d_line_pt
___________________________________ o
LINESTRING (50 75 1000,100 100 30) | LINESTRING(98 190,100 100)

linestring and multipoint -- both 3d and 2d longest line

SELECT ST_ASEWKT (ST_3DLongestLine(line,pt)) AS lol3d_line_pt,
ST_ASEWKT (ST_LongestLine (line,pt)) As lol2d_line_pt
FROM (SELECT 'MULTIPOINT (100 100 30, 50 74 1000)'::geometry As pt,

'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 900)':: ¢
geometry As line
) As foo;
lol3d_line_pt | lol2d_line_pt
777777777777777777777777777777777 +77777777777777777777777777

LINESTRING (98 190 1,50 74 1000) | LINESTRING (98 190,50 74)

MultiLineString and Polygon both 3d and 2d longest line

SELECT ST_ASEWKT (ST_3DLongestLine (poly, mline)) As lol3d,
ST_ASEWKT (ST_LongestLine (poly, mline)) As lol2d
FROM (SELECT ST_GeomFromEWKT ('POLYGON((175 150 5, 20 40 5, 35 45 5, 50 60 5, «
100 100 5, 175 150 5))') As poly,
ST_GeomFromEWKT ("MULTILINESTRING((175 155 2, 20 40 20, 50 60 -2, 125 <«
100 1, 175 155 1),
(1 10 2, 520 1))"'") As mline) As foo;
lol3d | lol2d
______________________________ +__________________________

LINESTRING(175 150 5,1 10 2) | LINESTRING (175 150,1 10)

PostGIS 3.3.0rc2 Manual 317 /896

See Also

ST_3DClosestPoint, ST_3DDistance, ST_LongestLine, ST_3DShortestLine, ST_3DMaxDistance

8.12.18 ST_MaxDistance

ST_MaxDistance — Returns the 2D largest distance between two geometries in projected units.

Synopsis

float ST_MaxDistance(geometry gl, geometry g2);

Description

Returns the 2-dimensional maximum distance between two geometries, in projected units. The maximum distance always occurs
between two vertices. This is the length of the line returned by ST_LongestLine.

If gl and g2 are the same geometry, returns the distance between the two vertices farthest apart in that geometry.
Auwailability: 1.5.0

Examples

Maximum distance between a point and lines.

SELECT ST_MaxDistance ('POINT (0 0)'::geometry, 'LINESTRING (2 0, 0 2)'::geometry);
2
SELECT ST_MaxDistance ('POINT (0 0)'::geometry, 'LINESTRING (2 2, 2 2)'::geometry);

2.82842712474619

Maximum distance between vertices of a single geometry.

SELECT ST_MaxDistance ('POLYGON ((10 10, 10 O,
'POLYGON ((10 10, 10 O,

'::geometry,

0 0, 10 10)
00 '::geometry) ;

)
, 10 10))

14.142135623730951

See Also

ST_Distance, ST_LongestLine, ST_DFullyWithin

8.12.19 ST_3DMaxDistance

ST_3DMaxDistance — Returns the 3D cartesian maximum distance (based on spatial ref) between two geometries in projected
units.

Synopsis

float ST_3DMaxDistance(geometry g1, geometry g2);

PostGIS 3.3.0rc2 Manual 318 /896

Description
Returns the 3-dimensional maximum cartesian distance between two geometries in projected units (spatial ref units).
This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.
Auwailability: 2.0.0
Changed: 2.2.0 - In case of 2D and 3D, Z is no longer assumed to be O for missing Z.

Examples

—— Geometry example - units in meters (SRID: 2163 US National Atlas Equal area) (3D point <+
and line compared 2D point and line)
—— Note: currently no vertical datum support so Z is not transformed and assumed to be same <+
units as final.
SELECT ST_3DMaxDistance (
ST_Transform(ST_GeomFromEWKT ('SRID=4326; POINT (-72.1235 42.3521 10000)"),2163),
ST _Transform (ST_GeomFromEWKT ('SRID=4326; LINESTRING (-72.1260 42.45 15, -72.123 42.1546 <
20) ") ,2163)
) As dist_3d,
ST_MaxDistance (
ST_Transform (ST_GeomFromEWKT ('SRID=4326; POINT (-72.1235 42.3521 10000)"'"),2163),
ST_Transform(ST_GeomFromEWKT ('SRID=4326; LINESTRING (-72.1260 42.45 15, -72.123 42.1546 «
20) ") ,2163)
) As dist_2d;

24383.7467488441 | 22247.8472107251

See Also

ST Distance, ST _3DDWithin, ST _3DMaxDistance, ST_Transform

8.12.20 ST_MinimumClearance

ST_MinimumClearance — Returns the minimum clearance of a geometry, a measure of a geometry’s robustness.

Synopsis

float ST_MinimumClearance(geometry g);

Description

It is possible for a geometry to meet the criteria for validity according to ST_IsValid (polygons) or ST_IsSimple (lines), but to
become invalid if one of its vertices is moved by a small distance. This can happen due to loss of precision during conversion to
text formats (such as WKT, KML, GML, GeoJSON), or binary formats that do not use double-precision floating point coordinates
(e.g. MapInfo TAB).

The minimum clearance is a quantitative measure of a geometry’s robustness to change in coordinate precision. It is the largest
distance by which vertices of the geometry can be moved without creating an invalid geometry. Larger values of minimum
clearance indicate greater robustness.

If a geometry has a minimum clearance of e, then:

PostGIS 3.3.0rc2 Manual 319/896

* No two distinct vertices in the geometry are closer than the distance e.

* No vertex is closer than e to a line segement of which it is not an endpoint.

If no minimum clearance exists for a geometry (e.g. a single point, or a MultiPoint whose points are identical), the return value
is Infinity.

To avoid validity issues caused by precision loss, ST_ReducePrecision can reduce coordinate precision while ensuring that
polygonal geometry remains valid.

Auvailability: 2.3.0
Examples

SELECT ST_MinimumClearance ('POLYGON ((O 0, 1 0, 1 1, 0.5 3.2e-4, 0 0))");
st_minimumclearance

0.00032

See Also

ST_MinimumClearanceLine, ST_IsSimple, ST_IsValid, ST_ReducePrecision

8.12.21 ST_MinimumClearancelLine

ST_MinimumClearanceLine — Returns the two-point LineString spanning a geometry’s minimum clearance.

Synopsis

Geometry ST _MinimumClearanceLine(geometry g);

Description

Returns the two-point LineString spanning a geometry’s minimum clearance. If the geometry does not have a minimum clear-
ance, LINESTRING EMPTY is returned.

Performed by the GEOS module.
Availability: 2.3.0 - requires GEOS >=3.6.0

Examples

SELECT ST_AsText (ST_MinimumClearancelLine ('"POLYGON ((O O, 1 0, 1 1, 0.5 3.2e-4, 0 0))"));

LINESTRING (0.5 0.00032,0.5 0)

See Also

ST MinimumClearance

8.12.22 ST_Perimeter

ST_Perimeter — Returns the length of the boundary of a polygonal geometry or geography.

PostGIS 3.3.0rc2 Manual 320/ 896

Synopsis

float ST_Perimeter(geometry gl);
float ST_Perimeter(geography geog, boolean use_spheroid=true);

Description

Returns the 2D perimeter of the geometry/geography if it is a ST_Surface, ST_MultiSurface (Polygon, MultiPolygon). 0 is
returned for non-areal geometries. For linear geometries use ST_Length. For geometry types, units for perimeter measures are
specified by the spatial reference system of the geometry.

For geography types, the calculations are performed using the inverse geodesic problem, where perimeter units are in meters. If
PostGIS is compiled with PROJ version 4.8.0 or later, the spheroid is specified by the SRID, otherwise it is exclusive to WGS84.
If use_spheroid=false, then calculations will approximate a sphere instead of a spheroid.

Currently this is an alias for ST_Perimeter2D, but this may change to support higher dimensions.

