PostGIS 3.6.0rc2 Manual

PostGIS 3.6.0rc2 Manual ii
Contents

1 Introduction 1

1.1 Project Steering COMMILIEE o . vttt e e e e e e e e e e e e e 1

1.2 Core Contributors Present L e e e 1

1.3 Core Contributors Past 2

1.4 Other Contributors o o e e e e e e e 2

2 PostGIS Installation 6

2.1 Short Version e e e 6

2.2 Compiling and Install from Source 6

2.2.1 Gettingthe Source e 7

222 Install Requirements e e e e e e e 7

2.2.3 Build configurationo e 8

224 Building 10

2.2.5 Building PostGIS Extensions and Deployingthem 10

22,6 Testing e e 12

227 Installationo e 15

2.3 Installing and Using the address standardizer e 16

2.4 Installing, Upgrading Tiger Geocoder, and loading data 16

2.4.1 Tiger Geocoder Enabling your PostGIS database 16

2.4.2 Using Address Standardizer Extension with Tiger geocoder 19

2.4.3 Required tools for tigerdataloading L 19

2.4.4 Upgrading your Tiger Geocoder Installand Data 20

2.5 Common Problems during installation 20

3 PostGIS Administration 21

3.1 Performance Tuning L L e e e e e e 21

3L Startup ..o e e 21

3.1.2 Runtime o e e e e e 22

3.2 Configuring raster SUPPOTL v v v v v i e 22

3.3 Creating spatial databases e e e 23

3.3.1 Spatially enable database using EXTENSION 23

PostGIS 3.6.0rc2 Manual iii

3.3.2 Spatially enable database without using EXTENSION (discouraged) 23

3.4 Upgrading spatial databases L. e e e e e e 24
34.1 Softupgrade L e 24
34.1.1 Soft Upgrade 9.1+ using extensions e 24

34.1.2 Soft Upgrade Pre 9.1+ or without extensions 25

342 Hardupgrade L 26

4 Data Management 28
4.1 Spatial Data Model L e e e e 28
411 OGC GEOMELIY . . . v v v v e e e e e e e e e e e e e e e e e e e 28
41101 Point . ..o 29

4.1.1.2 LineString e e e 29

4.1.1.3 LinearRing e e e e e 29

4.1.1.4 Polygon e e e 29

4.1.1.5 MultiPoint L. e 29

4.1.1.6 MultiLineString L e e e e e 29

4.1.1.7 MultiPolygon e 30

4.1.1.8 GeometryCollection e e e e e 30

4.1.1.9 PolyhedralSurface e 30

4.1.1.10 Triangle L e 30

41111 TIN Lo e e 30

412 SQL/MMPart3-Curves o e e e e e e e 30
4.1.2.1 CircularString L e e e e e 31

4.1.2.2 CompoundCurve o vt e e e e e e e e e e e e e 31

4.1.2.3 CurvePolygon e 31

4.1.2.4 MultiCurve e 31

4.1.25 MultiSurface 31

4.13 WKTand WKB e 32

42 Geometry Data Type o e e e e e e e 33
4.2.1 PostGISEWKB and EWKT 33

4.3 Geography DataType e e 35
4.3.1 Creating Geography Tables e 35

4.3.2 Using Geography Tables 36

4.3.3 When to use the Geography datatype i e 37
43.4 Geography Advanced FAQ e 37

4.4 Geometry Validation e 38
4.4.1 Simple GEOMELIY o e e e e e e e e e e e 38
442 Valid GEOmetryo e e e 40

4.43 Managing Validity 42

PostGIS 3.6.0rc2 Manual iv
4.5 Spatial Reference Systems L 43
45.1 SPATIAL_REF_SYS Table e e e 44

4.5.2 User-Defined Spatial Reference Systems 45

4.6 Spatial Tables L e e e e e e e 45
4.6.1 Creatinga Spatial Table e 45

4.6.2 GEOMETRY_COLUMNS View et e e e e e e e e e s 46

4.6.3 Manually Registering Geometry Columns 47

4.7 Loading Spatial Data e 49
471 UsingSQLtoLoadData e 49

4772 Using the Shapefile Loader 49

4.8 Extracting Spatial Data L L e e e e e 51
4.8.1 Using SQLtoExtractData e e 51

4.8.2 Using the Shapefile Dumper e 52

4.9 Spatial Indexes e 52
49.1 GISTIndexes i e e e 53

492 BRINIndexes. e e 53

493 SP-GiSTIndexes o o i i e e 55

494 TuningIndex Usage e 56

5 Spatial Queries 57
5.1 Determining Spatial Relationships 57
5.1.1 Dimensionally Extended 9-Intersection Model 57

5.1.2 Named Spatial Relationships e 59

5.1.3 General Spatial Relationships L 60

5.2 Using Spatial Indexes L. e 62

5.3 Examples of Spatial SQL L e 62

6 Performance Tips 65
6.1 Small tables of large geometries L e e e 65
6.1.1 Problemdescription e e e e e e e e e 65

6.1.2 Workarounds e e 65

6.2 CLUSTERing on geometry indices o o v ittt e e e e e e e e 66
6.3 Avoiding dimension CONVErsion v vttt e e e e e e e e e e e 66

7 PostGIS Reference 67
7.1 PostGIS Geometry/Geography/Box Data Types i e 67

T box2d . . 67

7120 box3d . . . 68

713 EOMELIY o o e e e e e e e e e e 68

7.1.4 geometry_dump L e e e e e e e e 69

PostGIS 3.6.0rc2 Manual v

7.2

7.3

7.4

7.1.5 geographyo e e 69
Table Management Functions e e e e e e 69
7.2.1 AddGeometryColumn e e e e e 69
7.2.2 DropGeometryColumn e e e e e e e e e 71
7.2.3 DropGeometryTable e e 72
7.24 Find_SRID e 73
7.2.5 Populate_Geometry_Columns L e e 73
7.2.6 UpdateGeometrySRID e e e 75
Geometry CONSLIUCIOTS v v v v v vt et e e e e e e e e e e e e e e e e e 76
7.3.1 ST _Collect e 76
7.3.2 ST LineFromMultiPoint 78
7.3.3 ST_MakeEnvelope e e 78
7.3.4 ST Makelline e 79
7.3.5 ST _MakePoint e e 80
7.3.6 ST _MakePointM e 81
7.3.77 ST_MakePolygon e 82
7.3.8 ST _Point o 84
7.3.9 ST PoIntZ e e e 85
7.3.10 ST_PointM e e 86
7.3.11 ST _PointZM oo e e 87
7.3.12 ST_Polygon o e e e 87
7.3.13 ST_TileEnvelope o o e e e e e e 88
7.3.14 ST_HexagonGrid 0 e 89
7.3.15 ST_Hexagon 0 e e e e e e e 92
7.3.16 ST_SquareGrid e e e e e 93
T3.07 ST_Square o o e e e e e 94
7.3.18 ST Letters o e e e e e e 95
GEOMELTY ACCESSOTS + & v v v v v e 96
7.4.1 GeometryType e e 96
742 ST _Boundary e e e 97
743 ST_BoundingDiagonal e 99
T4.4 ST CoordDIm o e e 100
745 ST DIMENSION o v o e e e e e 101
T4.6 ST Dump e e e e e e e 101
7477 ST _DumpPoints e e e e 103
7.4.8 ST _DumpSegments i i it e e e e e e e e e e e e e e 107
7.4.9 ST DumpRings e 109
7.4.10 ST_EndPoint e e 110
7.4.11 ST_Envelope o e e e 111

PostGIS 3.6.0rc2 Manual Vi

7.5

7.4.12 ST_ExteriorRing e 113
7.4.13 ST_GeometryN o e e e e e e e e e e 114
7.4.14 ST_GeometryType o o o e e e e e 116
T.4.15 ST _HaSATIC e e 117
7.4.16 ST_InteriorRingN L 117
7417 ST NumCUIVES o o o o o e e e e e e e e e e e 118
7418 ST_CurveN L e 119
7.4.19 ST ISClosed o e e 119
7.420 ST IsCollection o o o 121
7421 ST_ISEmpty o o e e e e e e e 122
7.422 ST_IsPolygonCCW e 123
7.4.23 ST_IsPolygonCW e e e e 124
7424 ST_ISRing o . o e 125
7.4.25 ST_IsSimple o . e e e e e e 126
7426 ST_M . . . o 126
T.427 ST MemSize o e e e 127
7.4.28 ST_NDIMSo e 128
T.429 ST NPOINES e e 129
7.430 ST_NRINGs o o 130
7431 ST NumGEOMELIIES o v o o o e e e e e e e e e e e e 130
7.4.32 ST_NumlnteriorRings 131
7.4.33 ST_NumlnteriorRing e e 132
7.434 ST NumPatches e 132
7.4.35 ST NumPoInts e e 133
7.436 ST_PatchN e e 133
7437 ST_PointN o . o e 134
7438 ST _Points o e 136
7.4.39 ST StartPoint e e 136
7440 ST_Summary ot e e e e e e e e e e e 137
TAAL ST_X . o 139
7442 STY . oo 139
TA43 ST _Z . . o 140
7444 ST Zmflag e 141
7445 ST_HasZ o 142
7446 ST_HasM 143
Geometry EItOrs e e e e e e e 143
7.5.1 ST_AddPoint 143
7.5.2 ST _CollectionEXtract e e e e e e 144
7.5.3 ST_CollectionHomogenize e e e e 145

PostGIS 3.6.0rc2 Manual vii

7.6

1.7

7.5.4 ST CurveToLine e 147
7.5.5 ST_Scroll o e 149
7.5.6 ST_FlipCoordinates it e e e e e e 150
757 ST_Force2D e 151
7.5.8 ST_Force3D e e 151
7.5.9 ST _Force3DZ e e 152
7.5.10 ST_Force3DM e 153
7.5.11 ST_ForcedD e e e 154
7.5.12 ST ForceCollection 154
7.5.13 ST ForceCurve o o e e 156
7.5.14 ST_ForcePolygonCCW e 156
7.5.15 ST_ForcePolygonCW e e e e 157
7.5.16 ST_ForceSFS 157
7.5.17 ST _ForceRHR e 157
7.5.18 ST LineExtend e 158
7.5.19 ST LIneToCurve o o e e e e 159
7.5.20 ST_Multi o 160
7521 ST _Normalize o e 161
7.5.22 ST_Project o o o e 161
7.5.23 ST_QuantizeCoordinates v i i e e e e e 162
7.524 ST RemovePoint e 164
7.5.25 ST_RemoveRepeatedPoints e e e 165
7.5.26 ST RemovelrrelevantPointsForView 166
7.5.27 ST RemoveSmallParts e 168
7528 ST RevVerse e e 170
7.529 ST_Segmentize o i i e e e e e e e e e e e e e e e 170
7.5.30 ST_SetPoint e e 172
7.5.31 ST_Shiftlongitude e e e e e 173
7.5.32 ST_WrapX o 174
7.5.33 ST_SnapToGrid e e e 175
7.534 ST_Snap o o 176
7.5.35 ST_SwapOrdinates o v it e e e e e e e e e e e e e 179
Geometry Validation e 180
7.6.1 ST_IsValid e 180
7.6.2 ST_IsValidDetail 181
7.6.3 ST IsValidReason e e 183
7.6.4 ST _MakeValid 184
Spatial Reference System Functions L 189

7.7.1 ST_InverseTransformPipeline e 189

PostGIS 3.6.0rc2 Manual viii

7.8

7.7.2 ST_SetSRID o 190
773 ST_SRID . . . o e 191
T7.4 ST Transform e 192
7.7.5 ST_TransformPipeline e e e e 194
7.7.6 postgis_srs_codes e 196
TTT POSLZIS_SIS o v v v v o e e e e e e e e e e e e e e e e e e e 196
7.7.8 postgis_srs_all . . .o e 197
779 postgis_srs_search e e e e e e e e 198
Geometry Input L . e e e 199
7.8.1 Well-Known Text (WKT) e e 199
7.8.1.1 ST_BdPolyFromText e 199
7.8.1.2 ST_BdMPolyFromText e e e e 199
7.8.1.3 ST_GeogFromText e 200
7.8.1.4 ST_GeographyFromText e 200
7.8.1.5 ST _GeomCollFromText e e 201
7.8.1.6 ST _GeomFromEWKT e 201
7.8.1.7 ST_GeomFromMARC21 e 203
7.8.1.8 ST_GeometryFromText e e 205
7.8.1.9 ST _GeomFromText e 205
7.8.1.10 ST _LineFromText o o e e e 207
7.8.1.11 ST MLineFromText e, 208
7.8.1.12 ST _MPointFromText e 208
7.8.1.13 ST_MPolyFromText e 209
7.8.1.14 ST PointFromText e e 210
7.8.1.15 ST _PolygonFromText 211
7.8.1.16 ST_WKTToSQL 212
7.8.2 Well-Known Binary (WKB) o e 212
7.82.1 ST_GeogFromWKB e 212
7.82.2 ST _GeomFromEWKB e 213
7.823 ST _GeomFromWKB e 214
7.82.4 ST _LineFromWKB e 215
7.8.2.5 ST_LinestringFromWKB 216
7.82.6 ST _PointFromWKB 216
7.8277 ST_WKBToSQL 217
7.8.3 Other Formats e 218
7.8.3.1 ST _Box2dFromGeoHash e 218
7.83.2 ST _GeomFromGeoHash 218
7.83.3 ST _GeomFromGML e 219

7.8.3.4 ST_GeomFromGeoJSON e 222

PostGIS 3.6.0rc2 Manual iX
7.8.3.5 ST GeomFromKML e 223

7.83.6 ST _GeomFromTWKB e 223

7.83.7 ST_GMLToSQL 224

7.8.3.8 ST_LineFromEncodedPolyline 224

7.8.3.9 ST PointFromGeoHash 225
7.8.3.10 ST_FromFlatGeobufToTable i . 226
7.8.3.11 ST FromFlatGeobuf 226

7.9 Geometry OUIPUL o ot e e e e e e e e e e e e e 227
7.9.1 Well-Known Text (WKT) e e e 227
79.1.1 ST_ASEWKT e 227

7.9.1.2 ST ASTeXt o o o 228

7.9.2 Well-Known Binary (WKB) e e 229
7921 ST _AsBinary e 229

7922 ST_ASEWKB 231

7923 ST AsHEXEWKB e 232

7.9.3 OtherFormats 233
7.9.3.1 ST_AsEncodedPolyline 233

7932 ST_AsFlatGeobuf 234

7.9.33 ST _AsGeobuf 234

7934 ST_AsGeoJSON 234

7935 ST _ASGML 237

7936 ST_AsKML 240

7.9.37 ST_AsLatLonText e 241

7938 ST_AsSMARC21 242

7939 ST ASMVTGeom e 245
7.93.10 ST_ASMVT 246
79311 ST_ASSVG o 247
79312 ST_ASTWKB o 248
7.9.3.13 ST_AsX3D . . . o o 249
7.9.3.14 ST _GeoHash. e e 252

T.10 Operators ot e e e e 254
7.10.1 Bounding Box Operators i i e e e e e e e e e e e 254
TJ01D && . o oo 254
7.10.1.2 &&(geometry,box2df) 254
7.10.1.3 &&(box2df,geometry) L. 255
7.10.14 &&(box2dfbox2df) 256
TJ0.1S &&& . . o o 257
7.10.1.6 &&&(geometry,gidx) L 258
7.10.1.7 &&&(gidx,geometry) L 259

PostGIS 3.6.0rc2 Manual X

7.10.1.8 &&&(gidX,gidX) e 260
TJ0.1.9 &< oo o 260
TJ0.1.10 &<l oo 261
TA0LIT &> .o oo 262
TJ0L02 K< oo o 263
TI0LA3 <<l oo 263
TI0L014 = o o 264
TIOLAS >> Lo o 265
TJ0.1.16 @ L Lo 266
7.10.1.17 @(geometry,box2df) L e 267
7.10.1.18 @(box2df,geometry) L 268
7.10.1.19 @(box2df,box2df) 268
TJ0120 &> . o oo 269
TAOL21 I>> L0 o 270
TA0122 ~ oo 271
7.10.1.23 ~(geometry,box2df) L e 271
7.10.1.24 ~(box2df,geometry) e e 272
7.10.1.25 ~(box2df,box2df) 273
TJ0.1.26 ~= L Lo 274
7.10.2 Distance Operators v v v v i e 274
TJ02.1 <> 0 0o 274
TA022 1=l oo 276
TJ023 <H>. L o 277
T02.4 <<>> 000 278
7.11 Spatial Relationships e e e 279
7.11.1 Topological Relationships e e 279
T.11.1.1 ST _3DINtersects v v e e e e e e e e e e e e e e e 279
T.11.1.2 ST _Contains v v o e e e e e e 280
7.11.1.3 ST ContainsProperly 284
7.11.1.4 ST_CoveredBy e e 285
TA1.1.5 ST_COVErs . . . o o o o e e e e e e 286
T11.1.6 ST_CroSSES . o v v v v o e e e e e e e e e e e e 288
7.01.1.7 ST_Disjoint« o oo o e e e e e e e e 290
7A1.1.8 ST_Equals e e e e 291
T.11.1.9 ST_INtersects o e e e e e e e 292
7.11.1.10 ST_LineCrossingDirection it 294
7.11.1.11 ST _OrderingEquals e 296
TALLA2 ST_Overlaps o o o e e e e e e e e e 297

701113 ST Relate o 300

PostGIS 3.6.0rc2 Manual Xi

7.12

7.13

7.11.1.14 ST_RelateMatch e 303

7.11.1.15 ST _Touches e e 304

701116 ST_Withino e 305
7.11.2 Distance Relationships L e 307

7.11.2.1 ST_3DDWithin e e 307

7.11.2.2 ST_3DDFullyWithin e 308

7.11.2.3 ST_DFullyWithin e 309

7.11.2.4 ST _DWithin oL e e 310

7.11.2.5 ST PointlnsideCircle 311
Measurement Functions L e 312
TA2.1 ST_Area o 312
7.12.2 ST_Azimuth oL L e 313
7123 ST_Angle o o e 315
7.12.4 ST _ClosestPoint e e 316
7.12.5 ST 3DClosestPoint e 317
7.12.6 ST DIStance o o o o e e e e e 318
71277 ST 3DDIStance v v e e e e e e e e e 320
7.12.8 ST_DistanceSphere L e e e e e e 321
7.12.9 ST_DistanceSpheroid 322
7.12.10 ST _FrechetDistance 0 e e e e e e 323
7.12.11 ST _HausdorffDistance o e 324
TA212ST_Length o o e e e e e e e e e e e e e 325
71213 ST_Length2D L e 327
71214 ST 3DLength o e e e e e e e e e e 32T
7.12.15 ST_LengthSpheroid o L e e e 328
71216 ST_Longestline o 0 i e e e e e e e e e e e e e e e e e 0329
7.12.17ST_3DLongestLine o L e e 331
71218 ST _MaxDistance o o o e e e e e e e e 332
7.12.19 ST_3DMaxDistance e e e e 333
7.12.20 ST _MinimumClearance 0 e e e e e e s 334
7.12.21 ST_MinimumClearancelLine e e 335
TA222 ST Perimeter o o o e e e e e e e 335
7.12.23 ST Perimeter2D e e e 337
71224 ST _3DPerimeter o o o e e e e e e e 337
7.12.25 ST _Shortestine o e e e 338
7.12.26 ST_3DShortestline e e e 340
Overlay Functions 0 e 341
7.13.1 ST_ClipByBox2D e 341