3

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.5.1

%" This method implements the SQL/MM specification. SQL-MM 3: 8.1.3, 9.5.4
Availability 2.0.0: Support for geography was introduced

Examples: Geometry

Return perimeter in feet for Polygon and MultiPolygon. Note this is in feet because EPSG:2249 is Massachusetts State Plane
Feet

SELECT ST_Perimeter (ST_GeomFromText ('POLYGON ((743238 2967416,743238 2967450, 743265 2967450,
743265.625 2967416,743238 2967416)) "', 2249));
st_perimeter
122.630744000095
(1 row)

SELECT ST_Perimeter (ST_GeomFromText ('"MULTIPOLYGON (((763104.471273676 2949418.44119003,
763104.477769673 2949418.42538203,

763104.189609677 2949418.22343004,763104.471273676 2949418.44119003)),
((763104.471273676 2949418.44119003,763095.804579742 2949436.33850239,
763086.132105649 2949451.46730207,763078.452329651 2949462.11549407,
763075.354136904 2949466.17407812,763064.362142565 2949477.64291974,
763059.953961626 2949481.28983009,762994.637609571 2949532.04103014,
762990.568508415 2949535.06640477,762986.710889563 2949539.61421415,
763117.237897679 2949709.50493431,763235.236617789 2949617.95619822,
763287.718121842 2949562.20592617,763111.553321674 2949423.91664605,
763104.471273676 2949418.44119003))) "', 2249));
st_perimeter

845.227713366825

(1 row)

Examples: Geography

Return perimeter in meters and feet for Polygon and MultiPolygon. Note this is geography (WGS 84 long lat)

SELECT ST_Perimeter (geog) As per_meters, ST Perimeter (geog)/0.3048 As per_ ft
FROM ST_GeogFromText ('POLYGON ((-71.1776848522251 42.3902896512902,-71.1776843766326 <+
42.3903829478009,

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 321 /896

-71.1775844305465 42.3903826677917,-71.1775825927231 42.3902893647987,-71.1776848522251 <+
42.3902896512902)) ') As geog;

per_meters | per_ft

_________________ +__________________
37.3790462565251 | 122.634666195949

—— MultiPolygon example ——

SELECT ST_Perimeter (geog) As per_meters, ST _Perimeter (geog, false) As per_sphere_meters, +~
ST_Perimeter (geog)/0.3048 As per_ft
FROM ST_GeogFromText ('MULTIPOLYGON (((-71.1044543107478 42.340674480411,-71.1044542869917 <

42.3406744369506,

—71.1044553562977 42.340673886454,-71.1044543107478 42.340674480411)),

((=71.1044543107478 42.340674480411,-71.1044860600303 42.3407237015564,-71.1045215770124 <«
42.3407653385914,

—71.1045498002983 42.3407946553165,-71.1045611902745 42.3408058316308,-71.1046016507427 <
42.340837442371,

-71.104617893173 42.3408475056957,-71.1048586153981 42.3409875993595,-71.1048736143677 <
42.3409959528211,

—71.1048878050242 42.3410084812078,-71.1044020965803 42.3414730072048,

—-71.1039672113619 42.3412202916693,-71.1037740497748 42.3410666421308,

—-71.1044280218456 42.3406894151355,-71.1044543107478 42.340674480411)))"') As geog;
per_meters | per_sphere_meters | per_ft
__________________ +___________________+__________________
257.634283683311 | 257.412311446337 | 845.256836231335
See Also

ST_GeogFromText, ST_GeomFromText, ST_Length

8.12.23 ST_Perimeter2D

ST_Perimeter2D — Returns the 2D perimeter of a polygonal geometry. Alias for ST_Perimeter.

Synopsis

float ST_Perimeter2D(geometry geomA);

Description

Returns the 2-dimensional perimeter of a polygonal geometry.

N;ld Note

This is currently an alias for ST_Perimeter. In future versions ST_Perimeter may return the highest dimension perimeter
for a geometry. This is still under consideration

See Also

ST Perimeter

PostGIS 3.3.0rc2 Manual 322 /896

8.12.24 ST_3DPerimeter

ST_3DPerimeter — Returns the 3D perimeter of a polygonal geometry.

Synopsis

float ST_3DPerimeter(geometry geomA);

Description

Returns the 3-dimensional perimeter of the geometry, if it is a polygon or multi-polygon. If the geometry is 2-dimensional, then
the 2-dimensional perimeter is returned.

This function supports 3d and will not drop the z-index.

This method implements the SQL/MM specification. SQL-MM ISO/IEC 13249-3: 8.1, 10.5
Changed: 2.0.0 In prior versions this used to be called ST_Perimeter3D

Examples

Perimeter of a slightly elevated polygon in the air in Massachusetts state plane feet

SELECT ST_3DPerimeter (geom), ST_Perimeter2d(geom), ST_Perimeter (geom) FROM
(SELECT ST_GeomFromEWKT ('SRID=2249;POLYGON ((743238 2967416 2,743238 2967450 1,
743265.625 2967416 1,743238 2967416 2))') As geom) As foo;

ST_3DPerimeter | st_perimeter2d | st_perimeter

__________________ +__________________+__________________
105.465793597674 | 105.432997272188 | 105.432997272188

See Also

ST _GeomFromEWKT, ST Perimeter, ST_Perimeter2D

8.12.25 ST Project

ST_Project — Returns a point projected from a start point by a distance and bearing (azimuth).

Synopsis

geography ST_Project(geography gl, float distance, float azimuth);

Description

Returns a point projected from a start point along a geodesic using a given distance and azimuth (bearing). This is known as the
direct geodesic problem.

The distance is given in meters. Negative values are supported.

The azimuth (also known as heading or bearing) is given in radians. It is measured clockwise from true north (azimuth zero).
East is azimuth /2 (90 degrees); south is azimuth 7 (180 degrees); west is azimuth 37/2 (270 degrees). Negative azimuth values
and values greater than 27t (360 degrees) are supported.

Availability: 2.0.0

Enhanced: 2.4.0 Allow negative distance and non-normalized azimuth.

PostGIS 3.3.0rc2 Manual 323 /896

Example: Projected point at 100,000 meters and bearing 45 degrees

SELECT ST_AsText (ST_Project ('"POINT (0 0)'::geography, 100000, radians(45.0)));

POINT (0.635231029125537 0.639472334729198)

See Also

ST_Azimuth, ST_Distance, PostgreSQL function radians()

8.12.26 ST_ShortestLine

ST_ShortestLine — Returns the 2D shortest line between two geometries

Synopsis

geometry ST_ShortestLine(geometry geoml, geometry geom2);

Description

Returns the 2-dimensional shortest line between two geometries. The line returned starts in geoml and ends in geom2. If
geoml and geom? intersect the result is a line with start and end at an intersection point. The length of the line is the same as
ST_Distance returns for gl and g2.

Availability: 1.5.0

Examples

Shortest line between Point and LineString

SELECT ST_AsText (ST_ShortestLine (
'"POINT (160 40)°',
'LINESTRING (10 30, 50 50, 30 110, 70 90, 180 140, 130 190)"'")
) As sline;

LINESTRING (160 40,125.75342465753425 115.34246575342466)

http://www.postgresql.org/docs/current/interactive/functions-math.html

PostGIS 3.3.0rc2 Manual 324 / 896

Shortest line between Polygons

SELECT ST_AsText (ST_ShortestLine (
'POLYGON ((190 150, 20 10, 160 70, 190 150))"',
ST_Buffer ("POINT (80 160)"', 30)
)) AS llinewkt;

LINESTRING(131.59149149528952 101.89887534906197,101.21320343559644 138.78679656440357)

See Also

ST_ClosestPoint, ST_Distance, ST_LongestLine, ST_MaxDistance

8.12.27 ST_3DShortestLine

ST_3DShortestLine — Returns the 3D shortest line between two geometries

Synopsis

geometry ST_3DShortestLine(geometry gl, geometry g2);

Description

Returns the 3-dimensional shortest line between two geometries. The function will only return the first shortest line if more than
one, that the function finds. If gl and g2 intersects in just one point the function will return a line with both start and end in that
intersection-point. If gl and g2 are intersecting with more than one point the function will return a line with start and end in the
same point but it can be any of the intersecting points. The line returned will always start in gl and end in g2. The 3D length of
the line this function returns will always be the same as ST_3DDistance returns for gl and g2.

Availability: 2.0.0

Changed: 2.2.0 - if 2 2D geometries are input, a 2D point is returned (instead of old behavior assuming 0 for missing Z). In case
of 2D and 3D, Z is no longer assumed to be O for missing Z.

ﬁ This function supports 3d and will not drop the z-index.

ﬂ This function supports Polyhedral surfaces.

PostGIS 3.3.0rc2 Manual 325 /896

Examples

linestring and point -- both 3d and 2d shortest line

SELECT ST_ASEWKT (ST_3DShortestLine(line,pt)) AS shl3d_line_pt,

ST_ASEWKT (ST_ShortestLine(line,pt)) As shl2d_line_pt
FROM (SELECT 'POINT (100 100 30)'::geometry As pt,

'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 1000)':: ¢«
geometry As line

) As foo;

sh13d_line_pt
shl2d_line_pt
77 +77777777777777<,777777

LINESTRING(54.6993798867619 128.935022917228 11.5475869506606,100 100 30) |
LINESTRING (73.0769230769231 115.384615384615,100 100)

linestring and multipoint -- both 3d and 2d shortest line

<

SELECT ST_ASEWKT (ST_3DShortestLine(line,pt)) AS shl3d_line_pt,
ST_ASEWKT (ST_ShortestLine (line,pt)) As shl2d_line_pt
FROM (SELECT 'MULTIPOINT (100 100 30, 50 74 1000)'::geometry As pt,

'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 900)':: ¢«
geometry As line

) As foo;

shl3d_line_pt
shl2d_line_pt

___ 4

LINESTRING(54.6993798867619 128.935022917228 11.5475869506606,100 100 30) |

LINESTRING <
(50 75,50 74)

MultiLineString and polygon both 3d and 2d shortest line

SELECT ST_ASEWKT (ST_3DShortestLine (poly, mline)) As shl3d,
ST_ASEWKT (ST_ShortestLine (poly, mline)) As shl2d

FROM (SELECT ST_GeomFromEWKT ('POLYGON((175 150 5, 20 40 5, 35 45 5, 50 60 5, «
100 100 5, 175 150 5))'") As poly,
ST_GeomFromEWKT ("MULTILINESTRING((175 155 2, 20 40 20, 50 60 -2, 125 <«
100 1, 175 155 1),
(1 10 2, 520 1))"'") As mline) As foo;
shl3d <>
shl2d

LINESTRING(39.993580415989 54.1889925532825 5,40.4078575708294 53.6052383805529
5.03423778139177) | LINESTRING (20 40,20 40)

See Also
ST_3DClosestPoint, ST_3DDistance, ST_LongestLine, ST_ShortestLine, ST_3DMaxDistance
8.13 Overlay Functions

8.13.1 ST _ClipByBox2D

ST_ClipByBox2D — Computes the portion of a geometry falling within a rectangle.

PostGIS 3.3.0rc2 Manual 326 / 896

Synopsis

geometry ST_ClipByBox2D(geometry geom, box2d box);

Description
Clips a geometry by a 2D box in a fast and tolerant but possibly invalid way. Topologically invalid input geometries do not result

in exceptions being thrown. The output geometry is not guaranteed to be valid (in particular, self-intersections for a polygon may
be introduced).

Performed by the GEOS module.
Availability: 2.2.0
Examples

—— Rely on implicit cast from geometry to box2d for the second parameter
SELECT ST_ClipByBox2D (geom, ST_MakeEnvelope(0,0,10,10)) FROM mytab;

See Also

ST_Intersection, ST_MakeBox2D, ST_MakeEnvelope

8.13.2 ST_Difference

ST_Difference — Computes a geometry representing the part of geometry A that does not intersect geometry B.

Synopsis

geometry ST_Difference(geometry geomA, geometry geomB, float8 gridSize = -1);

Description

Returns a geometry representing the part of geometry A that does not intersect geometry B. This is equivalenttoA — ST_Intersecti
If A is completely contained in B then an empty atomic geometry of appropriate type is returned.

N;*'l"! Note

This is the only overlay function where input order matters. ST_Difference(A, B) always returns a portion of A.

If the optional gridSize argument is provided, the inputs are snapped to a grid of the given size, and the result vertices are
computed on that same grid. (Requires GEOS-3.9.0 or higher)

Performed by the GEOS module
Enhanced: 3.1.0 accept a gridSize parameter - requires GEOS >=3.9.0

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.3
This method implements the SQL/MM specification. SQL-MM 3: 5.1.20

This function supports 3d and will not drop the z-index. However, the result is computed using XY only. The result Z values
are copied, averaged or interpolated.

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 327 /896

Examples

PostGIS 3.3.0rc2 Manual

328 /896

The input linestrings

The difference of the two linestrings

The difference of 2D linestrings.

SELECT ST_AsText (
ST_Difference (

'LINESTRING (50 100, 50 200)'::geometry,
'LINESTRING (50 50, 50 150)'::geometry

)i

st_astext

LINESTRING (50 150,50 200)

The difference of 3D points.

SELECT ST_ASEWKT(ST_Difference (

'MULTIPOINT (-118.58 38.38 5,-118.60 38.329 6,-118.614 38.281 7)'

geometry,

'POINT (-118.614 38.281 5)'

))i

st_asewkt

MULTIPOINT (-118.6 38.329 6,-118.58 38.38 5)

See Also

ST_SymbDifference, ST_Intersection, ST_Union

8.13.3 ST Intersection

ST_Intersection — Computes a geometry representing the shared portion of geometries A and B.

PostGIS 3.3.0rc2 Manual 329 /896

Synopsis

geometry ST_Intersection(geometry geomA , geometry geomB , float8 gridSize = -1);
geography ST_Intersection(geography geogA , geography geogB);

Description

Returns a geometry representing the point-set intersection of two geometries. In other words, that portion of geometry A and
geometry B that is shared between the two geometries.

If the geometries have no points in common (i.e. are disjoint) then an empty atomic geometry of appropriate type is returned.

If the optional gridSize argument is provided, the inputs are snapped to a grid of the given size, and the result vertices are
computed on that same grid. (Requires GEOS-3.9.0 or higher)

ST_Intersection in conjunction with ST_Intersects is useful for clipping geometries such as in bounding box, buffer, or region
queries where you only require the portion of a geometry that is inside a country or region of interest.

Note
. Geography: For geography this is really a thin wrapper around the geometry implementation. It first determines the
Nﬁ"’! best SRID that fits the bounding box of the 2 geography objects (if geography objects are within one half zone UTM but
not same UTM will pick one of those) (favoring UTM or Lambert Azimuthal Equal Area (LAEA) north/south pole, and
falling back on mercator in worst case scenario) and then intersection in that best fit planar spatial ref and retransforms
back to WGS84 geography.

0 Warning

This function will drop the M coordinate values if present.

Warning
0 If working with 3D geometries, you may want to use SFGCAL based ST_3DIntersection which does a proper 3D
intersection for 3D geometries. Although this function works with Z-coordinate, it does an averaging of Z-Coordinate.

Performed by the GEOS module
Enhanced: 3.1.0 accept a gridSize parameter - requires GEOS >=3.9.0
Changed: 3.0.0 does not depend on SFCGAL.

Awailability: 1.5 support for geography data type was introduced.
This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.3
This method implements the SQL/MM specification. SQL-MM 3: 5.1.18

This function supports 3d and will not drop the z-index. However, the result is computed using XY only. The result Z values
are copied, averaged or interpolated.