7.13.2 ST _Difference e 342

PostGIS 3.6.0rc2 Manual Xii

7.14

7.15

7.13.3 ST INtersection o o o o e e 343
7.13.4 ST MemUnion o o o e e e e e 346
7.13.5 ST_Node o e 346
7.13.6 ST_Split e e e 347
7.13.7 ST_Subdivide e 350
7.13.8 ST_SymbDifference L e e 352
7.13.9 ST_UnaryUnion e 353
TABA0OST_UNION o o o e e e e 354
Geometry Processing e 356
7.14.1 ST_Buffer o o e 356
7.142 ST_BuildArea e 361
7.14.3 ST Centroid o e e 363
7.14.4 ST_ChaikinSmoothing e 365
7.14.5 ST ConcaveHull e 366
7.14.6 ST ConvexHull e 370
7.14.77 ST_DelaunayTriangles o e e e e e 371
7.14.8 ST_FilterByM 376
7.14.9 ST GeneratePoints e e e e e 377
7.14.10 ST_GeometricMedian e e e 378
TA411ST_LineMerge o o o i e e e e e e e e e e e e e e e e e 3T9
7.14.12 ST MaximumlnscribedCircle 382
7.14.13 ST_LargestEmptyCircle e e e e e384
7.14.14 ST_MinimumBoundingCircle 386
7.14.15 ST_MinimumBoundingRadius 38T
7.14.16 ST_OrientedEnvelope e e e 388
T.14.17 ST_OffsetCurve o o e s 389
7.14.18 ST _PointOnSurface e 393
71419 ST _Polygonize o e e e e e e e e e e e e e e e 0395
7.1420 ST_ReducePrecision e e e 397
7.14.21 ST _SharedPaths o398
70422 ST_Simplify o 401
7.14.23 ST_SimplifyPreserveTopology o e e e e e e 402
7.14.24 ST_SimplifyPolygonHull 0 404
71425 ST_Simplify VW« L o o 407
7.14.26 ST_SetEffectiveArea e e 408
7.14.27 ST_TriangulatePolygon e 410
71428 ST _VoronoiLines e e 412
7.1429 ST_VoronoiPolygons e 413

COVErages ot e e 414

PostGIS 3.6.0rc2 Manual xiii

7.16

7.17

7.18

7.19

7.15.1 ST_CoveragelnvalidEdges e 414
7.15.2 ST_CoverageSimplify e e e e 416
7.153 ST_CoverageUnion o vttt e e e e 417
7.15.4 ST_CoverageClean o 0 i e e e e e e e 419
Affine Transformations L 420
7.16.1 ST_Affine L e e 420
7.16.2 ST_Rotate o 421
7.16.3 ST _RotateX e e e 422
7.16.4 ST_RotateY o o e 423
7.16.5 ST RotateZ e e e 424
7.16.6 ST_Scale e 425
7.16.7 ST Translate o e 426
7.16.8 ST TransScale e 428
Clustering FUnNCtions 0 e e e e e e e e e e 429
7.17.1 ST_ClusterDBSCAN e e 429
7.17.2 ST_ClusterIntersecting i i e e e e e e e e 431
7.17.3 ST_ClusterIntersectingWin e 431
7.17.4 ST ClusterKMeans e e e e e e 432
7.17.5 ST_ClusterWithin 434
7.17.6 ST ClusterWithinWin e e 435
Bounding Box Functions L 436
7181 Box2D . . . 436
7.182 Box3D . .o e 437
7.18.3 ST EstimatedEXtent e e e e e 437
7.18.4 ST_Expand L e 438
7185 ST_EXtent o o e e 440
7.18.6 ST_3DEXtent o e e 441
7.18.7 ST _MakeBox2D e 442
7.18.8 ST_3DMakeBox e 443
7189 ST_XMaX . . . o oot e e e e 443
TABTOST_XMIN o ot e e 444
TABILLST_YMaAX o e e e 445
TABA2ST_YMIN o o o 446
TABIAZST_ZMaX . . . o o o o e e e 447
TABLAST_ZMIn o 448
Linear Referencing e 449
7.19.1 ST_LinelnterpolatePoint e 449
7.19.2 ST_3DLinelnterpolatePoint e e e 451

7.19.3 ST_LinelnterpolatePoints e 451

PostGIS 3.6.0rc2 Manual Xiv

7.20

7.21

7.22

7.23

7.19.4 ST LineLocatePoint e 452
7.19.5 ST_LineSubstring o o e e e e e e e e e e 453
7.19.6 ST_LocateAlong e 455
7.19.7 ST LocateBetween e e e 456
7.19.8 ST LocateBetweenElevations 0 e e 458
7.19.9 ST_InterpolatePoint e e 458
7.19.10 ST_AddMeasure o e e e e e 459
Trajectory FUnctions L e e e e e e e e 460
7.20.1 ST_IsValidTrajectory o o v i i e e e e e e e e 460
7.20.2 ST_ClosestPointOfApproach e e 461
7.20.3 ST_DistanceCPA e e 462
7.20.4 ST_CPAWIthin o e 462
Version Functions L e e e e 463
7.21.1 PostGIS_Extensions_Upgrade 0 i i e e e e 463
7.21.2 PostGIS_Full Version e 464
7.21.3 PostGIS_GEOS_Version 0 e e e e e 465
7.21.4 PostGIS_GEOS_Compiled_Versiont 465
7.21.5 PostGIS_Liblwgeom_Version v i i e e e e e e 466
7.21.6 PostGIS_LibXML_Version 0 e e 466
7.21.7 PostGIS_LIibJSON_VErsion v v v i e o e e e e e e e e e 467
7.21.8 PostGIS_Lib_Build_Date e 467
7.21.9 PostGIS_Lib_Version e e e 467
7.21.10 PostGIS_PROJ_Version 468
7.21.11 PostGIS_PROJ_Compiled_Version ittt et 468
7.21.12 PostGIS_Wagyu_Version o e e e e e 469
7.21.13 PostGIS_Scripts_Build_Date e e 469
7.21.14 PostGIS_Scripts_Installed e 470
7.21.15PostGIS_Scripts_Released e e 471
T21.16 PostGIS_Version e e e 471
Grand Unified Custom Variables (GUCS) e e e 472
7.22.1 postgis.gdal_datapatho 472
7.22.2 postgis.gdal_enabled_drivers L L e e e e e 473
7.22.3 postgis.enable_outdb_rasterso e e e e e 474
7.22.4 postgis.gdal_vSI_OptioNS e e e 475
7.22.5 postgis.gdal_cpl_debug 475
Troubleshooting Functions e 476
7.23.1 PostGIS_AddBBOX 476
7.23.2 PostGIS_DropBBox e e e e 476

7.23.3 PostGIS_HasBBoxX e 477

PostGIS 3.6.0rc2 Manual XV

8 SFCGAL Functions Reference 478
8.1 SFCGAL Management FUnctions it i it e et e e e e e e 478
8.1.1 postgis_sfcgal_version e e e e 478

8.1.2 postgis_sfcgal_full_version e e e 478

8.2 SFCGAL Accessors and Setters i e 479
8.2.1 CG_ForceLHR e 479

8.2.2 CG_ISPlanar e 479
823 CG_IsSolid 480
824 CG_MakeSolid 480
8.2.5 CG_Orientation v o e e e e e s 480
8.2.6 CG_ATIea o i 481
827 CG_3DATrea o s 481
8.2.8 CG _Volume s 482
8.2.9 ST ForceLHR 483
8.2.10 ST _IsPlanar. e 484
8.2.11 ST_IsSolid 484
8.2.12 ST MakeSolid 485
8.2.13 ST Orientation v v v v o e e e e e e e e e 485
8.2.14 ST 3DAr€a« o o i e 486
8.2.15 ST _Volume s 487

8.3 SFCGAL Processing and Relationship Functions 488
8.3.1 CG_INtersection v v i e e e e e e s 488

8.3.2 CG INtErsectS o o e e 488
8.3.3 CG_3DINErSECtS . . . v v v o o o e e e e e e s 489
8.3.4 CG_Difference e 490
8.3.5 ST 3DDifference e e e 491
8.3.6 CG_3DDifference e 491
8.3.7 CG_DIStancCe o o e e e s 492
8.3.8 CG3DDIStance e e e e e 493
839 ST_3DConvexHull 494
8.3.10 CG_3DConvexHull e 494
8.3.11 ST 3DINtersection v v v v e e e e e e e e e e 495
8.3.12 CG_3DINtersection v i e e e e e 496
8.3.13 CG_Union 498
8.3.14 ST 3DUNION v o e e e e e e e 499
8.3.15 CG_3DUnIon o 499
8.3.16 ST_AlphaShape 500
8.3.17 CG_AlphaShape e e e e e 501
8.3.18 CG_ApproxConvexPartition L e 504

PostGIS 3.6.0rc2 Manual XVi

8.3.19
8.3.20
8.3.21
8.3.22
8.3.23
8.3.24
8.3.25
8.3.26
8.3.27
8.3.28
8.3.29
8.3.30
8.3.31
8.3.32
8.3.33
8.3.34
8.3.35
8.3.36
8.3.37
8.3.38
8.3.39
8.3.40
8.3.41
8.3.42
8.3.43
8.3.44
8.3.45
8.3.46
8.3.47
8.3.48
8.3.49
8.3.50
8.3.51
8.3.52
8.3.53

ST_ApproximateMedialAXis e 505
CG_ApproximateMedial AXis L e 506
ST_ConstrainedDelaunayTriangles o e 507
CG_ConstrainedDelaunayTriangles 507
ST Extrude s 509
CG_Extrude 509
CG_ExtrudeStraightSkeleton e 511
CG_GreeneApproxConvexPartition e 512
ST MinkowskiSum 513
CG_MinkowsKkiSum e 513
ST_OptimalAlphaShape e 515
CG_OptimalAlphaShape e 516
CG_OptimalConvexPartition 0 e e e e e e e 518
CG_StraightSkeleton e e 519
ST_StraightSkeleton 521
ST Tesselate o e e 522
CG_Tesselate o o e e e 522
CG_Triangulate e e e e 525
CG_Visibility e 526
CG_YMonotonePartition v o e e 527
CG_StraightSkeletonPartition L e e 528
CG_3DBuffer e 529
CG_Rotate s 531
CG 2DRotate e e e e e 532
CG_3DRoOtate o o o e e e e 532
CG_RotateX s, 533
CG_RoOtateY e e 533
CG_RotateZ e 534
CG_Scale e 534
CG_3DScale e e e e oo 535
CG_3DScaleAroundCenter. v v v i e e e e e 535
CG_Translate e e 536
CG_3DTranslate e s 536
CG_Simplify 537
CG_3DAIphaWrapping o o o e e e e e e e e e 540

PostGIS 3.6.0rc2 Manual XVii

9 Topology 543
9.1 Topology TYPES o o e e e e e e e e e e e e 543
9.1.1 getfaceedges_Teturntype o ittt e e e e e e e e e e 543

9.1.2 TopoGeOmMELrY v v v v it e e e e e e e e e e e e e e e e e e 544

9.1.3 validatetopology_Teturntype o vttt e e e e e e e e e e e e 544

9.2 Topology Domains e e e e e e e e e e e e 545
9.2.1 TopoElement 545

9.2.2 TopoElementArray o i e e e e e e e e e e e e e e e e 545

9.3 Topology and TopoGeometry Management 546
9.3.1 AddTopoGeometryColumn i it et e e e e e 546

9.3.2 RenameTopoGeometryColumn 547
9.3.3 DropTopology e e e e e e e e e 547
9.3.4 RenameTopology L 548
9.3.5 DropTopoGeometryColumn it it e e e e e e e e 548
9.3.6 Populate_Topology_Layer 549
9.3.7 TopologySummary i e e e e e e e e e e e e e e e e 550
9.3.8 ValidateTopology e 551

9.3.9 ValidateTopologyRelation e e 553
9.3.10 ValidateTopologyPrecision 553
9.3.11 MakeTopologyPrecise o o e e e e e e e e 553
9.3.12 FindTopology o o o i e e e 554
9.3.13 FindLayer. e e e e e e e 555
9.3.14 TotalTopologySize o e e e 555
9.3.15 UpgradeTopology o i e e e e e e e 556

9.4 Topology Statistics Management L e 557
9.5 Topology CONSIUCIOS v v v o v e 557
9.5.1 CreateTopology e e 557

9.5.2 CopyTopology v i i e e e e e e e e e e 558
9.53 ST_InitTopoGeo o e e e 558
9.5.4 ST_CreateTopoGeo o v e e e e e e e e e e e e e 559
9.5.5 TopoGeo_AddPoint L e 560
9.5.6 TopoGeo_AddLineString e e e e e e 560
9.5.7 TopoGeo_AddPolygon 561

9.5.8 TopoGeo_LoadGeometry i v v i e e e e e e e e e e e e e e 561

9.6 Topology Editors e 562
9.6.1 ST _AddIsoNode s 502
9.6.2 ST_AddIsoEdge e 562
9.6.3 ST_AddEdgeNewFaces ittt 563

9.6.4 ST_AddEdgeModFace e 564

PostGIS 3.6.0rc2 Manual XViii

9.7

9.8

9.9

9.10

9.6.5 ST_RemEdgeNewFace 564
9.6.6 ST_RemEdgeModFace e e e 565
9.6.7 ST_ChangeEdgeGeom 566
9.6.8 ST_ModEdgeSplit 566
9.6.9 ST_ModEdgeHeal 567
9.6.10 ST_NewEdgeHeal e e e 568
9.6.11 ST MovelsoNode e 568
9.6.12 ST_NewEdgesSplit e e e 569
9.6.13 ST RemovelsoNode e 570
9.6.14 ST_RemovelsoEdge e e 570
TOpology ACCESSOTS v v v v i it e e e e e e e e e e e e e e e e e e 571
9.7.1 GetEdgeByPoint e e e 571
9.7.2 GetFaceByPoint 572
9.7.3 GetFaceContainingPoint L e 572
9.74 GetNodeByPoint 573
9.7.5 GetTopologyID o e e e e e e e 574
9.7.6 GetTopologySRID e 574
9.7.7 GetTopologyName o v it e e e e e e e e e e e e e e 575
9.7.8 ST_GetFaceEdges e 575
9.7.9 ST_GetFaceGeometry o vt it e e e e e e e e e e e e e e 576
9.7.10 GetRingEdges 577
9.7.11 GetNodeEdges e e e e e 577
Topology Processing e 578
9.8.1 Polygonize e e e 578
9.82 AddNode e 579
9.83 AddEdge 579
9.84 AddFace e 581
9.8.5 ST_Simplify 582
9.8.6 RemoveUnusedPrimitives L e 583
TopoGeometry CONSIIUCIOTS v v v v v v e 583
9.9.1 CreateTopoGeom 583
9.9.2 toTopoGeOmM o e e e e e e e e e e e 585
9.9.3 TopoElementArray_Agg e 586
9.9.4 TopoElement e e e e e e e e e 586
TopoGeometry Editors e 587
9.10.1 clearTopoGeom o e e e e e e e e e e e e e e e e .. 58T
9.10.2 TopoGeom_addElement e e 588
9.10.3 TopoGeom_remElement e e e e e e e e e 588

9.10.4 TopoGeom_addTopoGeom e 589

PostGIS 3.6.0rc2 Manual Xix
9.10.5 toTopoGeom e 589

9.11 TopoGeometry ACCESSOIS . . o o v v v v v e et e e e e e e e e e e e e e e e e e e 589
9.11.1 GetTopoGeomElementArray o v v i it ettt e e e e e e e e e 589
9.11.2 GetTopoGeomElements e 590
9.11.3 ST_SRID e s s 59
9.12 TopoGeometry OUIPULS v v vt e 591
9.12.1 AsGML 591
9.12.2 AsTopoJSON e 593

9.13 Topology Spatial Relationships e 595
9.13.1 Equals. o e e e e 595
9.13.2 INEISECES . . o v v v o o e e e e e e e e e e e e e e e e e e e 596

9.14 Importing and exporting Topologies e e 596
9.14.1 Using the Topology eXporter v vt ittt e e e e e 597
9.14.2 Using the Topology importer i ittt e e e 597

10 Raster Data Management, Queries, and Applications 598
10.1 Loading and Creating Rasters e e 598
10.1.1 Using raster2pgsql to load rasters 598
10.1.1.1 Example Usage i it e 598

10.1.1.2 raster2pgsql OptionS o o e e e e e e e e e 599

10.1.2 Creating rasters using PostGIS raster functionso oo, 600
10.1.3 Using "outdb" cloud rasters L e 601

10.2 Raster Catalogs o o o e e e 602
10.2.1 Raster Columns Catalog e e 602
10.2.2 Raster OVEIVIEWS o o v i i i e e e e e e e e e e e e e e e 603

10.3 Building Custom Applications with PostGIS Raster 604
10.3.1 PHP Example Outputting using ST_AsPNG in concert with other raster functions 604
10.3.2 ASP.NET C# Example Outputting using ST_AsPNG in concert with other raster functions 605
10.3.3 Java console app that outputs raster query as Image file L. 606
10.3.4 Use PLPython to dump outimages viaSQL 607
10.3.5 Outputting Rasters with PSQL e 608

11 Raster Reference 609
11.1 Raster Support Datatypes e e e e 610
I1.1.1 geomval o e e e e 610
11.1.2 addbandarg e 610
11.1.3 rastbandarg L e e e e 610
T114 1aster o o o e e e e e 611
T1.1.5 reclassarg o oo o e e 611

PostGIS 3.6.0rc2 Manual XX

11.1.6 summarystats ot e e e e e e e e e e e 612
T1L7 unionarg o oo v e e e e e e e e e e e e e e e e 612
11.2 Raster Management oot e e e e e e e e 613
11.2.1 AddRasterConstraints i e e e e e e e e e 613
11.2.2 DropRasterConstraintsttt e e e e e 615
11.2.3 AddOverviewConstraints vttt e e e e e e e 616
11.2.4 DropOverviewConstraints it ittt e e e e e e e 616
11.2.5 PostGIS_GDAL_Version v v i o e e e e e e s 617
11.2.6 PostGIS_Raster Lib_Build_Date s 617
11.2.7 PostGIS_Raster_Lib_Version e e 618
11.2.8 ST_GDALDIIVEIS o v it et e e e e e e e e e e e e 618
11.2.9 UpdateRasterSRID e e e e e 622
11.2.10 ST _CreateOVEIVIEW o v v o e e e e e e e e e e e s 623
11.3 Raster CONSrUCIOrS o v vttt e e e it e e e e e e e e e e e e e 624
11.3.1 ST_AddBand 624
11.3.2 ST _ASRASIEr o e e e e e 626
11.3.3 ST_AsRasterAgg o o e 628
11.3.4 ST Band e e 629
11.3.5 ST_MakeEmptyCoverage i e e e 630
11.3.6 ST_MakeEmptyRaster e e e e e e e e 632
1137 ST_Tile o o e e e e 633
11.3.8 ST _Retile o o e 635
11.3.9 ST _FromGDALRaASter e e e 635
11.4 RaSter ACCESSOIS ¢ o i ittt e e et e e e e e e e e e 636
11.4.1 ST _GeoReference 636
11.42 ST _Height e 637
11.43 ST_ISEmpty o e 638
1144 ST MemSize o o oo e e 638
11.45 ST MetaData e e 639
11.4.6 ST NumBands e e 640
11.47 ST_PixelHeight 640
11.4.8 ST _PixelWidth e 641
11.49 ST_ScaleX 642
11410 ST_ScaleY e 643
11.4.11 ST_RasterToWorldCoord e 644
11.4.12 ST_RasterToWorldCoordX e e e 644
11.4.13 ST_RasterToWorldCoordY e 645
11.4.14 ST_Rotation o o e e e e e e s 646

11415 ST_SkewX o o o e e 647

PostGIS 3.6.0rc2 Manual XXi

11416 ST_SKkewY o o 648
11.4.17ST_SRID e 648
11418 ST _Summary o o e e e e e e e 649
11.4.19 ST _UpperLeftX o e e 650
11.420 ST_UpperLeftY 650
11421 ST_Width oo e e 651
11.4.22 ST WorldToRasterCoord s 651
11.4.23 ST WorldToRasterCoordX o e e e 652
11.4.24 ST WorldToRasterCoordY e 653
11.5 Raster Band ACCeSSOIS o ot i e e e 653
11.5.1 ST BandMetaData e e 653
11.5.2 ST BandNoDataValue e 655
11.5.3 ST BandIsNoData e e 655
11.54 ST BandPath e 657
11.5.5 ST_BandFileSize 657
11.5.6 ST_BandFileTimestamp o v i it i e et e e e e e e e e e e e e 658
11.5.7 ST_BandPixelType o o o e e 658
11.5.8 ST_MinPossibleValue e e 659
11.59 ST_HasNoBand 660
11.6 Raster Pixel Accessors and Setters o e e e 660
11.6.1 ST_PixelAsPolygon 660
11.6.2 ST_PixelAsPolygons e e e e e e 661
11.6.3 ST_PixelAsPoint 662
11.6.4 ST _PixelAsPoints e e e 663
11.6.5 ST_PixelAsCentroid e 664
11.6.6 ST _PixelAsCentroids o 0 0 o e e e e e e 664
11.6.7 ST_Value 665
11.6.8 ST _NearestValue e e e 668
11.6.9 ST_SetZ 670
T1.6.I0ST_SetM o o e 671
11.6.11 ST_Neighborhood e 672
11.6.12ST_SetValue 674
11.6.13ST_SetValues 675
11.6.14 ST_DumpValues o e e e e e e e e e e e e e 683
11.6.15ST_PixelOfValue 684
11.7 Raster Editors o . e e e 686
11.7.1 ST_SetGeoReference e e 686
11.7.2 ST_SetRotation e e e e e e e e 687

11.7.3 ST_SetScale e e 688

PostGIS 3.6.0rc2 Manual Xxii

11.7.4 ST_SetSkew o o 689
11.7.5 ST_SetSRID e 690
11.7.6 ST_SetUpperLeft 690
11.7.7 ST_Resample e e e e 690
11.7.8 ST _Rescale e 692
11.79 ST_Reskew o o o e e 693
11.7.10 ST_SnapToGrid e 694
IT7A1ST_ReSIZE o o o e e e e e e e e 695
11.7.12 ST _Transform o s 697
11.8 Raster Band Editors e e 700
11.8.1 ST SetBandNoDataValue e 700
11.8.2 ST _SetBandIsNoData e e e 700
11.8.3 ST_SetBandPath e 702
11.8.4 ST SetBandIndex e e 703
11.9 Raster Band Statistics and Analytics e e e 705
11.9.1 ST _Count o e e e 705
1192 ST _CountAgg e e 705
11.9.3 ST_Histogram o vttt e e e e e e e e e e e e e e e e e e 706
1194 ST _Quantile e 708
11.9.5 ST_SummaryStats e e e e e e e e e e e e 710
11.9.6 ST_SummaryStatsSAgg e 712
11.9.7 ST _ValueCount e e s 713
11.10Raster Inputs o L L e e e e 715
11.10.1 ST_RastFromWKB e e 715
11.10.2 ST _RastFromHexWKB e 716
TLITRaSter OUtPULS v o e 717
11.11.1 ST_AsBinary/ST_AsWKB 717
11.11.2ST_AsHexWKB o L e 718
IT.11.3ST_ASGDALRASIEr o o o ot e e e e e e e 718
IL.1LAST_ASIPEG e 719
ITILSST_ASPNG o e 720
ILILO6ST_ASTIFF e e e e e e e e 721
11.12Raster Processing: Map Algebra e 722
TLA2IST_CHpP .« . o o o e e e e e e e e e e 722
11.122ST_ColorMap 725
11123 ST_Grayscale o e e e e e e e e e 728
11.12.4 ST _INtersection o o o e e e e e e e e e e 730
11.12.5 ST_MapAlgebra (callback function version) i 732

11.12.6 ST_MapAlgebra (eXpression Version)ot v v v i v i it i e i e 738

PostGIS 3.6.0rc2 Manual XXiii

11.12.7 ST_MapAlgebraEXpr o e 740
11.12.8 ST_MapAlgebraEXpr o e e e e e e 743
11.129 ST _MapAlgebraFct. e 747
11.12.1GT_MapAlgebraFct e e e e e 751
11.12.1 8T_MapAlgebraFctNgb e 755
1112 0BT _Reclass o o o o e e 757
11.12.13T ReclassExact e e 759
TTA2 0BT _UNION oo e e e e e e e e e e 760
11.13Built-in Map Algebra Callback Functions 762
11.13. 1 ST _Distinctdma o o o e e e e e e e e s 762
11.13.2ST_InvDistWeightdma 763
T1133ST_Max4ma o oot e e e e e e e e 763
11.13.4ST Meandma o o o e e e s 764
TL135ST_MIndma o o oo e e e e e 766
11.13.6 ST_MinDistdma o e e e 767
I1.13.7ST_Rangedma o o o e e e e e e e e e e e e e e e e 767
IT.13.8ST_StdDev4Ama e e e e e 768
T1.139 ST _Sumédma o o e e 769
11.14Raster Processing: DEM (Elevation) e e 770
TT.14 1 ST_ASPECt . . o o o e e e e e e e e e e e e e e e e e 770
11.142ST_HillShade 772
11.14.3 ST_Roughness e e e e e e e e e e e e 774
T1.144ST_SIope o o o e 774
TLIASST_TPI .« . o e e e e 776
IT.14.6 ST_TRI e e e e e 777
11.14.7 ST_InterpolateRaster o e e e e e e e e e 777
11.14.8 ST _Contour o o e e e e 778
11.15Raster Processing: Raster to Geometry i it it e e e e e e e e e 779
I1.15.1Box3D o 779
11.152ST_ConvexHull o e 780
11.15.3 ST_DumpAsPolygons e 781
11154 ST_Envelope o o o o e e e e e e e e e e e e e e e e 782
11.15.5 ST _MinConvexHull e 783
11.15.6 ST_Polygon o e e e 784
11.15.7 ST _IntersectionFractions o e e e e 785
T1.16Raster Operators o v v v o e 786
TL16.1 && . . o o o 786
L1162 &< . o 787

T116.3 &> . o e 787

PostGIS 3.6.0rc2 Manual XXiV

L1164 = . . e 788
T1.16.5 @ . . o o e e e 789
T116.6 ~= o e 789
L1167 ~ o e 790
11.17Raster and Raster Band Spatial Relationships e 790
IT17.1ST_Contains o v vt e e e e e e e e e 790
11.17.2ST_ContainsProperly e 791
T1.17.3 ST _COVEIS . . o v o o o o e e e e e e e e e e e e e s 792
11.17.4ST_CoveredBy 793
IT17.5 ST DIsjoint o oo o o o e e e e e e e e e 794
11.17.6 ST INErSECtS . . .« o o o o o o e e e e e e e e e e s 795
TLI7.7ST_Overlaps o o o e e e e e e e e 796
11.17.8 ST _Touches o e e e e e 797
11.17.9 ST_SameAlignment i e e e e e 797
11.17.16T_NotSameAlignmentReason e 798
ITA7.08T_Within 0 o e e e 799
ITA7.0BT_DWithin o oo o e 800
11.17ABT_DFullyWithin 0 0 0o e 801
TLA8Raster TIPS . . . o o o v e e e e e e e e 802
11.18. 1 0Out-DB Rasters o e e e e e 802
11.18.1.1 Directory containing many files e 802

11.18.1.2 Maximum Number of Open Files 802

11.18.1.2.1 Maximum number of open files for the entire system 803

11.18.1.2.2 Maximum number of open files per process 803

12 PostGIS Extras 806
12.1 Address Standardizer e e e 806
12.1.1 How the Parser Works o e 806
12.1.2 Address Standardizer Types o o e e e e 806
12.1.2.1 stdaddr e 806

12.1.3 Address Standardizer Tables e 807
12.1.3.1 rulestable 807

12.1.3.2 lextable e 810

12.1.3.3 gaztable e e e e 810

12.1.4 Address Standardizer Functions L. 811
12.1.4.1 debug_standardize_address 811

12.1.4.2 parse_address e e e e e e e e 812

12.1.4.3 standardize_address e e 813

12.2 Tiger Geocoder e e 815

PostGIS 3.6.0rc2 Manual XXV

12.2.1 Drop_Indexes_Generate_SCript o it e e e 815
12.2.2 Drop_Nation_Tables_Generate_Script e 816
12.2.3 Drop_State_Tables_Generate_Script e 817
1224 Geocode o e e e e 818
12.2.5 Geocode INtersection vt it e e e e 820
12.2.6 Get_Geocode_Setting e e e e 821
1227 Get_Tract e e e e e e 822
12.2.8 Install_Missing_Indexes i e e e e e e e 823
12.2.9 Loader_Generate_Census_SCript o o ittt 823
12.2.10 Loader_Generate_Script i e e e e e e e 825
12.2.11 Loader_Generate_Nation_Script e 827
12.2.12 Missing_Indexes_Generate_Script 828
12.2.13Normalize_ Address e e e 829
12.2.14 Pagc_Normalize_ Address o i 830
12215 Pprint_Addy 832
12.2.16 Reverse_Geocode s 833
12.2.17 Topology_Load_Tiger o i e e e 835
12.2.18 Set_Geocode_Setting e e e e e e 837

13 PostGIS Special Functions Index 838
13.1 PostGIS Aggregate Functions i e e e e e e e e 838
13.2 PostGIS Window Functions 839
13.3 PostGIS SQL-MM Compliant Functions e 839
13.4 PostGIS Geography Support Functions e e 843
13.5 PostGIS Raster Support Functions e 844
13.6 PostGIS Geometry / Geography / Raster Dump Functions 850
13.7 PostGIS Box Functions e 850
13.8 PostGIS Functions that support 3D e 851
13.9 PostGIS Curved Geometry Support Functions e 857
13.10PostGIS Polyhedral Surface Support Functions 860
13.11PostGIS Function Support Matrix e e e 863
13.12New, Enhanced or changed PostGIS Functions e 882
13.12.1 PostGIS Functions new or enhanced in3.6 882
13.12.2 PostGIS Functions new or enhanced in3.5 oo oo 883
13.12.3 PostGIS Functions new or enhanced in3.4 L 885
13.12.4 PostGIS Functions new or enhanced in3.3 886
13.12.5 PostGIS Functions new or enhanced in 3.2 L o L o 887
13.12.6 PostGIS Functions new or enhanced in 3.1 888

13.12.7 PostGIS Functions new or enhancedin 3.0 e 889

PostGIS 3.6.0rc2 Manual XXVi

13.12.8 PostGIS Functions new or enhanced in2.5 o 891

13.12.9 PostGIS Functions new or enhanced in 2.4 L oo 892
13.12.1PostGIS Functions new or enhanced in2.3 L oL 893
13.12.1PostGIS Functions new or enhancedin 2.2 L e 895
13.12.1PostGIS Functions new or enhanced in 2.1o 898
13.12.1P0stGIS Functions new or enhanced in 2.0 L 903
13.12.120stGIS Functions new or enhancedin 1.5 oo oo 913
13.12.1P0stGIS Functions new or enhanced in 1.4 914
13.12.1@®0stGIS Functions new or enhancedin 1.3 L L 915

14 Reporting Problems 916
14.1 Reporting Software Bugs e 916
14.2 Reporting Documentation Issues L e e e 916

A Appendix 917
Al PostGIS 3.6.0rc2 L e 917
A.1.1 Breaking Changes 917

A.1.2 Removed/Deprecate Signatures uu e e e e e e e 917

A.1.3 NewFeatures e e s 918

Abstract

PostGIS is an extension to the PostgreSQL object-relational database system which allows GIS (Geographic Information Sys-
tems) objects to be stored in the database. PostGIS includes support for GiST-based R-Tree spatial indexes, and functions for
analysis and processing of GIS objects.

Spatial PostgreSQL */ 0SGeo

Project

This is the manual for version 3.6.0rc2

This work is licensed under a Creative Commons Attribution-Share Alike 3.0 License. Feel free to use
this material any way you like, but we ask that you attribute credit to the PostGIS Project and wherever possible, a link back to
https://postgis.net.

https://www.postgresql.org/
http://creativecommons.org/licenses/by-sa/3.0/
https://postgis.net

PostGIS 3.6.0rc2 Manual 1/918

Chapter 1

Introduction

PostGIS is a spatial extension for the PostgreSQL relational database that was created by Refractions Research Inc, as a spatial
database technology research project. Refractions is a GIS and database consulting company in Victoria, British Columbia,
Canada, specializing in data integration and custom software development.

PostGIS is now a project of the OSGeo Foundation and is developed and funded by many FOSS4G developers and organizations
all over the world that gain great benefit from its functionality and versatility.

The PostGIS project development group plans on supporting and enhancing PostGIS to better support a range of important
GIS functionality in the areas of OGC and SQL/MM spatial standards, advanced topological constructs (coverages, surfaces,
networks), data source for desktop user interface tools for viewing and editing GIS data, and web-based access tools.

1.1 Project Steering Committee

The PostGIS Project Steering Committee (PSC) coordinates the general direction, release cycles, documentation, and outreach
efforts for the PostGIS project. In addition the PSC provides general user support, accepts and approves patches from the general
PostGIS community and votes on miscellaneous issues involving PostGIS such as developer commit access, new PSC members
or significant API changes.

Raiil Marin Rodriguez MVT support, Bug fixing, Performance and stability improvements, GitHub curation, alignment of
PostGIS with PostgreSQL releases

Regina Obe CI and website maintenance, Windows production and experimental builds, documentation, alignment of PostGIS
with PostgreSQL releases, X3D support, TIGER geocoder support, management functions.

Darafei Praliaskouski Index improvements, bug fixing and geometry/geography function improvements, SFCGAL, raster,
GitHub curation, and ci maintenance.

Paul Ramsey (Chair) Co-founder of PostGIS project. General bug fixing, geography support, geography and geometry index
support (2D, 3D, nD index and anything spatial index), underlying geometry internal structures, GEOS functionality inte-
gration and alignment with GEOS releases, alignment of PostGIS with PostgreSQL releases, loader/dumper, and Shapefile
GUI loader.

Sandro Santilli Bug fixes and maintenance, ci maintenance, git mirror management, management functions, integration of
new GEOS functionality and alignment with GEOS releases, topology support, and raster framework and low level API
functions.

1.2 Core Contributors Present

Nicklas Avén Distance function enhancements (including 3D distance and relationship functions) and additions, Tiny WKB
(TWKB) output format and general user support

PostGIS 3.6.0rc2 Manual 2/918

Loic Bartoletti SFCGAL enhancements and maintenance and ci support

Dan Baston Geometry clustering function additions, other geometry algorithm enhancements, GEOS enhancements and general
user support

Martin Davis GEOS enhancements and documentation
Bjorn Harrtell MapBox Vector Tile, GeoBuf, and Flatgeobuf functions. Gitea testing and GitLab experimentation.

Aliaksandr Kalenik Geometry Processing, PostgreSQL gist, general bug fixing

1.3 Core Contributors Past

Bborie Park Prior PSC Member. Raster development, integration with GDAL, raster loader, user support, general bug fixing,
testing on various OS (Slackware, Mac, Windows, and more)

Mark Cave-Ayland Prior PSC Member. Coordinated bug fixing and maintenance effort, spatial index selectivity and binding,
loader/dumper, and Shapefile GUI Loader, integration of new and new function enhancements.

Jorge Arévalo Raster development, GDAL driver support, loader

Olivier Courtin (Emeritus) Input/output XML (KML,GML)/GeoJSON functions, 3D support and bug fixes.

Chris Hodgson Prior PSC Member. General development, site and buildbot maintenance, OSGeo incubation management
Mateusz Loskot CMake support for PostGIS, built original raster loader in python and low level raster API functions

Kevin Neufeld Prior PSC Member. Documentation and documentation support tools, buildbot maintenance, advanced user
support on PostGIS newsgroup, and PostGIS maintenance function enhancements.

Dave Blasby The original developer/Co-founder of PostGIS. Dave wrote the server side objects, index bindings, and many of
the server side analytical functions.

Jeff Lounsbury Original development of the Shapefile loader/dumper.
Mark Leslie Ongoing maintenance and development of core functions. Enhanced curve support. Shapefile GUI loader.
Pierre Racine Architect of PostGIS raster implementation. Raster overall architecture, prototyping, programming support

David Zwarg Raster development (mostly map algebra analytic functions)

1.4 Other Contributors

PostGIS 3.6.0rc2 Manual

3/918

Individual Contributors

Alex Bodnaru
Alex Mayrhofer
Andrea Peri
Andreas Forg Tollefsen
Andreas Neumann
Andrew Gierth
Anne Ghisla
Antoine Bajolet
Arthur Lesuisse
Artur Zakirov

Ayo Adesugba
Barbara Phillipot
Ben Jubb
Bernhard Reiter
Bjorn Esser

Brian Hamlin
Bruce Rindahl
Bruno Wolff IIT
Bryce L. Nordgren
Carl Anderson
Charlie Savage
Chris Mayo
Christian Schroeder
Christoph Berg
Christoph Moench-Tegeder
Dane Springmeyer
Daniel Nylander
Dapeng Wang
Daryl Herzmann
Dave Fuhry

David Garnier
David Skea

David Techer
Denys Kovshun
Dian M Fay
Dmitry Vasilyev
Eduin Carrillo
Esteban Zimanyi
Eugene Antimirov
Even Rouault
Florian Weimer
Frank Warmerdam
George Silva

Gerald Fenoy
Gino Lucrezi

Greg Troxel
Guillaume Lelarge
Giuseppe Broccolo
Han Wang

Hans Lemuet
Haribabu Kommi
Havard Tveite
IIDA Tetsushi
Ingvild Nystuen
Jackie Leng

James Addison
James Marca

Jan Katins

Jan Tojnar

Jason Smith

Jeff Adams

Jelte Fennema

Jim Jones

Joe Conway

Jonne Savolainen
Jose Carlos Martinez Llari
Jorg Habenicht
Julien Rouhaud
Kashif Rasul
Klaus Foerster
Kris Jurka
Laurențiu Nicola
Laurenz Albe

Lars Roessiger
Leo Hsu

Loic Dachary
Luca S. Percich
Lucas C. Villa Real
Maksim Korotkov
Maria Arias de Reyna
Marc Ducobu
Mark Sondheim
Markus Schaber
Markus Wanner
Matt Amos

Matt Bretl

Matthias Bay
Maxime Guillaud
Maxime van Noppen
Maxime Schoemans
Megan Ma

Michael Fuhr

Mike Toews

Nathan Wagner
Nathaniel Clay
Nikita Shulga
Norman Vine
Patricia Tozer

Rafal Magda

Ralph Mason

Rémi Cura

Richard Greenwood
Robert Coup

Roger Crew

Ron Mayer

Sam Peters
Sebastiaan Couwenberg
Sergei Shoulbakov
Sergey Fedoseev
Shinichi Sugiyama
Shoaib Burq