Examples

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 330/ 896

SELECT ST_AsText (ST_Intersection ('POINT(0 0)'::geometry, 'LINESTRING (2 0, 0 2)':: ¢
geometry));
st_astext

GEOMETRYCOLLECTION EMPTY

SELECT ST_AsText (ST_Intersection('POINT (0 0)'::geometry, 'LINESTRING (0 0, 0 2)':: ¢
geometry));
st_astext

POINT (0 0)

Clip all lines (trails) by country. Here we assume country geom are POLYGON or MULTIPOLYGONS. NOTE: we are only
keeping intersections that result in a LINESTRING or MULTILINESTRING because we don’t care about trails that just share a
point. The dump is needed to expand a geometry collection into individual single MULT* parts. The below is fairly generic and
will work for polys, etc. by just changing the where clause.

select clipped.gid, clipped.f_name, clipped_geom
from (
select trails.gid, trails.f_name,
(ST_Dump (ST_Intersection (country.geom, trails.geom))) .geom clipped_geom
from country
inner join trails on ST_Intersects(country.geom, trails.geom)
) as clipped
where ST_Dimension (clipped.clipped _geom) = 1;

For polys e.g. polygon landmarks, you can also use the sometimes faster hack that buffering anything by 0.0 except a polygon
results in an empty geometry collection. (So a geometry collection containing polys, lines and points buffered by 0.0 would only
leave the polygons and dissolve the collection shell.)

select poly.gid,
ST_Multi (
ST_Buffer (
ST_Intersection (country.geom, poly.geom),
0.0
)
) clipped_geom
from country
inner join poly on ST_Intersects (country.geom, poly.geom)
where not ST_IsEmpty (ST _Buffer (ST_Intersection (country.geom, poly.geom), 0.0));

Examples: 2.5Dish

Note this is not a true intersection, compare to the same example using ST_3DIntersection.

select ST_AsText (ST_Intersection(linestring, polygon)) As wkt

from ST_GeomFromText ('LINESTRING Z (2 2 6,1.5 1.5 7,1 1 8,0.5 0.5 8,0 0 10)') AS <«
linestring

CROSS JOIN ST_GeomFromText ('POLYGON((O O 8, 01 8, 1 18, 1 08, 00 8))"') AS polygon;

st_astext

LINESTRING Z (1 1 8,0.5 0.5 8,0 0 10)

See Also

ST_3DlIntersection, ST_Difference, ST_Union, ST_Dimension, ST_Dump, ST_Force2D, ST_SymDifference, ST_Intersects,
ST_Multi

PostGIS 3.3.0rc2 Manual 331/896

8.13.4 ST_MemUnion

ST_MemUnion — Aggregate function which unions geometries in a memory-efficent but slower way

Synopsis

geometry ST_MemUnion(geometry set geomfield);

Description

An aggregate function that unions the input geometries, merging them to produce a result geometry with no overlaps. The output
may be a single geometry, a MultiGeometry, or a Geometry Collection.

. Note
Nf"""! Produces the same result as ST_Union, but uses less memory and more processor time. This aggregate function
works by unioning the geometries incrementally, as opposed to the ST_Union aggregate which first accumulates an
array and then unions the contents using a fast algorithm.

This function supports 3d and will not drop the z-index. However, the result is computed using XY only. The result Z values
are copied, averaged or interpolated.

Examples

SELECT id,

ST_MemUnion (geom) as singlegeom
FROM sometable f
GROUP BY id;

See Also

ST Union

8.13.5 ST_Node

ST Node — Nodes a collection of lines.

Synopsis

geometry ST_Node(geometry geom);

Description

Returns a (Multi)LineString representing the fully noded version of a collection of linestrings. The noding preserves all of the
input nodes, and introduces the least possible number of new nodes. The resulting linework is dissolved (duplicate lines are
removed).

This is a good way to create fully-noded linework suitable for use as input to ST_Polygonize.

This function supports 3d and will not drop the z-index.

PostGIS 3.3.0rc2 Manual 332 /896

Performed by the GEOS module.
Availability: 2.0.0

Changed: 2.4.0 this function uses GEOSNode internally instead of GEOSUnaryUnion. This may cause the resulting linestrings
to have a different order and direction compared to PostGIS < 2.4.

Examples

Noding a 3D LineString which self-intersects

SELECT ST_AsText (
ST_Node ('LINESTRINGZ (0O 0 0, 10 10 10, 0 10 5, 10 0O 3)'::geometry)
) As output;
output

MULTILINESTRING Z ((O O O,5 5 4.5),(5 5 4.5,10 10 10,0 10 5,5 5 4.5),(5 5 4.5,10 0 3))

Noding two LineStrings which share common linework. Note that the result linework is dissolved.

SELECT ST_AsText (
ST_Node ('"MULTILINESTRING ((2 5, 2 1, 7 1), (6 1, 41, 2 3, 2 5))"'::geometry)
) As output;
output

MULTILINESTRING((2 5,2 3),(2 3,2 1,4 1),(4 1,2 3),(4 1,6 1),(6 1,7 1))

See Also

ST_UnaryUnion

8.13.6 ST _Split

ST_Split — Returns a collection of geometries created by splitting a geometry by another geometry.

Synopsis

geometry ST_Split(geometry input, geometry blade);

Description
The function supports splitting a LineString by a (Multi)Point, (Multi)LineString or (Multi)Polygon boundary, or a (Multi)Polygon
by a LineString. The result geometry is always a collection.

This function is in a sense the opposite of ST_Union. Applying ST_Union to the returned collection should theoretically yield
the original geometry (although due to numerical rounding this may not be exactly the case).

Awailability: 2.0.0 requires GEOS
Enhanced: 2.2.0 support for splitting a line by a multiline, a multipoint or (multi)polygon boundary was introduced.

Enhanced: 2.5.0 support for splitting a polygon by a multiline was introduced.

. Note
Nf"""! To improve the robustness of ST_Split it may be convenient to ST_Snap the input to the blade in advance using a very
low tolerance. Otherwise the internally used coordinate grid may cause tolerance problems, where coordinates of input
and blade do not fall onto each other and the input is not being split correctly (see #2192).

http://trac.osgeo.org/postgis/ticket/2192

PostGIS 3.3.0rc2 Manual 333 /896

N;'R’! Note

When a (Multi)Polygon is passed as as the blade, its linear components (the boundary) are used for cutting the input.

Examples

Polygon Cut by Line

Before Split After split

—— this creates a geometry collection consisting of the 2 halves of the polygon
—— this is similar to the example we demonstrated in ST_BuildArea
SELECT ST_Split(circle, line)
FROM (SELECT
ST_MakeLine (ST_Point (10, 10),ST_Point (190, 190)) As line,
ST_Buffer (ST_GeomFromText ('POINT (100 90) '), 50) As circle) As foo;

-— result —-
GEOMETRYCOLLECTION (POLYGON ((150 90,149.039264020162 80.2454838991936,146.193976625564 <>
70.8658283817455,..), POLYGON(..)))

—-— To convert to individual polygons, you can use ST_Dump or ST_GeometryN
SELECT ST_AsText ((ST_Dump (ST_Split(circle, line))) .geom) As wkt
FROM (SELECT

ST_MakeLine (ST_Point (10, 10),ST_Point (190, 190)) As line,

ST _Buffer (ST_GeomFromText ('POINT (100 90) '), 50) As circle) As foo;

-— result —-—

wkt

POLYGON ((150 90,149.039264020162 80.2454838991936, ..))

POLYGON ((60.1371179574584 60.1371179574584,58.4265193848728 <+
62.2214883490198,53.8060233744357 ..))

Multilinestring Cut by point

PostGIS 3.3.0rc2 Manual 334 /896

/

Before Split After split

SELECT ST_AsText (ST_Split(mline, pt)) As wktcut
FROM (SELECT
ST_GeomFromText ('"MULTILINESTRING((10 10, 190 190), (15 15, 30 30, 100 90))') As mline,
ST_Point (30,30) As pt) As foo;

wktcut

GEOMETRYCOLLECTION (
LINESTRING (10 10,30 30),
LINESTRING (30 30,190 190),
LINESTRING (15 15,30 30),
LINESTRING (30 30,100 90)

See Also

ST_AsText, ST_BuildArea, ST_CollectionExtract, ST_Dump, ST_GeometryN, ST_Subdivide, ST_Union

8.13.7 ST _Subdivide

ST_Subdivide — Computes a rectilinear subdivision of a geometry.

Synopsis

setof geometry ST_Subdivide(geometry geom, integer max_vertices=256, float8 gridSize = -1);

Description

Returns a set of geometries that are the result of dividing geom into parts using rectilinear lines, with each part containing no
more than max_vertices.

PostGIS 3.3.0rc2 Manual 335/896

max_vertices must be 5 or more, as 5 points are needed to represent a closed box. gridSize can be specified to have
clipping work in fixed-precision space (requires GEOS-3.9.0+).

Point-in-polygon and other spatial operations are normally faster for indexed subdivided datasets. Since the bounding boxes for
the parts usually cover a smaller area than the original geometry bbox, index queries produce fewer "hit" cases. The "hit" cases
are faster because the spatial operations executed by the index recheck process fewer points.

N;ld Note

This is a set-returning function (SRF) that return a set of rows containing single geometry values. It can be used in a
SELECT list or a FROM clause to produce a result set with one record for each result geometry.

Performed by the GEOS module.
Availability: 2.2.0
Enhanced: 2.5.0 reuses existing points on polygon split, vertex count is lowered from 8 to 5.

Enhanced: 3.1.0 accept a gridSize parameter, requires GEOS >= 3.9.0 to use this new feature.

Examples

Example: Subdivide a polygon into parts with no more than 10 vertices, and assign each part a unique id.

Subdivided to maximum 10 vertices

SELECT row_number () OVER() As rn, ST_AsText (geom) As wkt
FROM (SELECT ST_SubDivide (
'"POLYGON ((132 10,119 23,85 35,68 29,66 28,49 42,32 56,22 64,32 110,40 119,36 150,
57 158,75 171,92 182,114 184,132 186,146 178,176 184,179 162,184 141,190 122,
190 100,185 79,186 56,186 52,178 34,168 18,147 13,132 10)) '::geometry,10)) AS f(¢
geom) ;

rn │ wkt
─ ─ ─ ─ ┼ ─ ─ ─ ─ ─ ─ ─ & #x2
1 │ POLYGON((119 23,85 35,68 29,66 28,32 56,22 64,29.8260869565217 100,119 100,119 <«
23))
2 │ POLYGON((132 10,119 23,119 56,186 56,186 52,178 34,168 18,147 13,132 10))
3 │ POLYGON((119 56,119 100,190 100,185 79,186 56,119 56))

https://www.postgresql.org/docs/current/queries-table-expressions.html#QUERIES-TABLEFUNCTIONS

PostGIS 3.3.0rc2 Manual 336/ 896

4 │ POLYGON ((29.8260869565217 100,32 110,40 119,36 150,57 158,75 171,92 182,114 <>
184,114 100,29.8260869565217 100))

5 │ POLYGON((114 184,132 186,146 178,176 184,179 162,184 141,190 122,190 100,114 <>
100,114 184))

Example: Densify a long geography line using ST_Segmentize(geography, distance), and use ST_Subdivide to split the resulting
line into sublines of 8 vertices.

The densified and split lines.

SELECT ST_AsText (ST_Subdivide (
ST_Segmentize ('LINESTRING(O0 0, 85 85)'::geography,
1200000) : :geometry, 8));

LINESTRING (O 0,0.487578359029357 5.57659056746196,0.984542144675897 <
11.1527721155093,1.50101059639722 16.7281035483571,1.94532113630331 21.25)

LINESTRING (1.94532113630331 21.25,2.04869538062779 22.3020741387339,2.64204641967673 <
27.8740533545155,3.29994062412787 33.443216802941,4.04836719489742 <«
39.0084282520239,4.59890468420694 42.5)

LINESTRING (4.59890468420694 42.5,4.92498503922732 44.5680389206321,5.98737409390639 <
50.1195229244701,7.3290919767674 55.6587646879025,8.79638749938413 60.1969505994924)

LINESTRING(8.79638749938413 60.1969505994924,9.11375579533779 <>
61.1785363177625,11.6558166691368 66.6648504160202,15.642041247655 <
72.0867690601745,22.8716627200212 77.3609628116894,24.6991785131552 77.8939011989848)

LINESTRING(24.6991785131552 77.8939011989848,39.4046096622744 <
82.1822848017636,44.7994523421035 82.5156766227011)

LINESTRING (44.7994523421035 82.5156766227011,85 85)

Example: Subdivide the complex geometries of a table in-place. The original geometry records are deleted from the source
table, and new records for each subdivided result geometry are inserted.

WITH complex_areas_to_subdivide AS (
DELETE from polygons_table
WHERE ST_NPoints (geom) > 255
RETURNING id, columnl, column2, column3, geom
)
INSERT INTO polygons_table (fid, columnl, column2, column3, geom)
SELECT fid, columnl, column2, column3,
ST_Subdivide (geom, 255) as geom
FROM complex_areas_to_subdivide;

PostGIS 3.3.0rc2 Manual 337 /896

Example: Create a new table containing subdivided geometries, retaining the key of the original geometry so that the new table
can be joined to the source table. Since ST_Subdivide is a set-returning (table) function that returns a set of single-value rows,
this syntax automatically produces a table with one row for each result part.

CREATE TABLE subdivided_geoms AS
SELECT pkey, ST_Subdivide (geom) AS geom
FROM original_geoms;

See Also

ST_AsText, ST_ClipByBox2D, ST_Segmentize, ST_Split, ST_NPoints

8.13.8 ST_SymbDifference

ST_SymDifference — Computes a geometry representing the portions of geometries A and B that do not intersect.

Synopsis

geometry ST_SymDifference(geometry geomA, geometry geomB, float8 gridSize = -1);

Description

Returns a geometry representing the portions of geonetries A and B that do not intersect. This is equivalent to ST_Union (A, B)
- ST_Intersection (A, B).Itiscalled asymmetric difference because ST_SymDifference (A,B) = ST_SymDifferenc

If the optional gridSize argument is provided, the inputs are snapped to a grid of the given size, and the result vertices are
computed on that same grid. (Requires GEOS-3.9.0 or higher)

Performed by the GEOS module
Enhanced: 3.1.0 accept a gridSize parameter - requires GEOS >=3.9.0

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.3
ﬂ This method implements the SQL/MM specification. SQL-MM 3: 5.1.21

ﬂ This function supports 3d and will not drop the z-index. However, the result is computed using XY only. The result Z values
are copied, averaged or interpolated.

Examples

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 338 /896

The original linestrings shown together The symmetric difference of the two linestrings

—--Safe for 2d - symmetric difference of 2 linestrings
SELECT ST_AsText (
ST_SymDifference (
ST_GeomFromText ('LINESTRING (50 100, 50 200)"),
ST_GeomFromText ('LINESTRING (50 50, 50 150)"'")

)i

st_astext

MULTILINESTRING ((50 150,50 200), (50 50,50 100))

——When used in 3d doesn't quite do the right thing
SELECT ST_ASEWKT (ST_SymDifference (ST_GeomFromEWKT ('LINESTRING(1 2 1, 1 4 2)"),
ST_GeomFromEWKT ('LINESTRING(1 1 3, 1 3 4)"')))

st_astext

MULTILINESTRING((1 3 2.75,1 4 2),(1 1 3,1 2 2.25))

See Also

ST_Difference, ST Intersection, ST_Union

8.13.9 ST_UnaryUnion

ST_UnaryUnion — Computes the union of the components of a single geometry.

Synopsis

geometry ST_UnaryUnion(geometry geom, float8 gridSize = -1);

PostGIS 3.3.0rc2 Manual 339 /896

Description
A single-input variant of ST_Union. The input may be a single geometry, a MultiGeometry, or a GeometryCollection. The union
is applied to the individual elements of the input.

This function can be used to fix MultiPolygons which are invalid due to overlapping components. However, the input components
must each be valid. An invalid input component such as a bow-tie polygon may cause an error. For this reason it may be better
to use ST_MakeValid.