Silvio Grosso
Stefan Corneliu Petrea
Steffen Macke
Stepan Kuzmin
Stephen Frost
Steven Ottens

Talha Rizwan
Teramoto Ikuhiro
Tom Glancy

Tom van Tilburg
Victor Collod
Vincent Bre
Vincent Mora
Vincent Picavet
Volf Tomas

Zuo Chenwei

Corporate Sponsors These are corporate entities that have contributed developer time, hosting, or direct monetary funding to
the PostGIS project. In alphabetical order:

e Aiven
e Arrival 3D

* Associazione Italiana per I'Informazione Geografica Libera (GFOSS.it)

* AusVet
e Avencia
* Azavea
* Boundless

* Cadcorp

https://aiven.io
https://arrival3d.com
http://gfoss.it
https://www.ausvet.com.au
https://www.azavea.com
https://www.boundlessgeo.com
https://www.cadcorp.com

PostGIS 3.6.0rc2 Manual 4/918

e Camptocamp
* Carto
* Crunchy Data
* City of Boston (DND)
* City of Helsinki
* Clever Elephant Solutions
* Cooperativa Alveo
* Deimos Space
* Faunalia
* Geographic Data BC
* HighGo
* Hunter Systems Group
» INIA-CSIC
e [Sciences, LLC
» Kontur
* Lidwala Consulting Engineers
* LISAsoft
* Logical Tracking & Tracing International AG
* Maponics
* Michigan Tech Research Institute
* Natural Resources Canada
» Norwegian Forest and Landscape Institute
* Norwegian Institute of Bioeconomy Research (NIBIO)
* OSGeo
* Oslandia
* Palantir Technologies
* Paragon Corporation
* Postgres Pro
* R3GIS
* Refractions Research
* Regione Toscana - SITA
» Safe Software
* Sirius Corporation plc
 Stadt Uster
» UC Davis Center for Vectorborne Diseases
* Université Laval
* U.S. Census Bureau
* U.S. Department of State (HIU)
* Zonar Systems
Crowd Funding Campaigns Crowd funding campaigns are campaigns we run to get badly wanted features funded that can
service a large number of people. Each campaign is specifically focused on a particular feature or set of features. Each
sponsor chips in a small fraction of the needed funding and with enough people/organizations contributing, we have the

funds to pay for the work that will help many. If you have an idea for a feature you think many others would be willing to
co-fund, please post to the PostGIS newsgroup your thoughts and together we can make it happen.

https://www.camptocamp.com
https://carto.com
https://www.crunchydata.com
https://www.boston.gov
https://www.hel.fi
https://blog.cleverelephant.ca
https://www.alveo.coop
http://www.elecnor-deimos.com
https://www.faunalia.eu
https://gov.bc.ca
https://www.highgo.com
https://pti-agriambio.csic.es
https://www.isciences.com
https://www.kontur.io
https://www.lidwala.com
https://www.jirotech.com
http://www.mtri.org
https://www.nrcan.gc.ca
https://www.nibio.no/
https://www.osgeo.org
https://oslandia.com
https://www.palantir.com
https://www.paragoncorporation.com
https://postgrespro.com
https://www.r3-gis.com
http://www.refractions.net
https://www.regione.toscana.it
https://www.safe.com
http://www.uster.ch
https://www.ucdavis.edu
https://www.ulaval.ca
https://www.census.gov
https://hiu.state.gov
https://www.zonarsystems.com
https://lists.osgeo.org/mailman/listinfo/postgis-users

PostGIS 3.6.0rc2 Manual 5/918

PostGIS 2.0.0 was the first release we tried this strategy. We used PledgeBank and we got two successful campaigns out
of it.

postgistopology - 10 plus sponsors each contributed $250 USD to build toTopoGeometry function and beef up topology
support in 2.0.0. It happened.

postgis6dwindows - 20 someodd sponsors each contributed $100 USD to pay for the work needed to work out PostGIS
64-bit issues on windows. It happened.
Important Support Libraries The GEOS geometry operations library

The GDAL Geospatial Data Abstraction Library used to power much of the raster functionality introduced in PostGIS 2.
In kind, improvements needed in GDAL to support PostGIS are contributed back to the GDAL project.

The PROIJ cartographic projection library

Last but not least, PostgreSQL, the giant that PostGIS stands on. Much of the speed and flexibility of PostGIS would not be
possible without the extensibility, great query planner, GIST index, and plethora of SQL features provided by PostgreSQL.

http://www.pledgebank.com
http://www.pledgebank.com/postgistopology
http://www.pledgebank.com/postgis64windows
https://libgeos.org
https://gdal.org
https://www.proj4.org
http://www.postgresql.org

PostGIS 3.6.0rc2 Manual 6/918

Chapter 2

PostGIS Installation

This chapter details the steps required to install PostGIS.

2.1 Short Version

To compile assuming you have all the dependencies in your search path:

tar -xvzf postgis-3.6.0rc2.tar.gz
cd postgis-3.6.0rc2

./configure

make

make install

Once PostGIS is installed, it needs to be enabled (Section 3.3) or upgraded (Section 3.4) in each individual database you want to
use it in.

2.2 Compiling and Install from Source

Note
Many OS systems now include pre-built packages for PostgreSQL/PostGIS. In many cases compilation is only neces-
sary if you want the most bleeding edge versions or you are a package maintainer.

Ncrld This section includes general compilation instructions, if you are compiling for Windows etc or another OS, you may
find additional more detailed help at PostGIS User contributed compile guides and PostGIS Dev Wiki.
Pre-Built Packages for various OS are listed in PostGIS Pre-built Packages
If you are a windows user, you can get stable builds via Stackbuilder or PostGIS Windows download site We also
have very bleeding-edge windows experimental builds that are built usually once or twice a week or whenever anything
exciting happens. You can use these to experiment with the in progress releases of PostGIS

The PostGIS module is an extension to the PostgreSQL backend server. As such, PostGIS 3.6.0rc2 requires full PostgreSQL
server headers access in order to compile. It can be built against PostgreSQL versions 12 - 18. Earlier versions of PostgreSQL
are not supported.

Refer to the PostgreSQL installation guides if you haven’t already installed PostgreSQL. https://www.postgresql.org .

https://trac.osgeo.org/postgis/wiki/UsersWikiInstall
http://trac.osgeo.org/postgis/wiki/DevWikiMain
https://trac.osgeo.org/postgis/wiki/UsersWikiPackages
https://postgis.net/windows_downloads
https://postgis.net/windows_downloads
https://www.postgresql.org

PostGIS 3.6.0rc2 Manual 7/918

Note
For GEOS functionality, when you install PostgreSQL you may need to explicitly link PostgreSQL against the standard

¢ C++ library:
Note

LDFLAGS=-1stdc++ ./configure [YOUR OPTIONS HERE]

This is a workaround for bogus C++ exceptions interaction with older development tools. If you experience weird
problems (backend unexpectedly closed or similar things) try this trick. This will require recompiling your PostgreSQL
from scratch, of course.

The following steps outline the configuration and compilation of the PostGIS source. They are written for Linux users and will
not work on Windows or Mac.

2.2.1 Getting the Source

Retrieve the PostGIS source archive from the downloads website https://download.osgeo.org/postgis/source/postgis-3.6.0rc2.tar.gz

wget https://download.osgeo.org/postgis/source/postgis-3.6.0rc2.tar.gz
tar -xvzf postgis-3.6.0rc2.tar.gz
cd postgis—-3.6.0rc2

This will create a directory called postgis—3.6.0rc2 in the current working directory.
Alternatively, checkout the source from the git repository https://git.osgeo.org/gitea/postgis/postgis/ .
git clone https://git.osgeo.org/gitea/postgis/postgis.git postgis

cd postgis

sh autogen.sh

Change into the newly created postgis directory to continue the installation.

./configure

2.2.2 Install Requirements

PostGIS has the following requirements for building and usage:

Required

* PostgreSQL 12 - 18. A complete installation of PostgreSQL (including server headers) is required. PostgreSQL is available
from https://www.postgresql.org 18 .

For a full PostgreSQL / PostGIS support matrix and PostGIS/GEOS support matrix refer to https://trac.osgeo.org/postgis/-
wiki/UsersWikiPostgreSQLPostGIS

* GNU C compiler (gcc). Some other ANSI C compilers can be used to compile PostGIS, but we find far fewer problems when
compiling with gcc.

* GNU Make (gmake or make). For many systems, GNU make is the default version of make. Check the version by invoking
make -—v. Other versions of make may not process the PostGIS Makefile properly.

* Proj reprojection library. Proj 6.1 or above is required. The Proj library is used to provide coordinate reprojection support
within PostGIS. Proj is available for download from https://proj.org/ .

* GEOS geometry library, version 3.8.0 or greater, but GEOS 3.14+ is required to take full advantage of all the new functions
and features. GEOS is available for download from https://libgeos.org .

https://download.osgeo.org/postgis/source/postgis-3.6.0rc2.tar.gz
https://download.osgeo.org/postgis/source/postgis-3.6.0rc2.tar.gz
https://git-scm.com/
https://git.osgeo.org/gitea/postgis/postgis/
https://www.postgresql.org
https://trac.osgeo.org/postgis/wiki/UsersWikiPostgreSQLPostGIS
https://trac.osgeo.org/postgis/wiki/UsersWikiPostgreSQLPostGIS
https://proj.org/
https://libgeos.org/

PostGIS 3.6.0rc2 Manual 8/918

LibXML2, version 2.5.x or higher. LibXML2 is currently used in some imports functions (ST_GeomFromGML and ST_GeomFromKI
LibXML2 is available for download from https://gitlab.gnome.org/GNOME/libxml2/-/releases.

JSON-C, version 0.9 or higher. JSON-C is currently used to import GeoJSON via the function ST_GeomFromGeolJson.
JSON-C is available for download from https://github.com/json-c/json-c/releases/.

GDAL, version 3+ is preferred. This is required for raster support. https://gdal.org/download.html.

If compiling with PostgreSQL+JIT, LLVM version >=6 is required https://trac.osgeo.org/postgis/ticket/4125.

Optional

GDAL (pseudo optional) only if you don’t want raster you can leave it out. Also make sure to enable the drivers you want to
use as described in Section 3.2.

GTK (requires GTK+2.0, 2.84) to compile the shp2pgsql-gui shape file loader. http://www.gtk.org/ .

SFCGAL, 1.4.1 or higher is required and 2.1+ is needed to be able to use all functionality. SFCGAL can be used to provide
additional 2D and 3D advanced analysis functions to PostGIS cf Chapter 8. And also allow to use SFCGAL rather than
GEOS for some 2D functions provided by both backends (like ST_Intersection or ST_Area, for instance). A PostgreSQL
configuration variable postgis.backend allow end user to control which backend he want to use if SFCGAL is installed
(GEOS by default). Nota: SFCGAL 1.2 require at least CGAL 4.3 and Boost 1.54 (cf: https://sfcgal.org) https://gitlab.com/-
stcgal/SFCGAL/.

In order to build the Section 12.1 you will also need PCRE 1 or 2 http://www.pcre.org (which generally is already installed on
nix systems). Section 12.1 will automatically be built if it detects a PCRE library, or you passin a valid ——with-pcre-dir=/path
during configure.

To enable ST_AsMVT protobuf-c library 1.1.0 or higher (for usage) and the protoc-c compiler (for building) are required.
Also, pkg-config is required to verify the correct minimum version of protobuf-c. See protobuf-c. By default, Postgis will use
Wagyu to validate MVT polygons faster which requires a c++11 compiler. It will use CXXFLAGS and the same compiler as
the PostgreSQL installation. To disable this and use GEOS instead use the ——without-wagyu during the configure step.

CUnit (CUnit). This is needed for regression testing. http://cunit.sourceforge.net/
DocBook (xs1tproc) is required for building the documentation. Docbook is available from http://www.docbook.org/ .

DBLatex (dblatex) is required for building the documentation in PDF format. DBLatex is available from http://dblatex.sourceforge.

ImageMagick (convert) is required to generate the images used in the documentation. ImageMagick is available from
http://www.imagemagick.org/ .

2.2.3 Build configuration

As with most linux installations, the first step is to generate the Makefile that will be used to build the source code. This is done
by running the shell script

Jconfigure

With no additional parameters, this command will attempt to automatically locate the required components and libraries needed
to build the PostGIS source code on your system. Although this is the most common usage of ./configure, the script accepts
several parameters for those who have the required libraries and programs in non-standard locations.

The following list shows only the most commonly used parameters. For a complete list, use the --help or --help=short parame-
ters.

——with-library-minor-version Starting with PostGIS 3.0, the library files generated by default will no longer have

the minor version as part of the file name. This means all PostGIS 3 libs will end in postgis—3. This was done to make
pg_upgrade easier, with downside that you can only install one version PostGIS 3 series in your server. To get the old
behavior of file including the minor version: e.g. postgis—3. 0 add this switch to your configure statement.

https://gitlab.gnome.org/GNOME/libxml2/-/releases
https://github.com/json-c/json-c/releases
https://gdal.org/download.html
https://trac.osgeo.org/postgis/ticket/4125
http://www.gtk.org/
https://sfcgal.org
https://gitlab.com/sfcgal/SFCGAL/
https://gitlab.com/sfcgal/SFCGAL/
http://www.pcre.org
https://github.com/protobuf-c/protobuf-c
http://cunit.sourceforge.net/
http://www.docbook.org/
http://dblatex.sourceforge.net/
http://dblatex.sourceforge.net/
http://www.imagemagick.org/

PostGIS 3.6.0rc2 Manual 9/918

——prefix=PREFIX This is the location the PostGIS loader executables and shared libs will be installed. By default, this
location is the same as the detected PostgreSQL installation.

« 1 Caution
This parameter is currently broken, as the package will only install into the PostgreSQL installation directory. Visit
http://trac.osgeo.org/postgis/ticket/635 to track this bug.

——with-pgconfig=FILE PostgreSQL provides a utility called pg_config to enable extensions like PostGIS to locate the
PostgreSQL installation directory. Use this parameter (--with-pgconfig=/path/to/pg_config) to manually specify a partic-
ular PostgreSQL installation that PostGIS will build against.

——with—-gdalconfig=FILE GDAL, a required library, provides functionality needed for raster support gdal-config to en-
able software installations to locate the GDAL installation directory. Use this parameter (--with-gdalconfig=/path/to/gdal-
config) to manually specify a particular GDAL installation that PostGIS will build against.

—-with-geosconfig=FILE GEOS, a required geometry library, provides a utility called geos-config to enable software
installations to locate the GEOS installation directory. Use this parameter (--with-geosconfig=/path/to/geos-config) to
manually specify a particular GEOS installation that PostGIS will build against.

——with-xml2config=FILE LibXML is the library required for doing GeomFromKML/GML processes. It normally is
found if you have libxml installed, but if not or you want a specific version used, you’ll need to point PostGIS at a specific
xml2-config confi file to enable software installations to locate the LibXML installation directory. Use this parameter
(>--with-xml2config=/path/to/xml2-config) to manually specify a particular LibXML installation that PostGIS will build
against.

—-with-projdir=DIR Projis areprojection library required by PostGIS. Use this parameter (--with-projdir=/path/to/projdir)
to manually specify a particular Proj installation directory that PostGIS will build against.

—-with-libiconv=DIR Directory where iconv is installed.

—-with-jsondir=DIR JSON-C is an MIT-licensed JSON library required by PostGIS ST_GeomFromJSON support. Use
this parameter (--with-jsondir=/path/to/jsondir) to manually specify a particular JSON-C installation directory that Post-
GIS will build against.

——with-pcredir=DIR PCRE is an BSD-licensed Perl Compatible Regular Expression library required by address_standardizer
extension. Use this parameter (--with-pcredir=/path/to/pcredir) to manually specify a particular PCRE installation di-
rectory that PostGIS will build against.

——with—-gui Compile the data import GUI (requires GTK+2.0). This will create shp2pgsql-gui graphical interface to shp2pgsql.
—-without-raster Compile without raster support.

—--without-tiger Disables tiger geocoder support.

—-without-topology Compile without topology support.

—-with—-gettext=no By default PostGIS will try to detect gettext support and compile with it, however if you run into
incompatibility issues that cause breakage of loader, you can disable it entirely with this command. Refer to ticket
http://trac.osgeo.org/postgis/ticket/748 for an example issue solved by configuring with this. NOTE: that you aren’t missing
much by turning this off. This is used for international help/label support for the GUI loader which is not yet documented
and still experimental.

——with-sfcgal=PATH By default PostGIS will not install with sfcgal support without this switch. PATH is an optional
argument that allows to specify an alternate PATH to sfcgal-config.

—-without-phony-revision Disable updating postgis_revision.h to match current HEAD of the git repository.

http://trac.osgeo.org/postgis/ticket/635
http://oss.metaparadigm.com/json-c/
http://www.pcre.org/
http://trac.osgeo.org/postgis/ticket/748

PostGIS 3.6.0rc2 Manual 10/918

Note
. If you obtained PostGIS from the code repository , the first step is really to run the script
Note! Jautogen.sh
This script will generate the configure script that in turn is used to customize the installation of PostGIS.
If you instead obtained PostGIS as a tarball, running ./autogen.sh is not necessary as configure has already been
generated.

2.2.4 Building

Once the Makefile has been generated, building PostGIS is as simple as running
make
The last line of the output should be "PostGIS was built successfully. Ready to install.”

As of PostGIS v1.4.0, all the functions have comments generated from the documentation. If you wish to install these comments
into your spatial databases later, run the command which requires docbook. The postgis_comments.sql and other package
comments files raster_comments.sql, topology_comments.sql are also packaged in the tar.gz distribution in the doc folder so no
need to make comments if installing from the tar ball. Comments are also included as part of the CREATE EXTENSION install.

make comments

Introduced in PostGIS 2.0. This generates html cheat sheets suitable for quick reference or for student handouts. This requires
xsltproc to build and will generate 4 files in doc folder topology_cheatsheet .html, tiger_geocoder_cheatsheet.
html, raster_cheatsheet.html, postgis_cheatsheet.html

You can download some pre-built ones available in html and pdf from PostGIS / PostgreSQL Study Guides

make cheatsheets

2.2.5 Building PostGIS Extensions and Deploying them

The PostGIS extensions are built and installed automatically if you are using PostgreSQL 9.1+.

If you are building from source repository, you need to build the function descriptions first. These get built if you have docbook
installed. You can also manually build with the statement:

make comments

Building the comments is not necessary if you are building from a release tar ball since these are packaged pre-built with the tar
ball already.

The extensions should automatically build as part of the make install process. You can if needed build from the extensions folders
or copy files if you need them on a different server.

cd extensions

cd postgis

make clean

make

export PGUSER=postgres #overwrite psqgl variables
make check #to test before install

make install

to test extensions

make check RUNTESTFLAGS=--extension

N;ld Note

make check uses psqlto run tests and as such can use psql environment variables. Common ones useful to override
are PGUSER,PGPORT, and PGHOST. Refer to psqgl environment variables

https://trac.osgeo.org/postgis/wiki/CodeRepository
http://www.postgis.us/study_guides
https://www.postgresql.org/docs/current/libpq-envars.html

PostGIS 3.6.0rc2 Manual 11/918

The extension files will always be the same for the same version of PostGIS and PostgreSQL regardless of OS, so it is fine to
copy over the extension files from one OS to another as long as you have the PostGIS binaries already installed on your servers.

If you want to install the extensions manually on a separate server different from your development, You need to copy the
following files from the extensions folder into the PostgreSQL / share / extension folder of your PostgreSQL install
as well as the needed binaries for regular PostGIS if you don’t have them already on the server.

* These are the control files that denote information such as the version of the extension to install if not specified. postgis.
control, postgis_topology.control.

 All the files in the /sql folder of each extension. Note that these need to be copied to the root of the PostgreSQL share/extension
folder extensions/postgis/sqgl/*.sql, extensions/postgis_topology/sgl/*.sqgl

Once you do that, you should see postgis, postgis_topology as available extensions in PgAdmin -> extensions.
If you are using psql, you can verify that the extensions are installed by running this query:

SELECT name, default_version,installed_version
FROM pg_available_extensions WHERE name LIKE 'postgis%' or name LIKE 'address$%';

name | default_version | installed_version
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, T
address_standardizer | 3.6.0rc2 | 3.6.0rc2
address_standardizer_data_us | 3.6.0rc2 | 3.6.0rc2
postgis | 3.6.0rc2 | 3.6.0rc2
postgis_raster | 3.6.0rc2 | 3.6.0rc2
postgis_sfcgal | 3.6.0rc2 |
postgis_tiger_geocoder | 3.6.0rc2 | 3.6.0rc2
postgis_topology | 3.6.0rc2 |

(6 rows)

If you have the extension installed in the database you are querying, you’ll see mention in the installed_version column.
If you get no records back, it means you don’t have postgis extensions installed on the server at all. PgAdmin III 1.14+ will also
provide this information in the extensions section of the database browser tree and will even allow upgrade or uninstall by
right-clicking.

If you have the extensions available, you can install postgis extension in your database of choice by either using pgAdmin
extension interface or running these sql commands:

CREATE EXTENSION postgis;

CREATE EXTENSION postgis_raster;

CREATE EXTENSION postgis_sfcgal;

CREATE EXTENSION fuzzystrmatch; —--needed for postgis_tiger_geocoder
—-—-optional used by postgis_tiger_geocoder, or can be used standalone
CREATE EXTENSION address_standardizer;

CREATE EXTENSION address_standardizer_data_us;

CREATE EXTENSION postgis_tiger_geocoder;

CREATE EXTENSION postgis_topology;

In psql you can use to see what versions you have installed and also what schema they are installed.

\connect mygisdb
\x
\dx postgis=

List of installed extensions

—[RECORD 1 J————m o
Name | postgis
Version | 3.6.0rc2
Schema | public
\

Description PostGIS geometry, geography, and raster spat..

PostGIS 3.6.0rc2 Manual 12/918

= RECORD 2] oo e e o e e e e e e e e e e e e e e e e e e e S e e e e e

Name | postgis_raster

Version | 3.0.0dev

Schema | public

Description | PostGIS raster types and functions

S RE ORISR

Name | postgis_tiger_geocoder

Version | 3.6.0rc2

Schema | tiger

Description | PostGIS tiger geocoder and reverse geocoder

=[REEORD A [o————————————— e e e

Name | postgis_topology

Version | 3.6.0rc2

Schema | topology

Description | PostGIS topology spatial types and functions
Warning

Extension tables spatial_ref_sys, layer, topology can not be explicitly backed up. They can only be backed
up when the respective postgis or postgis_topology extension is backed up, which only seems to happen

0 when you backup the whole database. As of PostGIS 2.0.1, only srid records not packaged with PostGIS are backed
up when the database is backed up so don’t go around changing srids we package and expect your changes to be
there. Put in a ticket if you find an issue. The structures of extension tables are never backed up since they are created
with CREATE EXTENSION and assumed to be the same for a given version of an extension. These behaviors are
built into the current PostgreSQL extension model, so nothing we can do about it.

If you installed 3.6.0rc2, without using our wonderful extension system, you can change it to be extension based by running
the below commands to package the functions in their respective extension. Installing using “unpackaged™ was removed in
PostgreSQL 13, so you are advised to switch to an extension build before upgrading to PostgreSQL 13.

CREATE EXTENSION postgis FROM unpackaged;

CREATE EXTENSION postgis_raster FROM unpackaged;

CREATE EXTENSION postgis_topology FROM unpackaged;
CREATE EXTENSION postgis_tiger_geocoder FROM unpackaged;

2.2.6 Testing

If you wish to test the PostGIS build, run
make check

The above command will run through various checks and regression tests using the generated library against an actual Post-
greSQL database.

) Note
Noteh
If you configured PostGIS using non-standard PostgreSQL, GEOS, or Proj locations, you may need to add their library

locations to the LD_LIBRARY_PATH environment variable.

Caution

' 1 % Currently, the make check relies on the PATH and PGPORT environment variables when performing the checks - it
does not use the PostgreSQL version that may have been specified using the configuration parameter --with-pgconfig.
So make sure to modify your PATH to match the detected PostgreSQL installation during configuration or be prepared
to deal with the impending headaches.

PostGIS 3.6.0rc2 Manual 13/918

If successful, make check will produce the output of almost 500 tests. The results will look similar to the following (numerous
lines omitted below):

CUnit - A unit testing framework for C - Version 2.1-3
http://cunit.sourceforge.net/

Run Summary: Type Total Ran Passed Failed Inactive
suites 44 44 n/a 0 0
tests 300 300 300 0 0
asserts 4215 4215 4215 0 n/a
Elapsed time = 0.229 seconds

Running tests

Run tests: 134
Failed: O

-— if you build with SFCGAL

Running tests

Run tests: 13
Failed: 0

—-— if you built with raster support

Run Summary: Type Total Ran Passed Failed Inactive
suites 12 12 n/a 0 0
tests 65 65 65 0 0

asserts 45896 45896 45896 0 n/a

PostGIS 3.6.0rc2 Manual 14/918

Running tests

Run tests: 101
Failed: 0

—— topology regress

Running tests

Run tests: 51
Failed: 0

-— if you built --with-gui, you should see this too

CUnit - A unit testing framework for C - Version 2.1-2
http://cunit.sourceforge.net/

Run Summary: Type Total Ran Passed Failed Inactive
suites 2 2 n/a 0 0

tests 4 4 4 0 0

asserts 4 4 4 0 n/a

The postgis_tiger_geocoder and address_standardizer extensions, currently only support the standard Post-
greSQL installcheck. To test these use the below. Note: the make install is not necessary if you already did make install at root
of PostGIS code folder.

For address_standardizer:

cd extensions/address_standardizer
make install
make installcheck

Output should look like:

=== dropping database "contrib_regression"
DROP DATABASE

=== creating database "contrib_regression" ==
CREATE DATABASE

ALTER DATABASE

=== == running regression test queries ==

test test-init-extensions ... ok
test test-parseaddress ... ok
test test-standardize_address_1 ... ok

test test-standardize_address_2 ... ok

PostGIS 3.6.0rc2 Manual 15/918

All 4 tests passed.

For tiger geocoder, make sure you have postgis and fuzzystrmatch extensions available in your PostgreSQL instance. The
address_standardizer tests will also kick in if you built postgis with address_standardizer support:

cd extensions/postgis_tiger_geocoder
make install
make installcheck

output should look like:

=== == dropping database "contrib_regression" ==============
DROP DATABASE

creating database "contrib_regression"
CREATE DATABASE
ALTER DATABASE

installing fuzzystrmatch
CREATE EXTENSION

=== installing postgis ==

CREATE EXTENSION

—————————————— installing postgis_tiger_geocoder ==============
CREATE EXTENSION

installing address_standardizer
CREATE EXTENSION

=== running regression test queries ==
test test—-normalize_address ... Ok

test test-pagc_normalize_address ... ok

All 2 tests passed.

2.2.7 Installation

To install PostGIS, type
make install

This will copy the PostGIS installation files into their appropriate subdirectory specified by the --prefix configuration parameter.
In particular:

* The loader and dumper binaries are installed in [prefix] /bin.

e The SQL files, such as postgis.sqgl, are installed in [prefix]/share/contrib.

¢ The PostGIS libraries are installed in [prefix]/lib.

If you previously ran the make comments command to generate the postgis_comments.sql, raster_comments.sgl
file, install the sql file by running

make comments-install

N;‘“’! Note

postgis_comments.sqgl, raster_comments.sql, topology_comments.sqgl was separated from the
typical build and installation targets since with it comes the extra dependency of xsltproc.

PostGIS 3.6.0rc2 Manual 16/918

2.3 Installing and Using the address standardizer

The address_standardizer extension used to be a separate package that required separate download. From PostGIS 2.2
on, it is now bundled in. For more information about the address_standardize, what it does, and how to configure it for your
needs, refer to Section 12.1.

This standardizer can be used in conjunction with the PostGIS packaged tiger geocoder extension as a replacement for the
Normalize_Address discussed. To use as replacement refer to Section 2.4.2. You can also use it as a building block for your own
geocoder or use it to standardize your addresses for easier compare of addresses.

The address standardizer relies on PCRE which is usually already installed on many Nix systems, but you can download the
latest at: http://www.pcre.org. If during Section 2.2.3, PCRE is found, then the address standardizer extension will automatically
be built. If you have a custom pcre install you want to use instead, pass to configure ——with-pcredir=/path/to/pcre
where /path/to/pcre is the root folder for your pcre include and lib directories.

For Windows users, the PostGIS 2.1+ bundle is packaged with the address_standardizer already so no need to compile and can
move straight to CREATE EXTENSION step.

Once you have installed, you can connect to your database and run the SQL.:

CREATE EXTENSION address_standardizer;

The following test requires no rules, gaz, or lex tables

SELECT num, street, city, state, zip
FROM parse_address ('l Devonshire Place PH301, Boston, MA 02109');

Output should be
num | street | city | state | zip
————— e
1 | Devonshire Place PH301 | Boston | MA | 02109

2.4 Installing, Upgrading Tiger Geocoder, and loading data

Extras like Tiger geocoder may not be packaged in your PostGIS distribution. If you are missing the tiger geocoder extension or
want a newer version than what your install comes with, then use the share/extension/postgis_tiger_geocoder.x
files from the packages in Windows Unreleased Versions section for your version of PostgreSQL. Although these packages are for
windows, the postgis_tiger_geocoder extension files will work on any OS since the extension is an SQL/plpgsql only extension.

2.4.1 Tiger Geocoder Enabling your PostGIS database

1. These directions assume your PostgreSQL installation already has the postgis_tiger_geocoder extension installed.

2. Connect to your database via psql or pgAdmin or some other tool and run the following SQL commands. Note that if you
are installing in a database that already has postgis, you don’t need to do the first step. If you have fuzzystrmatch
extension already installed, you don’t need to do the second step either.

CREATE EXTENSION postgis;

CREATE EXTENSION fuzzystrmatch;

CREATE EXTENSION postgis_tiger_geocoder;

——this one is optional if you want to use the rules based standardizer (<
pagc_normalize_address)

CREATE EXTENSION address_standardizer;

If you already have postgis_tiger_geocoder extension installed, and just want to update to the latest run:

ALTER EXTENSION postgis UPDATE;
ALTER EXTENSION postgis_tiger_geocoder UPDATE;

http://www.pcre.org
http://postgis.net/windows_downloads/

PostGIS 3.6.0rc2 Manual 17 /918

10.

If you made custom entries or changes to tiger.loader_platformand tiger.loader_variables you may
need to update these.

. To confirm your install is working correctly, run this sql in your database:

SELECT na.address, na.streetname,na.streettypeabbrev, na.zip
FROM normalize_address ('l Devonshire Place, Boston, MA 02109') AS naj;

Which should output

address | streetname | streettypeabbrev | zip

Create a new record in tiger.loader_platform table with the paths of your executables and server.

So for example to create a profile called debbie that follows sh convention. You would do:

INSERT INTO tiger.loader_platform(os, declare_sect, pgbin, wget, unzip_command, psqgl, <+
path_sep,
loader, environ_set_command, county_process_command)
SELECT 'debbie', declare_sect, pgbin, wget, unzip_command, psql, path_sep,
loader, environ_set_command, county_process_command
FROM tiger.loader_platform
WHERE os = 'sh';

And then edit the paths in the declare_sect column to those that fit Debbie’s pg, unzip,shp2pgsql, psql, etc path locations.

If you don’t edit this loader_platform table, it will just contain common case locations of items and you’ll have to
edit the generated script after the script is generated.

As of PostGIS 2.4.1 the Zip code-5 digit tabulation area zctab load step was revised to load current zcta5 data and is part
of the Loader_Generate_Nation_Script when enabled. It is turned off by default because it takes quite a bit of time to load
(20 to 60 minutes), takes up quite a bit of disk space, and is not used that often.

To enable it, do the following:

UPDATE tiger.loader_lookuptables SET load = true WHERE table_name = 'zctab20';

If present the Geocode function can use it if a boundary filter is added to limit to just zips in that boundary. The Re-
verse_Geocode function uses it if the returned address is missing a zip, which often happens with highway reverse geocod-
ing.

Create a folder called gisdata on root of server or your local pc if you have a fast network connection to the server.
This folder is where the tiger files will be downloaded to and processed. If you are not happy with having the folder on
the root of the server, or simply want to change to a different folder for staging, then edit the field staging_fold in the
tiger.loader_variables table.

Create a folder called temp in the gisdata folder or wherever you designated the staging_fold to be. This will be
the folder where the loader extracts the downloaded tiger data.

Then run the Loader_Generate_Nation_Script SQL function make sure to use the name of your custom profile and copy
the script to a .sh or .bat file. So for example to build the nation load:

psgl —c "SELECT Loader_Generate_Nation_Script ('debbie')" -d geocoder -tA > /gisdata/ ¢«
nation_script_load.sh

Run the generated nation load commandline scripts.

cd /gisdata
sh nation_script_load.sh

After you are done running the nation script, you should have three tables in your tiger_data schema and they should
be filled with data. Confirm you do by doing the following queries from psql or pgAdmin

PostGIS 3.6.0rc2 Manual 18/918

11.

12.

13.

14.

15.

SELECT count (*) FROM tiger_data.county_all;

This will only have data if you marked zcta5 to be loaded

SELECT count (x) FROM tiger_data.zctab5_all;

By default the tables corresponding to bg, tract, tabblock20 are not loaded. These tables are not used by the
geocoder but are used by folks for population statistics. If you wish to load them as part of your state loads, run the
following statement to enable them.

UPDATE tiger.loader_lookuptables SET load = true WHERE load = false AND lookup_name IN ¢
("tract', 'bg', 'tabblock20'");

Alternatively you can load just these tables after loading state data using the Loader_Generate_Census_Script

For each state you want to load data for, generate a state script Loader_Generate_Script.

Warning
DO NOT Generate the state script until you have already loaded the nation data, because the state script utilizes
county list loaded by nation script.

psgl —-c "SELECT Loader_Generate_Script (ARRAY['MA'], 'debbie')" -d geocoder —-tA > / <«
gisdata/ma_load.sh

Run the generated commandline scripts.

cd /gisdata
sh ma_load.sh

After you are done loading all data or at a stopping point, it’s a good idea to analyze all the tiger tables to update the stats
(include inherited stats)

SELECT install_missing_indexes();

vacuum (analyze, verbose) tiger.addr;
vacuum (analyze, verbose) tiger.edges;
vacuum (analyze, verbose) tiger.faces;
vacuum (analyze, verbose) tiger.featnames;
vacuum (analyze, verbose) tiger.place;
vacuum (analyze, verbose) tiger.cousub;

PostGIS 3.6.0rc2 Manual 19/918

vacuum (analyze, verbose) tiger.county;

vacuum (analyze, verbose) tiger.state;

vacuum (analyze, verbose) tiger.zctab;

vacuum (analyze, verbose) tiger.zip_lookup_base;
vacuum (analyze, verbose) tiger.zip_state;
vacuum (analyze, verbose) tiger.zip_state_loc;

2.4.2 Using Address Standardizer Extension with Tiger geocoder

One of the many complaints of folks is the address normalizer function Normalize_Address function that normalizes an address
for prepping before geocoding. The normalizer is far from perfect and trying to patch its imperfectness takes a vast amount of
resources. As such we have integrated with another project that has a much better address standardizer engine. To use this new
address_standardizer, you compile the extension as described in Section 2.3 and install as an extension in your database.

Once you install this extension in the same database as you have installed postgis_tiger_geocoder, then the Pagc_Normalize Ac
can be used instead of Normalize_Address. This extension is tiger agnostic, so can be used with other data sources such

as international addresses. The tiger geocoder extension does come packaged with its own custom versions of rules table (
tiger.pagc_rules), gaz table (tiger.pagc_gaz), and lex table (tiger.pagc_lex). These you can add and update

to improve your standardizing experience for your own needs.

2.4.3 Required tools for tiger data loading

The load process downloads data from the census website for the respective nation files, states requested, extracts the files,
and then loads each state into its own separate set of state tables. Each state table inherits from the tables defined in tiger
schema so that its sufficient to just query those tables to access all the data and drop a set of state tables at any time using the
Drop_State_Tables_Generate_Script if you need to reload a state or just don’t need a state anymore.

In order to be able to load data you’ll need the following tools:

* A tool to unzip the zip files from census website.
For Unix like systems: unzip executable which is usually already installed on most Unix like platforms.

For Windows, 7-zip which is a free compress/uncompress tool you can download from http://www.7-zip.org/
* shp2pgsqgl commandline which is installed by default when you install PostGIS.

* wget which is a web grabber tool usually installed on most Unix/Linux systems.

If you are on windows, you can get pre-compiled binaries from http://gnuwin32.sourceforge.net/packages/wget.htm

If you are upgrading from tiger_2010, you’ll need to first generate and run Drop_Nation_Tables_Generate_Script. Before you
load any state data, you need to load the nation wide data which you do with Loader_Generate_Nation_Script. Which will
generate a loader script for you. Loader_Generate_Nation_Script is a one-time step that should be done for upgrading (from a
prior year tiger census data) and for new installs.

To load state data refer to Loader_Generate_Script to generate a data load script for your platform for the states you desire. Note
that you can install these piecemeal. You don’t have to load all the states you want all at once. You can load them as you need
them.

After the states you desire have been loaded, make sure to run the:

SELECT install missing_indexes () ;

as described in Install_Missing_Indexes.

To test that things are working as they should, try to run a geocode on an address in your state using Geocode

http://www.7-zip.org/
http://gnuwin32.sourceforge.net/packages/wget.htm

PostGIS 3.6.0rc2 Manual 20/918

2.4.4 Upgrading your Tiger Geocoder Install and Data

First upgrade your postgis_tiger_geocoder extension as follows:

ALTER EXTENSION postgis_tiger_geocoder UPDATE;

Next drop all nation tables and load up the new ones. Generate a drop script with this SQL statement as detailed in Drop_Nation_Tables_(

SELECT drop_nation_tables_generate_script () ;

Run the generated drop SQL statements.
Generate a nation load script with this SELECT statement as detailed in Loader_Generate_Nation_Script
For windows

SELECT loader_generate_nation_script ('windows') ;

For unix/linux

SELECT loader_generate_nation_script ('sh');

Refer to Section 2.4.1 for instructions on how to run the generate script. This only needs to be done once.

N:"R’! Note

You can have a mix of different year state tables and can upgrade each state separately. Before you upgrade a state
you first need to drop the prior year state tables for that state using Drop_State Tables_Generate_Script.

2.5 Common Problems during installation
There are several things to check when your installation or upgrade doesn’t go as you expected.