Another use of this function is to node and dissolve a collection of linestrings which cross or overlap to make them simple. (To
add nodes but not dissolve duplicate linework use ST_Node.)

It is possible to combine ST_UnaryUnion with ST_Collect to fine-tune how many geometries are be unioned at once. This allows
trading off between memory usage and compute time, striking a balance between ST_Union and ST_MemUnion.

If the optional gridSize argument is provided, the inputs are snapped to a grid of the given size, and the result vertices are
computed on that same grid. (Requires GEOS-3.9.0 or higher)

This function supports 3d and will not drop the z-index. However, the result is computed using XY only. The result Z values
are copied, averaged or interpolated.

Enhanced: 3.1.0 accept a gridSize parameter - requires GEOS >=3.9.0
Availability: 2.0.0

See Also

ST Union, ST_MemUnion, ST_MakeValid, ST_Collect, ST_Node

8.13.10 ST _Union

ST_Union — Computes a geometry representing the point-set union of the input geometries.

Synopsis

geometry ST_Union(geometry g1, geometry g2);

geometry ST_Union(geometry g1, geometry g2, float8 gridSize);
geometry ST_Union(geometry[] gl_array);

geometry ST_Union(geometry set glfield);

geometry ST_Union(geometry set glfield, float8 gridSize);

Description

Unions the input geometries, merging geometry to produce a result geometry with no overlaps. The output may be an atomic
geometry, a MultiGeometry, or a Geometry Collection. Comes in several variants:

Two-input variant: returns a geometry that is the union of two input geometries. If either input is NULL, then NULL is returned.
Array variant: returns a geometry that is the union of an array of geometries.

Aggregate variant: returns a geometry that is the union of a rowset of geometries. The ST_Union() function is an "aggregate"
function in the terminology of PostgreSQL. That means that it operates on rows of data, in the same way the SUM() and AVG()
functions do and like most aggregates, it also ignores NULL geometries.

See ST_UnaryUnion for a non-aggregate, single-input variant.

The ST_Union array and set variants use the fast Cascaded Union algorithm described in http://blog.cleverelephant.ca/2009/01/-
must-faster-unions-in-postgis-14.html

A gridSize can be specified to work in fixed-precision space. The inputs are snapped to a grid of the given size, and the result
vertices are computed on that same grid. (Requires GEOS-3.9.0 or higher)

http://blog.cleverelephant.ca/2009/01/must-faster-unions-in-postgis-14.html
http://blog.cleverelephant.ca/2009/01/must-faster-unions-in-postgis-14.html

PostGIS 3.3.0rc2 Manual 340/ 896

otet Note
N ST_Collect may sometimes be used in place of ST_Union, if the result is not required to be non-overlapping. ST_Collect
is usually faster than ST_Union because it performs no processing on the collected geometries.

Performed by the GEOS module.
ST_Union creates MultiLineString and does not sew LineStrings into a single LineString. Use ST_LineMerge to sew LineStrings.

NOTE: this function was formerly called GeomUnion(), which was renamed from "Union" because UNION is an SQL reserved
word.

Enhanced: 3.1.0 accept a gridSize parameter - requires GEOS >=3.9.0
Changed: 3.0.0 does not depend on SFCGAL.
Auvailability: 1.4.0 - ST_Union was enhanced. ST_Union(geomarray) was introduced and also faster aggregate collection in

PostgreSQL.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.3

Not Note
Aggregate version is not explicitly defined in OGC SPEC.

This method implements the SQL/MM specification. SQL-MM 3: 5.1.19 the z-index (elevation) when polygons are in-
volved.

This function supports 3d and will not drop the z-index. However, the result is computed using XY only. The result Z values
are copied, averaged or interpolated.

Examples

Aggregate example

SELECT id,

ST_Union (geom) as singlegeom
FROM sometable f
GROUP BY id;

Non-Aggregate example

select ST_AsText (ST_Union ('POINT (1 2)' :: geometry, 'POINT (-2 3)' :: geometry))
st_astext

MULTIPOINT (-2 3,1 2)

select ST_AsText (ST_Union ('POINT (1 2)' :: geometry, 'POINT(l 2)' :: geometry))
st_astext

POINT (1 2)

3D example - sort of supports 3D (and with mixed dimensions!)

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual 341 /896

select ST_ASEWKT (ST_Union (geom))
from (
select 'POLYGON((-7 4.2,-7.1 4.2,-7.1 4.3, =7 4.2))"'::geometry geom
union all
select 'POINT(5 5 5)'::geometry geom
union all

select 'POINT (-2 3 1)'::geometry geom

union all

select 'LINESTRING(5 5 5, 10 10 10)'::geometry geom
) as foo;

st_asewkt

GEOMETRYCOLLECTION (POINT (-2 3 1),LINESTRING(5 5 5,10 10 10),POLYGON ((=7 4.2 5,-7.1 4.2 <
5,-7.1 4.3 5,-7 4.2 5)));

3d example not mixing dimensions

select ST_ASEWKT (ST_Union (geom))
from (
select 'POLYGON((-7 4.2 2,-7.1 4.2 3,-7.1 4.3 2, =7 4.2 2))'::geometry geom
union all
select 'POINT(5 5 5)'::geometry geom
union all

select 'POINT (-2 3 1)'::geometry geom

union all

select 'LINESTRING(5 5 5, 10 10 10)'::geometry geom
) as foo;

st_asewkt

GEOMETRYCOLLECTION (POINT (-2 3 1),LINESTRING(5 5 5,10 10 10),POLYGON ((=7 4.2 2,-7.1 4.2 <
3,-7.1 4.3 2,-7 4.2 2)))

—-—Examples using new Array construct
SELECT ST_Union (ARRAY (SELECT geom FROM sometable));

SELECT ST_AsText (ST_Union (ARRAY[ST_GeomFromText ('LINESTRING(1 2, 3 4)'"),
ST_GeomFromText ('LINESTRING(3 4, 4 5)"'")])) As wktunion;

——wktunion——--
MULTILINESTRING((3 4,4 5), (1 2,3 4))

See Also
ST_Collect, ST_UnaryUnion, ST_MemUnion, ST_Intersection, ST_Difference, ST_SymDifference
8.14 Geometry Processing

8.14.1 ST_Buffer

ST_Buffer — Computes a geometry covering all points within a given distance from a geometry.

PostGIS 3.3.0rc2 Manual 342 /896

Synopsis

geometry ST_Buffer(geometry g1, float radius_of_buffer, text buffer_style_parameters =);
geometry ST_Buffer(geometry g1, float radius_of_buffer, integer num_seg_quarter_circle);
geography ST_Buffer(geography g1, float radius_of_buffer, text buffer_style_parameters);
geography ST_Buffer(geography g1, float radius_of_buffer, integer num_seg_quarter_circle);

Description

Computes a POLYGON or MULTIPOLYGON that represents all points whose distance from a geometry/geography is less than
or equal to a given distance. A negative distance shrinks the geometry rather than expanding it. A negative distance may shrink a
polygon completely, in which case POLYGON EMPTY is returned. For points and lines negative distances always return empty

results.

For geometry, the distance is specified in the units of the Spatial Reference System of the geometry. For geography, the distance
is specified in meters.

The optional third parameter controls the buffer accuracy and style. The accuracy of circular arcs in the buffer is specified as the
number of line segments used to approximate a quarter circle (default is 8). The buffer style can be specifed by providing a list
of blank-separated key=value pairs as follows:

* ’quad_segs=#" : number of line segments used to approximate a quarter circle (default is 8).

 ’endcap=roundlflatisquare’ : endcap style (defaults to "round"). ’butt’ is accepted as a synonym for "flat’.

¢ ’join=roundlmitrelbevel’ : join style (defaults to "round"). 'miter’ is accepted as a synonym for ’mitre’.

e ’mitre_limit=#.#" : mitre ratio limit (only affects mitered join style). miter_limit’ is accepted as a synonym for *mitre_limit’.