1. Check that you have installed PostgreSQL 12 or newer, and that you are compiling against the same version of the Post-
greSQL source as the version of PostgreSQL that is running. Mix-ups can occur when your (Linux) distribution has already
installed PostgreSQL, or you have otherwise installed PostgreSQL before and forgotten about it. PostGIS will only work
with PostgreSQL 12 or newer, and strange, unexpected error messages will result if you use an older version. To check the
version of PostgreSQL which is running, connect to the database using psql and run this query:

SELECT version();

If you are running an RPM based distribution, you can check for the existence of pre-installed packages using the rpm
command as follows: rpm -qa | grep postgresql

2. If your upgrade fails, make sure you are restoring into a database that already has PostGIS installed.
SELECT postgis_full_version();
Also check that configure has correctly detected the location and version of PostgreSQL, the Proj library and the GEOS library.

1. The output from configure is used to generate the postgis_config.h file. Check that the POSTGIS_PGSQL_VERSION,
POSTGIS_PROJ_VERSION and POSTGIS_GEOS_VERSION variables have been set correctly.

PostGIS 3.6.0rc2 Manual 21/918

Chapter 3

PostGIS Administration

3.1 Performance Tuning

Tuning for PostGIS performance is much like tuning for any PostgreSQL workload. The only additional consideration is that
geometries and rasters are usually large, so memory-related optimizations generally have more of an impact on PostGIS than
other types of PostgreSQL queries.

For general details about optimizing PostgreSQL, refer to Tuning your PostgreSQL Server.

For PostgreSQL 9.4+ configuration can be set at the server level without touching postgresgl.conf orpostgresgl.auto.con?
by using the ALTER SYSTEM command.

ALTER SYSTEM SET work_mem = '256MB';

—-— this forces non-startup configs to take effect for new connections
SELECT pg_reload_conf ();

—-— show current setting value

—— use SHOW ALL to see all settings

SHOW work_mem;

In addition to the Postgres settings, PostGIS has some custom settings which are listed in Section 7.22.

3.1.1 Startup
These settings are configured in postgresqgl.conf:
constraint_exclusion

* Default: partition

* This is generally used for table partitioning. The default for this is set to "partition" which is ideal for PostgreSQL 8.4 and
above since it will force the planner to only analyze tables for constraint consideration if they are in an inherited hierarchy and
not pay the planner penalty otherwise.

shared_buffers

* Default: ~128MB in PostgreSQL 9.6

* Set to about 25% to 40% of available RAM. On windows you may not be able to set as high.

max_worker_processes This setting is only available for PostgreSQL 9.4+. For PostgreSQL 9.6+ this setting has additional
importance in that it controls the max number of processes you can have for parallel queries.

e Default: 8

* Sets the maximum number of background processes that the system can support. This parameter can only be set at server start.

https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://www.postgresql.org/docs/current/static/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
http://www.postgresql.org/docs/current/static/runtime-config-resource.html#GUC-SHARED-BUFFERS
https://www.postgresql.org/docs/current/static/runtime-config-resource.html#GUC-MAX-WORKER-PROCESSES

PostGIS 3.6.0rc2 Manual 22/918

3.1.2 Runtime

work_mem - sets the size of memory used for sort operations and complex queries

Default: 1-4MB
* Adjust up for large dbs, complex queries, lots of RAM
* Adjust down for many concurrent users or low RAM.

* If you have lots of RAM and few developers:

SET work_mem TO '256MB';

maintenance_work_mem - the memory size used for VACUUM, CREATE INDEX, etc.

* Default: 16-64MB
* Generally too low - ties up I/O, locks objects while swapping memory

* Recommend 32MB to 1GB on production servers w/lots of RAM, but depends on the # of concurrent users. If you have lots
of RAM and few developers:

SET maintenance_work_mem TO '1GB';

max_parallel_workers_per_gather

This setting is only available for PostgreSQL 9.6+ and will only affect PostGIS 2.3+, since only PostGIS 2.3+ supports parallel
queries. If set to higher than 0, then some queries such as those involving relation functions like ST_Intersects can use
multiple processes and can run more than twice as fast when doing so. If you have a lot of processors to spare, you should change
the value of this to as many processors as you have. Also make sure to bump up max_worker_processes to at least as high
as this number.

e Default: 0

* Sets the maximum number of workers that can be started by a single Gat her node. Parallel workers are taken from the pool
of processes established by max_worker_processes. Note that the requested number of workers may not actually be
available at run time. If this occurs, the plan will run with fewer workers than expected, which may be inefficient. Setting this
value to 0, which is the default, disables parallel query execution.

3.2 Configuring raster support

If you enabled raster support you may want to read below how to properly configure it.

As of PostGIS 2.1.3, out-of-db rasters and all raster drivers are disabled by default. In order to re-enable these, you need to set the
following environment variables POSTGIS_GDAL_ENABLED_DRIVERS and POSTGIS_ENABLE_OUTDB_RASTERS in the
server environment. For PostGIS 2.2, you can use the more cross-platform approach of setting the corresponding Section 7.22.

If you want to enable offline raster:

POSTGIS_ENABLE_OUTDB_RASTERS=1

Any other setting or no setting at all will disable out of db rasters.
In order to enable all GDAL drivers available in your GDAL install, set this environment variable as follows

POSTGIS_GDAL_ENABLED_DRIVERS=ENABLE_ALL

http://www.postgresql.org/docs/current/static/runtime-config-resource.html#GUC-WORK-MEM
http://www.postgresql.org/docs/current/static/runtime-config-resource.html#GUC-MAINTENANCE-WORK-MEM
https://www.postgresql.org/docs/current/static/runtime-config-resource.html#GUC-MAX-PARALLEL-WORKERS-PER-GATHER

PostGIS 3.6.0rc2 Manual 23/918

If you want to only enable specific drivers, set your environment variable as follows:

POSTGIS_GDAL_ENABLED_DRIVERS="GTiff PNG JPEG GIF XYZ"

N;’l"! Note

If you are on windows, do not quote the driver list

Setting environment variables varies depending on OS. For PostgreSQL installed on Ubuntu or Debian via apt-postgresql, the
preferred way is to edit /etc/postgresql/10/main/environment where 10 refers to version of PostgreSQL and main
refers to the cluster.

On windows, if you are running as a service, you can set via System variables which for Windows 7 you can get to by right-
clicking on Computer->Properties Advanced System Settings or in explorer navigating to Control Panel\All Control
Panel Items\System. Then clicking Advanced System Settings ->Advanced->Environment Variables and adding new sys-
tem variables.

After you set the environment variables, you’ll need to restart your PostgreSQL service for the changes to take effect.

3.3 Creating spatial databases

3.3.1 Spatially enable database using EXTENSION

If you are using PostgreSQL 9.1+ and have compiled and installed the extensions/postgis modules, you can turn a database into
a spatial one using the EXTENSION mechanism.

Core postgis extension includes geometry, geography, spatial_ref sys and all the functions and comments. Raster and topology
are packaged as a separate extension.

Run the following SQL snippet in the database you want to enable spatially:

CREATE EXTENSION IF NOT EXISTS plpgsqgl;

CREATE EXTENSION postgis;

CREATE EXTENSION postgis_raster; —-—- OPTIONAL
CREATE EXTENSION postgis_topology; —-— OPTIONAL

3.3.2 Spatially enable database without using EXTENSION (discouraged)

ste} Note
N This is generally only needed if you cannot or don’t want to get PostGIS installed in the PostgreSQL extension directory
(for example during testing, development or in a restricted environment).

Adding PostGIS objects and function definitions into your database is done by loading the various sql files located in [prefix]
/share/contrib as specified during the build phase.

The core PostGIS objects (geometry and geography types, and their support functions) are in the postgis. sqgl script. Raster
objects are in the rtpostgis. sqgl script. Topology objects are in the topology . sgl script.

For a complete set of EPSG coordinate system definition identifiers, you can also load the spatial_ref_sys.sqgl definitions
file and populate the spatial_ref_sys table. This will permit you to perform ST_Transform() operations on geometries.

If you wish to add comments to the PostGIS functions, you can find them in the postgis_comments. sql script. Comments
can be viewed by simply typing \dd [function_name] from a psql terminal window.

Run the following Shell commands in your terminal:

PostGIS 3.6.0rc2 Manual 24 /918

DB=[yourdatabase]
SCRIPTSDIR="pg_config —--sharedir” /contrib/postgis-3.4/

Core objects

psgl -d ${DB} -f ${SCRIPTSDIR}/postgis.sqgl

psgl -d ${DB} -f ${SCRIPTSDIR}/spatial_ref_sys.sql

psgl -d ${DB} -f ${SCRIPTSDIR}/postgis_comments.sql # OPTIONAL

Raster support (OPTIONAL)
psgl -d ${DB} -f ${SCRIPTSDIR}/rtpostgis.sqgl
psgl -d ${DB} —-f ${SCRIPTSDIR}/raster_comments.sqgl # OPTIONAL

Topology support (OPTIONAL)
psgl -d ${DB} —-f ${SCRIPTSDIR}/topology.sql
psgl -d ${DB} —-f ${SCRIPTSDIR}/topology_comments.sqgl # OPTIONAL

3.4 Upgrading spatial databases

Upgrading existing spatial databases can be tricky as it requires replacement or introduction of new PostGIS object definitions.
Unfortunately not all definitions can be easily replaced in a live database, so sometimes your best bet is a dump/reload process.

PostGIS provides a SOFT UPGRADE procedure for minor or bugfix releases, and a HARD UPGRADE procedure for major
releases.

Before attempting to upgrade PostGIS, it is always worth to backup your data. If you use the -Fc flag to pg_dump you will
always be able to restore the dump with a HARD UPGRADE.

3.4.1 Soft upgrade

If you installed your database using extensions, you’ll need to upgrade using the extension model as well. If you installed using
the old sql script way, you are advised to switch your install to extensions because the script way is no longer supported.

3.4.1.1 Soft Upgrade 9.1+ using extensions

If you originally installed PostGIS with extensions, then you need to upgrade using extensions as well. Doing a minor upgrade
with extensions, is fairly painless.

If you are running PostGIS 3 or above, then you should use the PostGIS_Extensions_Upgrade function to upgrade to the latest
version you have installed.

SELECT postgis_extensions_upgrade () ;

If you are running PostGIS 2.5 or lower, then do the following:

ALTER EXTENSION postgis UPDATE;

SELECT postgis_extensions_upgrade () ;

—— This second call is needed to rebundle postgis_raster extension
SELECT postgis_extensions_upgrade () ;

If you have multiple versions of PostGIS installed, and you don’t want to upgrade to the latest, you can explicitly specify the
version as follows:

ALTER EXTENSION postgis UPDATE TO "3.6.0rc2";
ALTER EXTENSION postgis_topology UPDATE TO "3.6.0rc2";

If you get an error notice something like:

PostGIS 3.6.0rc2 Manual 25/918

No migration path defined for ... to 3.6.0rc2

Then you’ll need to backup your database, create a fresh one as described in Section 3.3.1 and then restore your backup on top
of this new database.

If you get a notice message like:

Version "3.6.0rc2" of extension "postgis" is already installed

Then everything is already up to date and you can safely ignore it. UNLESS you’re attempting to upgrade from an development
version to the next (which doesn’t get a new version number); in that case you can append "next" to the version string, and next
time you’ll need to drop the "next" suffix again:

ALTER EXTENSION postgis UPDATE TO "3.6.0rc2next";
ALTER EXTENSION postgis_topology UPDATE TO "3.6.0rc2next";

. Note
NO‘R’! If you installed PostGIS originally without a version specified, you can often skip the reinstallation of postgis extension
before restoring since the backup just has CREATE EXTENSION postgis and thus picks up the newest latest
version during restore.

Note
N;rl@! If you are upgrading PostGIS extension from a version prior to 3.0.0, you will have a new extension postgis_raster which
you can safely drop, if you don’t need raster support. You can drop as follows:

DROP EXTENSION postgis_raster;

3.4.1.2 Soft Upgrade Pre 9.1+ or without extensions

This section applies only to those who installed PostGIS not using extensions. If you have extensions and try to upgrade with
this approach you’ll get messages like:

can't drop ... because postgis extension depends on it

NOTE: if you are moving from PostGIS 1.* to PostGIS 2.* or from PostGIS 2.* prior to r7409, you cannot use this procedure
but would rather need to do a HARD UPGRADE.

After compiling and installing (make install) you should find a set of ~_upgrade . sql files in the installation folders. You can
list them all with:

ls “pg_config --sharedir™/contrib/postgis-3.6.0rc2/+_upgrade.sqgl

Load them all in turn, starting from postgis_upgrade.sql.

psgl —-f postgis_upgrade.sgl -d your_spatial_database

The same procedure applies to raster, topology and sfcgal extensions, with upgrade files named rtpostgis_upgrade.sql,
topology_upgrade.sqgl and sfcgal_upgrade. sql respectively. If you need them:

psql —-f rtpostgis_upgrade.sqgl —-d your_spatial_database
psgl —-f topology_upgrade.sgl -d your_spatial_ database

psgl —-f sfcgal_upgrade.sgl -d your_spatial_database

PostGIS 3.6.0rc2 Manual 26/918

You are advised to switch to an extension based install by running

psgl -c "SELECT postgis_extensions_upgrade();"

ste} Note
N If you can’t find the postgis_upgrade. sqgl specific for upgrading your version you are using a version too early
for a soft upgrade and need to do a HARD UPGRADE.

The PostGIS_Full_Version function should inform you about the need to run this kind of upgrade using a "procs need upgrade"
message.

3.4.2 Hard upgrade

By HARD UPGRADE we mean full dump/reload of postgis-enabled databases. You need a HARD UPGRADE when PostGIS
objects’ internal storage changes or when SOFT UPGRADE is not possible. The Release Notes appendix reports for each version
whether you need a dump/reload (HARD UPGRADE) to upgrade.

The dump/reload process is assisted by the postgis_restore script which takes care of skipping from the dump all definitions
which belong to PostGIS (including old ones), allowing you to restore your schemas and data into a database with PostGIS
installed without getting duplicate symbol errors or bringing forward deprecated objects.

Supplementary instructions for windows users are available at Windows Hard upgrade.

The Procedure is as follows:

1. Create a "custom-format" dump of the database you want to upgrade (let’s call it o1ddb) include binary blobs (-b) and
verbose (-v) output. The user can be the owner of the db, need not be postgres super account.

pg_dump -h localhost -p 5432 -U postgres -Fc -b -v —-f "/somepath/olddb.backup" olddb

2. Do a fresh install of PostGIS in a new database -- we’ll refer to this database as newdb. Please refer to Section 3.3.2 and
Section 3.3.1 for instructions on how to do this.

The spatial_ref_sys entries found in your dump will be restored, but they will not override existing ones in spatial_ref_sys.
This is to ensure that fixes in the official set will be properly propagated to restored databases. If for any reason you really
want your own overrides of standard entries just don’t load the spatial_ref_sys.sql file when creating the new db.

If your database is really old or you know you’ve been using long deprecated functions in your views and functions, you
might need to load legacy.sqgl for all your functions and views etc. to properly come back. Only do this if _really_
needed. Consider upgrading your views and functions before dumping instead, if possible. The deprecated functions can
be later removed by loading uninstall_legacy.sqgl.

3. Restore your backup into your fresh newdb database using postgis_restore. Unexpected errors, if any, will be printed to
the standard error stream by psql. Keep a log of those.

postgis_restore "/somepath/olddb.backup" | psgql -h localhost -p 5432 -U postgres newdb <
2> errors.txt

Errors may arise in the following cases:

1. Some of your views or functions make use of deprecated PostGIS objects. In order to fix this you may try loading
legacy.sqgl script prior to restore or you’ll have to restore to a version of PostGIS which still contains those objects
and try a migration again after porting your code. If the 1legacy . sqgl way works for you, don’t forget to fix your code to
stop using deprecated functions and drop them loading uninstall_legacy.sql.

http://trac.osgeo.org/postgis/wiki/UsersWikiWinUpgrade

PostGIS 3.6.0rc2 Manual 27 /918

2. Some custom records of spatial_ref_sys in dump file have an invalid SRID value. Valid SRID values are bigger than 0 and
smaller than 999000. Values in the 999000.999999 range are reserved for internal use while values > 999999 can’t be used
at all. All your custom records with invalid SRIDs will be retained, with those > 999999 moved into the reserved range,
but the spatial_ref_sys table would lose a check constraint guarding for that invariant to hold and possibly also its primary
key (when multiple invalid SRIDS get converted to the same reserved SRID value).

In order to fix this you should copy your custom SRS to a SRID with a valid value (maybe in the 910000..910999 range),
convert all your tables to the new srid (see UpdateGeometrySRID), delete the invalid entry from spatial_ref _sys and re-
construct the check(s) with:

ALTER TABLE spatial_ref_ sys ADD CONSTRAINT spatial_ref sys_srid_check check (srid > 0 <«
AND srid < 999000);

ALTER TABLE spatial_ref_ sys ADD PRIMARY KEY (srid));

If you are upgrading an old database containing french IGN cartography, you will have probably SRIDs out of range and
you will see, when importing your database, issues like this :

WARNING: SRID 310642222 converted to 999175 (in reserved zone)
In this case, you can try following steps : first throw out completely the IGN from the sql which is resulting from post-
gis_restore. So, after having run :

postgis_restore "/somepath/olddb.backup" > olddb.sgl

run this command :

grep -v IGNF olddb.sgl > olddb-without-IGN.sqgl

Create then your newdb, activate the required Postgis extensions, and insert properly the french system IGN with : this
script After these operations, import your data :

psgl -h localhost -p 5432 -U postgres -d newdb -f olddb-without-IGN.sgl 2> errors.txt

https://en.wikipedia.org/wiki/Institut_g%C3%A9ographique_national
https://raw.githubusercontent.com/Remi-C/IGN_spatial_ref_for_PostGIS/master/Put_IGN_SRS_into_Postgis.sql
https://raw.githubusercontent.com/Remi-C/IGN_spatial_ref_for_PostGIS/master/Put_IGN_SRS_into_Postgis.sql

PostGIS 3.6.0rc2 Manual 28/918

Chapter 4

Data Management

4.1 Spatial Data Model

4.1.1 OGC Geometry

The Open Geospatial Consortium (OGC) developed the Simple Features Access standard (SFA) to provide a model for geospatial
data. It defines the fundamental spatial type of Geometry, along with operations which manipulate and transform geometry
values to perform spatial analysis tasks. PostGIS implements the OGC Geometry model as the PostgreSQL data types geometry
and geography.

Geometry is an abstract type. Geometry values belong to one of its concrete subtypes which represent various kinds and
dimensions of geometric shapes. These include the atomic types Point, LineString, LinearRing and Polygon, and the collection
types MultiPoint, MultiLineString, MultiPolygon and GeometryCollection. The Simple Features Access - Part 1: Common
architecture v1.2.1 adds subtypes for the structures PolyhedralSurface, Triangle and TIN.

Geometry models shapes in the 2-dimensional Cartesian plane. The PolyhedralSurface, Triangle, and TIN types can also repre-
sent shapes in 3-dimensional space. The size and location of shapes are specified by their coordinates. Each coordinate has a
X and Y ordinate value determining its location in the plane. Shapes are constructed from points or line segments, with points
specified by a single coordinate, and line segments by two coordinates.

Coordinates may contain optional Z and M ordinate values. The Z ordinate is often used to represent elevation. The M ordinate
contains a measure value, which may represent time or distance. If Z or M values are present in a geometry value, they must be
defined for each point in the geometry. If a geometry has Z or M ordinates the coordinate dimension is 3D; if it has both Z and
M the coordinate dimension is 4D.

Geometry values are associated with a spatial reference system indicating the coordinate system in which it is embedded. The
spatial reference system is identified by the geometry SRID number. The units of the X and Y axes are determined by the
spatial reference system. In planar reference systems the X and Y coordinates typically represent easting and northing, while in
geodetic systems they represent longitude and latitude. SRID O represents an infinite Cartesian plane with no units assigned to
its axes. See Section 4.5.

The geometry dimension is a property of geometry types. Point types have dimension 0O, linear types have dimension 1, and
polygonal types have dimension 2. Collections have the dimension of the maximum element dimension.

A geometry value may be empty. Empty values contain no vertices (for atomic geometry types) or no elements (for collections).

An important property of geometry values is their spatial extent or bounding box, which the OGC model calls envelope. This is
the 2 or 3-dimensional box which encloses the coordinates of a geometry. It is an efficient way to represent a geometry’s extent
in coordinate space and to check whether two geometries interact.

The geometry model allows evaluating topological spatial relationships as described in Section 5.1.1. To support this the concepts
of interior, boundary and exterior are defined for each geometry type. Geometries are topologically closed, so they always
contain their boundary. The boundary is a geometry of dimension one less than that of the geometry itself.

https://www.ogc.org/standards/sfa
https://portal.ogc.org/files/?artifact_id=25355
https://portal.ogc.org/files/?artifact_id=25355

PostGIS 3.6.0rc2 Manual 29/918

The OGC geometry model defines validity rules for each geometry type. These rules ensure that geometry values represents
realistic situations (e.g. it is possible to specify a polygon with a hole lying outside the shell, but this makes no sense geometrically
and is thus invalid). PostGIS also allows storing and manipulating invalid geometry values. This allows detecting and fixing them
if needed. See Section 4.4

4.1.1.1 Point

A Point is a 0-dimensional geometry that represents a single location in coordinate space.

POINT (1 2)
POINT Z (1 2 3)
POINT ZM (1 2 3 4)

4.1.1.2 LineString

A LineString is a 1-dimensional line formed by a contiguous sequence of line segments. Each line segment is defined by two
points, with the end point of one segment forming the start point of the next segment. An OGC-valid LineString has either zero
or two or more points, but PostGIS also allows single-point LineStrings. LineStrings may cross themselves (self-intersect). A
LineString is closed if the start and end points are the same. A LineString is simple if it does not self-intersect.

LINESTRING (1 2, 3 4, 5 6)

4.1.1.3 LinearRing

A LinearRing is a LineString which is both closed and simple. The first and last points must be equal, and the line must not
self-intersect.

LINEARRING (0 0 0, 4 0 0, 4 40, 040, 00 0)

4.1.1.4 Polygon

A Polygon is a 2-dimensional planar region, delimited by an exterior boundary (the shell) and zero or more interior boundaries
(holes). Each boundary is a LinearRing.

POLYGON ((O O 0,4 0 0,4 4 0,0 4 0,00 0),(1160,210,220,1220,110))

4.1.1.5 MultiPoint

A MultiPoint is a collection of Points.

MULTIPOINT ((0 0), (1 2))

4.1.1.6 MultiLineString

A MultiLineString is a collection of LineStrings. A MultiLineString is closed if each of its elements is closed.

MULTILINESTRING ((0 0,1 1,1 2), (2 3,3 2,5 4))

PostGIS 3.6.0rc2 Manual 30/918

4.1.1.7 MultiPolygon
A MultiPolygon is a collection of non-overlapping, non-adjacent Polygons. Polygons in the collection may touch only at a finite
number of points.

MULTIPOLYGON (((1 5, 55, 51, 1 1, 1 5)), ((6 5, 91, 61, 6 5)))

4.1.1.8 GeometryCollection

A GeometryCollection is a heterogeneous (mixed) collection of geometries.

GEOMETRYCOLLECTION (POINT (2 3), LINESTRING(2 3, 3 4))

4.1.1.9 PolyhedralSurface

A PolyhedralSurface is a contiguous collection of patches or facets which share some edges. Each patch is a planar Polygon. If
the Polygon coordinates have Z ordinates then the surface is 3-dimensional.

POLYHEDRALSURFACE
((0 00, 001,
(0 0 0,

~
~
~

14

~
~
~

’

~ 0~

14

~

14

~
~

B R PR PO N
B RO O R P~
oOr P OoORr o
e ==
o or oo
<~
oOor o oo
oOr PP o oo
oo o oo

~

o K o
= o o o

< <~

o RFk O
O P O

B R RO o
I N = e BN
~ ~ ~

’

4.1.1.10 Triangle

A Triangle is a polygon defined by three distinct non-collinear vertices. Because a Triangle is a polygon it is specified by four
coordinates, with the first and fourth being equal.

TRIANGLE ((O 0, 0 9, 9 0, 0 0))

4.1.1.11 TIN

A TIN is a collection of non-overlapping Triangles representing a Triangulated Irregular Network.

TIN Z ((¢O OO, 001, 010, O0OO)), ((OOOCG 010, 2160, 0O00O0)))

4.1.2 SQL/MM Part 3 - Curves

The ISO/IEC 13249-3 SOL Multimedia - Spatial standard (SQL/MM) extends the OGC SFA to define Geometry subtypes con-
taining curves with circular arcs. The SQL/MM types support 3DM, 3DZ and 4D coordinates.

N;l-g/! Note

All floating point comparisons within the SQL-MM implementation are performed to a specified tolerance, currently 1E-
8.

https://en.wikipedia.org/wiki/Triangulated_irregular_network
https://www.iso.org/obp/ui/#iso:std:iso-iec:13249:-3:ed-5:v1:en

PostGIS 3.6.0rc2 Manual 31/918

4.1.2.1 CircularString

CircularString is the basic curve type, similar to a LineString in the linear world. A single arc segment is specified by three
points: the start and end points (first and third) and some other point on the arc. To specify a closed circle the start and end points
are the same and the middle point is the opposite point on the circle diameter (which is the center of the arc). In a sequence of
arcs the end point of the previous arc is the start point of the next arc, just like the segments of a LineString. This means that a
CircularString must have an odd number of points greater than 1.

CIRCULARSTRING (0O 0, 1 1, 1 0)

CIRCULARSTRING(0 0, 4 0, 4 4, 0 4, 0 0)

4.1.2.2 CompoundCurve

A CompoundCurve is a single continuous curve that may contain both circular arc segments and linear segments. That means
that in addition to having well-formed components, the end point of every component (except the last) must be coincident with
the start point of the following component.

COMPOUNDCURVE (CIRCULARSTRING(O O, 1 1, 1 0), (1 0, 0 1))

4.1.2.3 CurvePolygon

A CurvePolygon is like a polygon, with an outer ring and zero or more inner rings. The difference is that a ring can be a
CircularString or CompoundCurve as well as a LineString.

As of PostGIS 1.4 PostGIS supports compound curves in a curve polygon.

CURVEPOLYGON (
CIRCULARSTRING(0 O, 4 0, 4 4, 0 4, 0 0),
(r1, 33 31, 11))

Example: A CurvePolygon with the shell defined by a CompoundCurve containing a CircularString and a LineString, and a hole
defined by a CircularString

CURVEPOLYGON (

COMPOUNDCURVE (CIRCULARSTRING(O 0,2 0, 2 1, 2 3, 4 3),
(4 3, 45, 1 4, 00)

CIRCULARSTRING (1.7 1, 1.4 0.4, 1.6

I4

)
0.4, 1.6 0.5, 1.7 1))

4.1.2.4 MultiCurve

A MultiCurve is a collection of curves which can include LineStrings, CircularStrings or CompoundCurves.

MULTICURVE((0 O, 5 5), CIRCULARSTRING(4 0, 4 4, 8 4))

4.1.2.5 MultiSurface

A MultiSurface is a collection of surfaces, which can be (linear) Polygons or CurvePolygons.

MULTISURFACE (
CURVEPOLYGON (
CIRCULARSTRING(O 0, 4 0, 4 4, 0 4, 0 0),
(11, 33, 31, 1 1)),
((10 10, 14 12, 11 10, 10 10), (11 11, 11.5 11, 11 11.5, 11 11)))

PostGIS 3.6.0rc2 Manual 32/918

4.1.3 WKT and WKB

The OGC SFA specification defines two formats for representing geometry values for external use: Well-Known Text (WKT) and
Well-Known Binary (WKB). Both WKT and WKB include information about the type of the object and the coordinates which
define it.

Well-Known Text (WKT) provides a standard textual representation of spatial data. Examples of WKT representations of spatial
objects are:

« POINT(0 0)

« POINT Z (0 0 0)

« POINT ZM (00 0 0)

« POINT EMPTY

« LINESTRING(0 0,1 1,1 2)

« LINESTRING EMPTY

« POLYGON((0 0,4 0,44,04,00),(11,21,22,12,1 1))

« MULTIPOINT((0 0),(1 2))

« MULTIPOINT Z ((0 0 0),(1 2 3))

« MULTIPOINT EMPTY

« MULTILINESTRING((0 0,1 1,1 2),(2 3,3 2,5 4))

« MULTIPOLYGON(((0 0,4 0,4 4,0 4,0 0),(1 1,2 1,22,1 2,1 1)), ((-1 -1,-1 -2,-2 -2,-2 -1 ,-1 -1)))
« GEOMETRYCOLLECTION(POINT(2 3),LINESTRING(2 3,3 4))
« GEOMETRYCOLLECTION EMPTY

Input and output of WKT is provided by the functions ST_AsText and ST_GeomFromText:

text WKT = ST_AsText (geometry);
geometry = ST_GeomFromText (text WKT, SRID);

For example, a statement to create and insert a spatial object from WKT and a SRID is:

INSERT INTO geotable (geom, name)
VALUES (ST_GeomFromText ('POINT (-126.4 45.32)"', 312), 'A Place');

Well-Known Binary (WKB) provides a portable, full-precision representation of spatial data as binary data (arrays of bytes).
Examples of the WKB representations of spatial objects are:
* WKT: POINT(1 1)

WKB: 0101000000000000000000F03F000000000000F03

* WKT: LINESTRING (22, 99)
WKB: 0102000000020000000000000000000040000000000000004000000000000022400000000000002240

Input and output of WKB is provided by the functions ST_AsBinary and ST_GeomFromWKB:

bytea WKB = ST_AsBinary (geometry) ;
geometry = ST_GeomFromWKB (bytea WKB, SRID) ;

For example, a statement to create and insert a spatial object from WKB is:

INSERT INTO geotable (geom, name)
VALUES (ST_GeomFromWKB ('\x0101000000000000000000£03f000000000000£f03f"', 312), 'A Place');

PostGIS 3.6.0rc2 Manual 33/918

4.2 Geometry Data Type

PostGIS implements the OGC Simple Features model by defining a PostgreSQL data type called geomet ry. It represents all of
the geometry subtypes by using an internal type code (see GeometryType and ST_GeometryType). This allows modelling spatial
features as rows of tables defined with a column of type geometry.

The geomet ry data type is opaque, which means that all access is done via invoking functions on geometry values. Functions
allow creating geometry objects, accessing or updating all internal fields, and compute new geometry values. PostGIS supports
all the functions specified in the OGC Simple feature access - Part 2: SOL option (SFS) specification, as well many others. See
Chapter 7 for the full list of functions.

Note
PostGIS follows the SFA standard by prefixing spatial functions with "ST_". This was intended to stand for "Spatial and
Temporal”, but the temporal part of the standard was never developed. Instead it can be interpreted as "Spatial Type".

The SFA standard specifies that spatial objects include a Spatial Reference System identifier (SRID). The SRID is required when
creating spatial objects for insertion into the database (it may be defaulted to 0). See ST_SRID and Section 4.5

To make querying geometry efficient PostGIS defines various kinds of spatial indexes, and spatial operators to use them. See
Section 4.9 and Section 5.2 for details.

4.2.1 PostGIS EWKB and EWKT

OGC SFA specifications initially supported only 2D geometries, and the geometry SRID is not included in the input/output
representations. The OGC SFA specification 1.2.1 (which aligns with the ISO 19125 standard) adds support for 3D (ZYZ) and
measured (XYM and XYZM) coordinates, but still does not include the SRID value.

Because of these limitations PostGIS defined extended EWKB and EWKT formats. They provide 3D (XYZ and XYM) and 4D
(XYZM) coordinate support and include SRID information. Including all geometry information allows PostGIS to use EWKB
as the format of record (e.g. in DUMP files).

EWKB and EWKT are used for the "canonical forms" of PostGIS data objects. For input, the canonical form for binary data is
EWKB, and for text data either EWKB or EWKT is accepted. This allows geometry values to be created by casting a text value
in either HEXEWKB or EWKT to a geometry value using : : geometry. For output, the canonical form for binary is EWKB,
and for text it is HEXEWKB (hex-encoded EWKB).

For example this statement creates a geometry by casting from an EWKT text value, and outputs it using the canonical form of
HEXEWKB:

SELECT 'SRID=4;POINT (0 0)'::geometry;
geometry

01010000200400000000000000000000000000000000000000

PostGIS EWKT output has a few differences to OGC WKT:

» For 3DZ geometries the Z qualifier is omitted:
OGC: POINT Z (12 3)
EWKT: POINT (1 2 3)

» For 3DM geometries the M qualifier is included:
OGC: POINTM (12 3)
EWKT: POINTM (1 2 3)

https://portal.ogc.org/files/?artifact_id=25354

PostGIS 3.6.0rc2 Manual 34/918

* For 4D geometries the ZM qualifier is omitted:
OGC: POINTZM (123 4)
EWKT: POINT (123 4)

EWKT avoids over-specifying dimensionality and the inconsistencies that can occur with the OGC/ISO format, such as:

« POINT ZM (1 1)
« POINTZM (11 1)
« POINT(1111)

g% Caution

! 1 PostGIS extended formats are currently a superset of the OGC ones, so that every valid OGC WKB/WKT is also valid
EWKB/EWKT. However, this might vary in the future, if the OGC extends a format in a way that conflicts with the PosGIS
definition. Thus you SHOULD NOT rely on this compatibility!

Examples of the EWKT text representation of spatial objects are:

« POINT(0 0 0) -- XYZ

« SRID=32632;POINT(0 0) -- XY with SRID

« POINTM(0 0 0) -- XYM

« POINT(0 0 0 0) -- XYZM

« SRID=4326;MULTIPOINTM(0 0 0,1 2 1) -- XYM with SRID

« MULTILINESTRING((000,1 10,12 1),23 1,32 1,54 1))

« POLYGON((0 0 0,400,440,040,000),(110,210,220,120,110))

« MULTIPOLYGON(((0 00,4 00,44 0,04 0,0 00),(110,210,220,120,1 1 0)),((-1 -1 0,-1-20,-2-20,-2 -1 0,-1 -1 0)))
« GEOMETRYCOLLECTIONM(POINTM(2 3 9), LINESTRINGM(2 3 4,3 4 5))

« MULTICURVE((0 0, 5 5), CIRCULARSTRING(4 0, 4 4, 8 4))

« POLYHEDRALSURFACE(((000,001,011,010,000)),((000,010,110,100,000)),((000,100,101,001,0
00),((110,111,101,100,110)),((010,011,111,110,010)),(©01,101,111,011,001)))

« TRIANGLE ((0 0, 0 10, 10 0, 0 0))
« TIN(((000,001,010,000)),((000,010,110,000)))

Input and output using these formats is available using the following functions:

bytea EWKB = ST_AsSEWKB (geometry);
text EWKT = ST_ASEWKT (geometry) ;
geometry = ST_GeomFromEWKB (bytea EWKB) ;
geometry = ST_GeomFromEWKT (text EWKT) ;

For example, a statement to create and insert a PostGIS spatial object using EWKT is:

INSERT INTO geotable (geom, name)
VALUES (ST_GeomFromEWKT ('SRID=312;POINTM(-126.4 45.32 15)'"), 'A Place')

PostGIS 3.6.0rc2 Manual 35/918

4.3 Geography Data Type

The PostGIS geography data type provides native support for spatial features represented on "geographic" coordinates (some-
times called "geodetic" coordinates, or "lat/lon", or "lon/lat"). Geographic coordinates are spherical coordinates expressed in
angular units (degrees).

The basis for the PostGIS geometry data type is a plane. The shortest path between two points on the plane is a straight line.
That means functions on geometries (areas, distances, lengths, intersections, etc) are calculated using straight line vectors and
cartesian mathematics. This makes them simpler to implement and faster to execute, but also makes them inaccurate for data on
the spheroidal surface of the earth.

The PostGIS geography data type is based on a spherical model. The shortest path between two points on the sphere is a great
circle arc. Functions on geographies (areas, distances, lengths, intersections, etc) are calculated using arcs on the sphere. By
taking the spheroidal shape of the world into account, the functions provide more accurate results.

Because the underlying mathematics is more complicated, there are fewer functions defined for the geography type than for the
geometry type. Over time, as new algorithms are added the capabilities of the geography type will expand. As a workaround one
can convert back and forth between geometry and geography types.

Like the geometry data type, geography data is associated with a spatial reference system via a spatial reference system identifier
(SRID). Any geodetic (long/lat based) spatial reference system defined in the spatial_ref_sys table can be used. (Prior to
PostGIS 2.2, the geography type supported only WGS 84 geodetic (SRID:4326)). You can add your own custom geodetic spatial
reference system as described in Section 4.5.2.

For all spatial reference systems the units returned by measurement functions (e.g. ST_Distance, ST_Length, ST_Perimeter,
ST_Area) and for the distance argument of ST_DWithin are in meters.

4.3.1 Creating Geography Tables

You can create a table to store geography data using the CREATE TABLE SQL statement with a column of type geography.
The following example creates a table with a geography column storing 2D LineStrings in the WGS84 geodetic coordinate
system (SRID 4326):

CREATE TABLE global_points (
id SERIAL PRIMARY KEY,
name VARCHAR (64),
location geography (POINT, 4326)
)i

The geography type supports two optional type modifiers:

* the spatial type modifier restricts the kind of shapes and dimensions allowed in the column. Values allowed for the spatial type
are: POINT, LINESTRING, POLY GON, MULTIPOINT, MULTILINESTRING, MULTIPOLY GON, GEOMETRYCOLLEC-
TION. The geography type does not support curves, TINS, or POLYHEDRALSURFACEs. The modifier supports coordinate
dimensionality restrictions by adding suffixes: Z, M and ZM. For example, a modifier of 'LINESTRINGM’ only allows
linestrings with three dimensions, and treats the third dimension as a measure. Similarly, 'POINTZM’ requires four dimen-
sional (XYZM) data.

 the SRID modifier restricts the spatial reference system SRID to a particular number. If omitted, the SRID defaults to 4326
(WGS84 geodetic), and all calculations are performed using WGS84.

Examples of creating tables with geography columns:

¢ Create a table with 2D POINT geography with the default SRID 4326 (WGS84 long/lat):

CREATE TABLE ptgeogwgs (gid serial PRIMARY KEY, geog geography (POINT));

* Create a table with 2D POINT geography in NAD83 longlat:

https://www.postgresql.org/docs/current/sql-createtable.html

PostGIS 3.6.0rc2 Manual 36/918

CREATE TABLE ptgeognad83(gid serial PRIMARY KEY, geog geography (POINT,4269));

* Create a table with 3D (XYZ) POINTSs and an explicit SRID of 4326:

CREATE TABLE ptzgeogwgs84 (gid serial PRIMARY KEY, geog geography (POINTZ,4326));

* Create a table with 2D LINESTRING geography with the default SRID 4326:

CREATE TABLE lgeog(gid serial PRIMARY KEY, geog geography (LINESTRING));

* Create a table with 2D POLYGON geography with the SRID 4267 (NAD 1927 long lat):

CREATE TABLE lgeognad27(gid serial PRIMARY KEY, geog geography (POLYGON, 4267));

Geography fields are registered in the geography_columns system view. You can query the geography_columns view
and see that the table is listed:

SELECT x FROM geography_columns;

Creating a spatial index works the same as for geometry columns. PostGIS will note that the column type is GEOGRAPHY and
create an appropriate sphere-based index instead of the usual planar index used for GEOMETRY.