* ’side=bothlleftlright’ : ’left’ or 'right’ performs a single-sided buffer on the geometry, with the buffered side relative to the
direction of the line. This is only applicable to LINESTRING geometry and does not affect POINT or POLYGON geometries.
By default end caps are square.

=

Noteh

Note

For geography, this is a wrapper around the geometry implementation. It determines a planar spatial reference system
that best fits the bounding box of the geography object (trying UTM, Lambert Azimuthal Equal Area (LAEA) North/South
pole, and finally Mercator). The buffer is computed in the planar space, and then transformed back to WGS84. This
may not produce the desired behavior if the input object is much larger than a UTM zone or crosses the dateline

Note!

Note
Buffer output is always a valid polygonal geometry. Buffer can handle invalid inputs, so buffering by distance 0 is
sometimes used as a way of repairing invalid polygons. ST_MakeValid can also be used for this purpose.

Noteh

Note
Buffering is sometimes used to perform a within-distance search. For this use case it is more efficient to use
ST_DWithin.

Note

Note
This function ignores the Z dimension. It always gives a 2D result even when used on a 3D geometry.

PostGIS 3.3.0rc2 Manual 343 /896

Enhanced: 2.5.0 - ST_Buffer geometry support was enhanced to allow for side buffering specification side=both|left | right.

Auvailability: 1.5 - ST_Buffer was enhanced to support different endcaps and join types. These are useful for example to convert
road linestrings into polygon roads with flat or square edges instead of rounded edges. Thin wrapper for geography was added.

Performed by the GEOS module.
ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.3

ﬂ This method implements the SQL/MM specification. SQL-MM IEC 13249-3: 5.1.30

Examples
quad_segs=8 (default) quad_segs=2 (lame)
SELECT ST_Buffer(SELECT ST_Buffer (
ST_GeomFromText ('POINT (100 90) "), ST_GeomFromText ('POINT (100 90) "),
50, 'quad_segs=8"'); 50, 'quad_segs=2"');

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual

344 / 896

(

endcap=round join=round (default)

SELECT ST_Buffer (

ST_GeomFromText (
'LINESTRING (50 50,150 150,150 50)'
), 10, 'endcap=round Jjoin=round');

endcap=square

SELECT ST_Buffer (

ST_GeomFromText (
'LINESTRING (50 50,150 150,150 50)'
), 10, 'endcap=square join=round');

join=bevel

SELECT ST_Buffer (
ST_GeomFromText (
'LINESTRING (50 50,150 150,150 50)"
), 10, 'Join=bevel');

join=mitre mitre_limit=5.0 (default mitre limit)

SELECT ST_BRuffer (
ST_GeomFromText (
'LINESTRING (50 50,150 150,150 50)"
), 10, 'Jjoin=mitre mitre_limit=5.0");

PostGIS 3.3.0rc2 Manual

345 /896

side=left

SELECT ST_Buffer (
ST_GeomFromText (
'LINESTRING (50 50,150 150,150 50)'
), 10, 'side=left');

side=right

SELECT ST_Buffer(
ST_GeomFromText (
'LINESTRING (50 50,150 150,150 50)"

), 10, 'side=right');

right-hand-winding, polygon boundary side=left

SELECT ST_BRuffer (

ST_ForceRHR (

ST_Boundary (
ST_GeomFromText (

'POLYGON ((50 50, 50 150, 150 150, 150 <
50, 50 50))"))),
), 20, 'side=left'");

right-hand-winding, polygon boundary side=right

SELECT ST_Buffer (
ST_ForceRHR (
ST_Boundary (

ST_GeomFromText (

'POLYGON ((50 50,

50, 50 50))"))

), 20, 'side=right')

50 150, 150 150, 150 <

——A buffered point approximates a circle
—-— A buffered point forcing approximation of

(see diagram)

PostGIS 3.3.0rc2 Manual 346 / 896

—— 2 points per quarter circle is poly with 8 sides (see diagram)

SELECT ST_NPoints (ST_Buffer (ST_GeomFromText ('"POINT (100 90)'), 50)) As <
promisingcircle_pcount,

ST_NPoints (ST_Buffer (ST_GeomFromText ('POINT (100 90) '), 50, 2)) As lamecircle_pcount;

promisingcircle_pcount | lamecircle_pcount
777777777777777777777777 +7777777777777777777
33 | 9

——A lighter but lamer circle

-— only 2 points per quarter circle is an octagon

——Below is a 100 meter octagon

—— Note coordinates are in NAD 83 long lat which we transform

to Mass state plane meter and then buffer to get measurements in meters;
SELECT ST_AsText (ST_Buffer (

ST _Transform(

ST_SetSRID(ST_Point (-71.063526, 42.35785),4269), 26986)

,100,2)) As octagon;

POLYGON ((236057.59057465 900908.759918696,236028.301252769 900838.049240578, 235
957.59057465 900808.759918696,235886.879896532 900838.049240578,235857.59057465
900908.759918696,235886.879896532 900979.470596815,235957.59057465 901008.759918
696,236028.301252769 900979.470596815,236057.59057465 900908.759918696))

See Also

ST Collect, ST_DWithin, ST_SetSRID, ST_Transform, ST_Union, ST _MakeValid

8.14.2 ST_BuildArea

ST_BuildArea — Creates a polygonal geometry formed by the linework of a geometry.

Synopsis

geometry ST_BuildArea(geometry geom);

Description

Creates an areal geometry formed by the constituent linework of the input geometry. The input can be LINESTRINGS, MUL-
TILINESTRINGS, POLYGONS, MULTIPOLYGONS, and GeometryCollections. The result is a Polygon or MultiPolygon,
depending on input. If the input linework does not form polygons, NULL is returned.

This function assumes all inner geometries represent holes

N:ﬂ"! Note

Input linework must be correctly noded for this function to work properly

Auvailability: 1.1.0

Examples

PostGIS 3.3.0rc2 Manual 347 /896

These will create a donut

—--using polygons
SELECT ST_BuildArea (ST_Collect (smallc,bigc))
FROM (SELECT
ST_Buffer (
ST_GeomFromText ('"POINT (100 90) '), 25) As smallc,
ST_Buffer (ST_GeomFromText ('POINT (100 90) '), 50) As bigc) As foo;

—-using linestrings
SELECT ST_BuildArea(ST_Collect (smallc,bigc))
FROM (SELECT
ST_ExteriorRing (ST_Buffer (
ST_GeomFromText ('"POINT (100 90) '), 25)) As smallc,
ST_ExteriorRing (ST_Buffer (ST_GeomFromText ('POINT (100 90) '), 50)) As bigc) As foo;

See Also

ST_Node, ST_MakePolygon, ST_MakeValid, ST_BdPolyFromText, ST_BdMPolyFromText (wrappers to this function with
standard OGC interface)

8.14.3 ST_Centroid

ST_Centroid — Returns the geometric center of a geometry.

Synopsis

geometry ST_Centroid(geometry gl);
geography ST_Centroid(geography g1, boolean use_spheroid=true);

Description

Computes a point which is the geometric center of mass of a geometry. For [MULTI]POINTS, the centroid is the arithmetic
mean of the input coordinates. For [MULTI]LINESTRINGS, the centroid is computed using the weighted length of each line
segment. For [MULTI]POLYGONS, the centroid is computed in terms of area. If an empty geometry is supplied, an empty

PostGIS 3.3.0rc2 Manual 348 /896

GEOMETRYCOLLECTION is returned. If NULL is supplied, NULL is returned. If CIRCULARSTRING or COMPOUNDCURVE
are supplied, they are converted to linestring with CurveToLine first, then same than for LINESTRING

For mixed-dimension input, the result is equal to the centroid of the component Geometries of highest dimension (since the
lower-dimension geometries contribute zero "weight" to the centroid).

Note that for polygonal geometries the centroid does not necessarily lie in the interior of the polygon. For example, see the
diagram below of the centroid of a C-shaped polygon. To construct a point guaranteed to lie in the interior of a polygon use
ST_PointOnSurface.

New in 2.3.0 : supports CIRCULARSTRING and COMPOUNDCURVE (using CurveToLine)

Auvailability: 2.4.0 support for geography was introduced.
0 This method implements the OGC Simple Features Implementation Specification for SQL 1.1.

9 This method implements the SQL/MM specification. SQL-MM 3: 8.1.4,9.5.5

Examples

In the following illustrations the red dot is the centroid of the source geometry.

® @

® @

Centroid of a MULTIPOINT Centroid of a LINESTRING

http://www.opengeospatial.org/standards/sfs

PostGIS 3.3.0rc2 Manual

349/ 896

‘*~—.I

Centroid of a POLYGON

Centroid of a GEOMETRYCOLLECTION

SELECT ST_AsText (ST_Centroid('MULTIPOINT (-1 0, -1 2,
0, 6 0, 78, 98, 10 6)"));
st_astext

POINT (2.30769230769231 3.30769230769231)
(1 row)

SELECT ST_AsText (ST_centroid(g))

FROM ST_GeomFromText ('CIRCULARSTRING(O 2, -1 1,0 0, O.

AS g ;

POINT (0.5 1)

SELECT ST_AsText (ST_centroid(g))

FROM ST_GeomFromText ('COMPOUNDCURVE (CIRCULARSTRING (0 2,

CIRCULARSTRING(1 0, 2 1, 1 2),(1 2, 0.5 2, 0 2))"

POINT (0.5 1)

See Also

ST _PointOnSurface, ST_GeometricMedian

8.14.4 ST_ChaikinSmoothing

-13 -14,-17,01, 03, 11,
50,10, 21,12, 0.52, 02)"

-11,0 0),(0 0, 0.5 0, 10), <
) AS g;

ST_ChaikinSmoothing — Returns a smoothed version of a geometry, using the Chaikin algorithm

Synopsis

geometry ST_ChaikinSmoothing(geometry geom, integer nlterations = 1, boolean preserveEndPoints = false);

)

PostGIS 3.3.0rc2 Manual 350/ 896

Description

Returns a "smoothed" version of the given geometry using the Chaikin algorithm. See Chaikins-Algorithm for an explanation of
the process. For each iteration the number of vertex points will double. The function puts new vertex points at 1/4 of the line
before and after each point and removes the original point. To reduce the number of points use one of the simplification functions
on the result. The new points gets interpolated values for all included dimensions, also z and m.

Second argument, number of iterations is limited to max 5 iterations
Note third argument is only valid for polygons, and will be ignored for linestrings

This function handles 3D and the third dimension will affect the result.

Note
Note that returned geometry will get more points than the original. To reduce the number of points again use one of the
simplification functions on the result. (see ST_Simplify and ST_Simplify VW)

Availability: 2.5.0

Examples

A triangle is smoothed

select ST_AsText (ST_ChaikinSmoothing(geom)) smoothed

FROM (SELECT 'POLYGON((O O, 8 8, 0 16, 0 0))'::geometry geom) As foo;
┌ ─ ─ 6#x2500; ─ ─ & #x2500; & #x2500; ─ ─ ─ ─ & #x2
│ smoothed │

├ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ & #x2
│ POLYGON((2 2,6 6,6 10,2 14,0 12,0 4,2 2)) │
└ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ & #x2

See Also

ST_Simplify, ST_Simplify VW

8.14.5 ST ConcaveHull

ST_ConcaveHull — Computes a possibly concave geometry that encloses all input geometry vertices

Synopsis

geometry ST_ConcaveHull(geometry param_geom, float param_pctconvex, boolean param_allow_holes = false);

Description

A concave hull of a geometry is a possibly concave geometry that encloses the vertices of the input geometry. In the general
case the concave hull is a Polygon. The polygon will not contain holes unless the optional param_allow_holes argument is
specified as true. The concave hull of two or more collinear points is a two-point LineString. The concave hull of one or more
identical points is a Point.

One can think of a concave hull as "shrink-wrapping" a set of points. This is different to the convex hull, which is more like
wrapping a rubber band around the points. The concave hull generally has a smaller area and represents a more natural boundary
for the input points. Like the convex hull, the vertices of a concave hull are a subset of the input points, and all other input points
are contained within it.

http://www.idav.ucdavis.edu/education/CAGDNotes/Chaikins-Algorithm/Chaikins-Algorithm.html

PostGIS 3.3.0rc2 Manual 351 /896

The param_pctconvex controls the concaveness of the computed hull. A value of 1 produces the convex hull. A value of
0 produces a hull of maximum concaveness (but still a single polygon). Values between 1 and O produce hulls of increasing
concaveness. Choosing a suitable value depends on the nature of the input data, but often values between 0.3 and 0.1 produce
reasonable results.

Technically, the param_pctconvex determines a length as a fraction of the difference between the longest and shortest edges
in the Delaunay Triangulation of the input points. Edges longer than this length are "eroded" from the triangulation. The triangles
remaining form the concave hull.

For point and linear inputs, the hull will enclose all the points of the inputs. For polygonal inputs, the hull will enclose all the
points of the input and also all the areas covered by the input. If you want a point-wise hull of a polygonal input, convert it to
points first, using ST_Points.

This is not an aggregate function. To compute the concave hull of a set of geometries use ST_Collect (e.g. ST_ConcaveHull (
ST_Collect (geom), 0.80).

Availability: 2.0.0
Enhanced: 3.3.0, GEOS native implementation enabled for GEOS 3.11+

Examples

Concave Hull of a MultiPoint

SELECT ST_AsText (

ST_ConcaveHull (

'"MULTIPOINT
45),
83),

(37 107),
(44 172),

, (124 181),

(182 145),
155),
123),
106),
(179 41),
(102 19),
, (19 49),
(97 104),
, (70 33),

, (150 1l4e6),

(88 110),
(138 40),

((10 72),

(53 76),

(111 4e6),
(115 85),

(29 114),
(54 175),

(171 34),
(92 19),

(14 58),
(52 117),

(147 157),
(38 136),

(122 34),
(129 165),

(121 47),
(105 87),

(134 179),
(184 135),
(89 155),
(102 121),
(170 102),

(79 153),
(112 119),
(178 96),
(162 29),
(82 19),
(21 73),
(157 156),

(48 153)

(151 97),
(33 48),

(56 66),

(131 50),
(95 89),

(22 122),
(64 178),
(144 177),
(139 132),
(69 150),
(122 118),
(185 88),

(72 21),
(31 74),

’

(111 170),

(19 132),
(74 180),

(153 25),

(94 171),

(140 9e6),
(124 94),

(157 56),
(106 31),

(63 58),

(140 55),
(85 91),

(153 173),
(136 142),
(61 144),

(189 78),

(62 22),
(42 74),
(112 106),
(47 129),
(26 59),

(18 142),
(84 181),

(132 116),

(143 23),

(39 14e6),
(169 147),

(71 51),

(145 64),
(75 93),
(21 151),
(94 181),
(162 168),
(128 149),
(63 134),

(190 68),
(133 21),
(52 25),
(173 134),

(65 995),

(142 113)

(169 73)
(173 55)
(60 41)
(88 33),
(37 122),

(81 48),

(144 74),

(171 162),
(119 153),
(72 128),
(151 110),
(185 49),

I

(189 58),

(43 29),

(55 98),
(27 160),
(104 181),

(123 19),

(159 45),
(71 109),

(91 46),

(135 80),

(33 34),
(161 134),
, (58 165)
, (144 86)
, (71 162)

(101 <«
(125
(45 102),
(35 167),
(114 181)

(177 154),
(109 155),
(82 125),

(99
(92
(161
H
(113 19),

(25 41)

(150 133),

, (149 40)
, (159 67)
, (41 64),

(47 56),
(163 89),

(_)
o
<
P

<
o
<

<

R R

o
(_)

PostGIS 3.3.0rc2 Manual 352 /896

(37 156), (82 170), (180 72), (29 142), (46 41), (59 155), (124 106), (157 80), ¢
(175 82), (56 50), (62 11l6),