—— Index the test table with a spherical index
CREATE INDEX global_points_gix ON global_ points USING GIST (location);

4.3.2 Using Geography Tables

You can insert data into geography tables in the same way as geometry. Geometry data will autocast to the geography type if it
has SRID 4326. The EWKT and EWKB formats can also be used to specify geography values.

—-— Add some data into the test table

INSERT INTO global_points (name, location) VALUES ('Town', 'SRID=4326;POINT(-110 30)"'");
INSERT INTO global_points (name, location) VALUES ('Forest', 'SRID=4326;POINT(-109 29)");
INSERT INTO global_points (name, location) VALUES ('London', 'SRID=4326;POINT (0 49)"');

Any geodetic (long/lat) spatial reference system listed in spatial_ref_sys table may be specified as a geography SRID.
Non-geodetic coordinate systems raise an error if used.

-— NAD 83 lon/lat
SELECT 'SRID=4269;POINT (-123 34)'::geography;
geography

0101000020AD1000000000000000CO5ECO0000000000004140

-— NAD27 lon/lat
SELECT 'SRID=4267;POINT (=123 34)'::geography;
geography

0101000020AB1000000000000000C0O5EC0O0000000000004140

—— NAD83 UTM zone meters — gives an error since it is a meter-based planar projection
SELECT 'SRID=26910;POINT (-123 34) '::geography;

ERROR: Only lon/lat coordinate systems are supported in geography.

Query and measurement functions use units of meters. So distance parameters should be expressed in meters, and return values
should be expected in meters (or square meters for areas).

PostGIS 3.6.0rc2 Manual 37/918

—— A distance query using a 1000km tolerance
SELECT name FROM global_points WHERE ST_DWithin (location, 'SRID=4326;POINT (=110 29)"':: «
geography, 1000000) ;

You can see the power of geography in action by calculating how close a plane flying a great circle route from Seattle to London
(LINESTRING(-122.33 47.606, 0.0 51.5)) comes to Reykjavik (POINT(-21.96 64.15)) (map the route).

The geography type calculates the true shortest distance of 122.235 km over the sphere between Reykjavik and the great circle
flight path between Seattle and London.

—-— Distance calculation using GEOGRAPHY

SELECT ST_Distance ('LINESTRING (-122.33 47.606, 0.0 51.5)'::geography, 'POINT(-21.96 64.15) <«
'::geography) ;
st_distance

122235.23815667

The geometry type calculates a meaningless cartesian distance between Reykjavik and the straight line path from Seattle to
London plotted on a flat map of the world. The nominal units of the result is "degrees", but the result doesn’t correspond to any
true angular difference between the points, so even calling them "degrees" is inaccurate.

—— Distance calculation using GEOMETRY
SELECT ST_Distance ('LINESTRING(-122.33 47.606, 0.0 51.5)"'::geometry, 'POINT(-21.96 64.15) <>
'::geometry) ;
st_distance

13.342271221453624

4.3.3 When to use the Geography data type

The geography data type allows you to store data in longitude/latitude coordinates, but at a cost: there are fewer functions defined
on GEOGRAPHY than there are on GEOMETRY; those functions that are defined take more CPU time to execute.

The data type you choose should be determined by the expected working area of the application you are building. Will your data
span the globe or a large continental area, or is it local to a state, county or municipality?

* If your data is contained in a small area, you might find that choosing an appropriate projection and using GEOMETRY is the
best solution, in terms of performance and functionality available.

* If your data is global or covers a continental region, you may find that GEOGRAPHY allows you to build a system without
having to worry about projection details. You store your data in longitude/latitude, and use the functions that have been defined
on GEOGRAPHY.

* If you don’t understand projections, and you don’t want to learn about them, and you’re prepared to accept the limitations in
functionality available in GEOGRAPHY, then it might be easier for you to use GEOGRAPHY than GEOMETRY. Simply load
your data up as longitude/latitude and go from there.

Refer to Section 13.11 for compare between what is supported for Geography vs. Geometry. For a brief listing and description
of Geography functions, refer to Section 13.4

4.3.4 Geography Advanced FAQ

1. Do you calculate on the sphere or the spheroid?

By default, all distance and area calculations are done on the spheroid. You should find that the results of calculations in
local areas match up will with local planar results in good local projections. Over larger areas, the spheroidal calculations
will be more accurate than any calculation done on a projected plane. All the geography functions have the option of
using a sphere calculation, by setting a final boolean parameter to 'FALSE’. This will somewhat speed up calculations,
particularly for cases where the geometries are very simple.

http://gc.kls2.com/cgi-bin/gc?PATH=SEA-LHR

PostGIS 3.6.0rc2 Manual 38/918

2. What about the date-line and the poles?

All the calculations have no conception of date-line or poles, the coordinates are spherical (longitude/latitude) so a shape
that crosses the dateline is, from a calculation point of view, no different from any other shape.

3. What is the longest arc you can process?

We use great circle arcs as the "interpolation line" between two points. That means any two points are actually joined up
two ways, depending on which direction you travel along the great circle. All our code assumes that the points are joined
by the *shorter* of the two paths along the great circle. As a consequence, shapes that have arcs of more than 180 degrees
will not be correctly modelled.

4. Why is it so slow to calculate the area of Europe / Russia / insert big geographic region here ?

Because the polygon is so darned huge! Big areas are bad for two reasons: their bounds are huge, so the index tends to pull
the feature no matter what query you run; the number of vertices is huge, and tests (distance, containment) have to traverse
the vertex list at least once and sometimes N times (with N being the number of vertices in the other candidate feature).
As with GEOMETRY, we recommend that when you have very large polygons, but are doing queries in small areas, you
"denormalize" your geometric data into smaller chunks so that the index can effectively subquery parts of the object and
so queries don’t have to pull out the whole object every time. Please consult ST_Subdivide function documentation. Just
because you *can* store all of Europe in one polygon doesn’t mean you *should*.

4.4 Geometry Validation

PostGIS is compliant with the Open Geospatial Consortium’s (OGC) Simple Features specification. That standard defines the
concepts of geometry being simple and valid. These definitions allow the Simple Features geometry model to represent spatial
objects in a consistent and unambiguous way that supports efficient computation. (Note: the OGC SF and SQL/MM have the
same definitions for simple and valid.)

4.41 Simple Geometry

A simple geometry is one that has no anomalous geometric points, such as self intersection or self tangency.
A POINT is inherently simple as a O-dimensional geometry object.
MULTIPOINTs are simple if no two coordinates (POINTSs) are equal (have identical coordinate values).

A LINESTRING is simple if it does not pass through the same point twice, except for the endpoints. If the endpoints of a simple
LineString are identical it is called closed and referred to as a Linear Ring.

(a) and (c) are simple LINESTRINGS. (b) and (d) are not simple. (c) is a closed Linear Ring.

PostGIS 3.6.0rc2 Manual 39/918

(a) (b)

(c) (d)

A MULTILINESTRING is simple only if all of its elements are simple and the only intersection between any two elements
occurs at points that are on the boundaries of both elements.

(e) and (f) are simple MULTILINESTRINGS. (g) is not simple.

PostGIS 3.6.0rc2 Manual 40/918

(e) ® @

POLYGONSs are formed from linear rings, so valid polygonal geometry is always simple.

To test if a geometry is simple use the ST_IsSimple function:

SELECT
ST_IsSimple ('LINESTRING(O 0, 100 100)') AS straight,
ST_IsSimple ('LINESTRING(O 0, 100 100, 100 0, O 100)') AS crossing;
straight | crossing
__________ +__________
t | £

Generally, PostGIS functions do not require geometric arguments to be simple. Simplicity is primarily used as a basis for defining
geometric validity. It is also a requirement for some kinds of spatial data models (for example, linear networks often disallow
lines that cross). Multipoint and linear geometry can be made simple using ST_UnaryUnion.

4.4.2 Valid Geometry

Geometry validity primarily applies to 2-dimensional geometries (POLYGONs and MULTIPOLYGONSs) . Validity is defined by
rules that allow polygonal geometry to model planar areas unambiguously.

A POLYGON is valid if:

1. the polygon boundary rings (the exterior shell ring and interior hole rings) are simple (do not cross or self-touch). Because
of this a polygon cannot have cut lines, spikes or loops. This implies that polygon holes must be represented as interior
rings, rather than by the exterior ring self-touching (a so-called "inverted hole").

2. boundary rings do not cross
3. boundary rings may touch at points but only as a tangent (i.e. not in a line)
4. interior rings are contained in the exterior ring

5. the polygon interior is simply connected (i.e. the rings must not touch in a way that splits the polygon into more than one
part)

(h) and (i) are valid POLYGONs. (j-m) are invalid. (j) can be represented as a valid MULTIPOLYGON.

PostGIS 3.6.0rc2 Manual

41/918

(h)) ()
(k) 0] (m)

A MULTIPOLYGON is valid if:

1. its element POLYGONS are valid
2. elements do not overlap (i.e. their interiors must not intersect)

3. elements touch only at points (i.e. not along a line)

(n) is a valid MULTIPOLYGON. (0) and (p) are invalid.

PostGIS 3.6.0rc2 Manual 42 /918

(n) (0) (p)

These rules mean that valid polygonal geometry is also simple.

For linear geometry the only validity rule is that LINESTRINGs must have at least two points and have non-zero length (or
equivalently, have at least two distinct points.) Note that non-simple (self-intersecting) lines are valid.

SELECT
ST_IsValid ('LINESTRING(O 0, 1 1)') AS len_nonzero,
ST_IsValid ('LINESTRING(O 0, 0 O, 0 0)') AS len_zero,
ST_IsValid ('LINESTRING (10 10, 150 150, 180 50, 20 130)') AS self_int;
len_nonzero | len_zero | self_int
,,,,,,,,,,,,, B
t | £ | t

POINT and MULTIPOINT geometries have no validity rules.

4.4.3 Managing Validity

PostGIS allows creating and storing both valid and invalid Geometry. This allows invalid geometry to be detected and flagged or
fixed. There are also situations where the OGC validity rules are stricter than desired (examples of this are zero-length linestrings
and polygons with inverted holes.)

Many of the functions provided by PostGIS rely on the assumption that geometry arguments are valid. For example, it does not
make sense to calculate the area of a polygon that has a hole defined outside of the polygon, or to construct a polygon from a
non-simple boundary line. Assuming valid geometric inputs allows functions to operate more efficiently, since they do not need
to check for topological correctness. (Notable exceptions are that zero-length lines and polygons with inversions are generally
handled correctly.) Also, most PostGIS functions produce valid geometry output if the inputs are valid. This allows PostGIS
functions to be chained together safely.

If you encounter unexpected error messages when calling PostGIS functions (such as "GEOS Intersection() threw an error!"),
you should first confirm that the function arguments are valid. If they are not, then consider using one of the techniques below to
ensure the data you are processing is valid.

S Note
Nﬂ‘“’! If a function reports an error with valid inputs, then you may have found an error in either PostGIS or one of the libraries
it uses, and you should report this to the PostGIS project. The same is true if a PostGIS function returns an invalid
geometry for valid input.

To test if a geometry is valid use the ST_IsValid function:

PostGIS 3.6.0rc2 Manual 43/918

SELECT ST_IsValid('POLYGON ((20 180, 180 180, 180 20, 20 20, 20 180))");

Information about the nature and location of an geometry invalidity are provided by the ST_IsValidDetail function:

SELECT wvalid, reason, ST_AsText (location) AS location

FROM ST_IsValidDetail ('POLYGON ((20 20, 120 190, 50 190, 170 50, 20 20))') AS t;
valid | reason | location
_______ +___________________+___
f | Self-intersection | POINT(91.51162790697674 141.56976744186045)

In some situations it is desirable to correct invalid geometry automatically. Use the ST_MakeValid function to do this. (ST_MakeValid
is a case of a spatial function that does allow invalid input!)

By default, PostGIS does not check for validity when loading geometry, because validity testing can take a lot of CPU time for
complex geometries. If you do not trust your data sources, you can enforce a validity check on your tables by adding a check
constraint:

ALTER TABLE mytable
ADD CONSTRAINT geometry_valid_check
CHECK (ST_IsValid(geom)) ;

4.5 Spatial Reference Systems

A Spatial Reference System (SRS) (also called a Coordinate Reference System (CRS)) defines how geometry is referenced to
locations on the Earth’s surface. There are three types of SRS:

* A geodetic SRS uses angular coordinates (longitude and latitude) which map directly to the surface of the earth.

* A projected SRS uses a mathematical projection transformation to "flatten" the surface of the spheroidal earth onto a plane.
It assigns location coordinates in a way that allows direct measurement of quantities such as distance, area, and angle. The
coordinate system is Cartesian, which means it has a defined origin point and two perpendicular axes (usually oriented North
and East). Each projected SRS uses a stated length unit (usually metres or feet). A projected SRS may be limited in its area of
applicability to avoid distortion and fit within the defined coordinate bounds.

* A local SRS is a Cartesian coordinate system which is not referenced to the earth’s surface. In PostGIS this is specified by a
SRID value of 0.

There are many different spatial reference systems in use. Common SRSes are standardized in the European Petroleum Survey
Group EPSG database. For convenience PostGIS (and many other spatial systems) refers to SRS definitions using an integer
identifier called a SRID.

A geometry is associated with a Spatial Reference System by its SRID value, which is accessed by ST_SRID. The SRID for a
geometry can be assigned using ST_SetSRID. Some geometry constructor functions allow supplying a SRID (such as ST_Point
and ST_MakeEnvelope). The EWKT format supports SRIDs with the SRID=n; prefix.

Spatial functions processing pairs of geometries (such as overlay and relationship functions) require that the input geometries are
in the same spatial reference system (have the same SRID). Geometry data can be transformed into a different spatial reference
system using ST_Transform and ST_TransformPipeline. Geometry returned from functions has the same SRS as the input
geometries.

https://en.wikipedia.org/wiki/Spatial_reference_system
http://www.epsg.org/

PostGIS 3.6.0rc2 Manual 44 /918

4.5.1 SPATIAL_REF_SYS Table

The SPATIAL_REF_SYS table used by PostGIS is an OGC-compliant database table that defines the available spatial reference
systems. It holds the numeric SRIDs and textual descriptions of the coordinate systems.

The spatial_ref_sys table definition is:

CREATE TABLE spatial_ref_sys (
srid INTEGER NOT NULL PRIMARY KEY,
auth_name VARCHAR(256),
auth_srid INTEGER,
srtext VARCHAR (2048) ,
projdtext VARCHAR (2048)

The columns are:

srid An integer code that uniquely identifies the Spatial Reference System (SRS) within the database.

auth_name The name of the standard or standards body that is being cited for this reference system. For example, "EPSG" is
a valid auth_name.

auth_srid The ID of the Spatial Reference System as defined by the Authority cited in the auth_name. In the case of
EPSG, this is the EPSG code.

srtext The Well-Known Text representation of the Spatial Reference System. An example of a WKT SRS representation is:

PROJCS ["NAD83 / UTM Zone 10N",
GEOGCS["NAD83",
DATUM["North_American_Datum_1983",

SPHEROID["GRS 1980",6378137,298.257222101]
]I
PRIMEM["Greenwich", 0],
UNIT["degree",0.0174532925199433]
]I
PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin", 0],
PARAMETER["central _meridian",-123],
PARAMETER["scale_factor",0.99967,
PARAMETER ["false_easting", 5000007,
PARAMETER["false_northing",0],
UNIT["metre", 1]

For a discussion of SRS WKT, see the OGC standard Well-known text representation of coordinate reference systems.

proj4text PostGIS uses the PROJ library to provide coordinate transformation capabilities. The proj4text column con-
tains the PROJ coordinate definition string for a particular SRID. For example:

+proj=utm +zone=10 +ellps=clrk66 +datum=NAD27 +units=m

For more information see the PROJ web site. The spatial_ref_sys.sql file contains both srtext andprojdtext
definitions for all EPSG projections.

When retrieving spatial reference system definitions for use in transformations, PostGIS uses the following strategy:

e If auth_name and auth_srid are present (non-NULL) use the PROJ SRS based on those entries (if one exists).
» If srtext is present create a SRS using it, if possible.

» If proj4text is present create a SRS using it, if possible.

http://en.wikipedia.org/wiki/SRID
http://docs.opengeospatial.org/is/12-063r5/12-063r5.html
https://proj.org/

PostGIS 3.6.0rc2 Manual 45/918

4.5.2 User-Defined Spatial Reference Systems

The PostGIS spatial_ref_sys table contains over 3000 of the most common spatial reference system definitions that are
handled by the PROJ projection library. But there are many coordinate systems that it does not contain. You can add SRS
definitions to the table if you have the required information about the spatial reference system. Or, you can define your own
custom spatial reference system if you are familiar with PROJ constructs. Keep in mind that most spatial reference systems are
regional and have no meaning when used outside of the bounds they were intended for.

A resource for finding spatial reference systems not defined in the core set is http://spatialreference.org/

Some commonly used spatial reference systems are: 4326 - WGS 84 Long Lat, 4269 - NAD 83 Long Lat, 3395 - WGS 84 World
Mercator, 2163 - US National Atlas Equal Area, and the 60 WGS84 UTM zones. UTM zones are one of the most ideal for
measurement, but only cover 6-degree regions. (To determine which UTM zone to use for your area of interest, see the utmzone
PostGIS plpgsql helper function.)

US states use State Plane spatial reference systems (meter or feet based) - usually one or 2 exists per state. Most of the meter-based
ones are in the core set, but many of the feet-based ones or ESRI-created ones will need to be copied from spatialreference.org.

You can even define non-Earth-based coordinate systems, such as Mars 2000 This Mars coordinate system is non-planar (it’s in
degrees spheroidal), but you can use it with the geography type to obtain length and proximity measurements in meters instead
of degrees.

Here is an example of loading a custom coordinate system using an unassigned SRID and the PROJ definition for a US-centric
Lambert Conformal projection:

INSERT INTO spatial_ref_ sys (srid, projdtext)
VALUES (990000,
'+proj=lcc +lon_0=-95 +lat_0=25 +lat_1=25 +lat_2=25 +x_0=0 +y_0=0 +datum=WGS84 +units=m <
+no_defs'

)i

4.6 Spatial Tables

4.6.1 Creating a Spatial Table

You can create a table to store geometry data using the CREATE TABLE SQL statement with a column of type geometry.
The following example creates a table with a geometry column storing 2D (XY) LineStrings in the BC-Albers coordinate system
(SRID 3005):

CREATE TABLE roads (

id SERIAL PRIMARY KEY,

name VARCHAR (64),

geom geometry (LINESTRING, 3005)
)i

The geomet ry type supports two optional type modifiers:

* the spatial type modifier restricts the kind of shapes and dimensions allowed in the column. The value can be any of the
supported geometry subtypes (e.g. POINT, LINESTRING, POLYGON, MULTIPOINT, MULTILINESTRING, MULTIPOLY-
GON, GEOMETRYCOLLECTION, etc). The modifier supports coordinate dimensionality restrictions by adding suffixes: Z,
M and ZM. For example, a modifier of 'LINESTRINGM’ allows only linestrings with three dimensions, and treats the third
dimension as a measure. Similarly, "POINTZM’ requires four dimensional (XYZM) data.

* the SRID modifier restricts the spatial reference system SRID to a particular number. If omitted, the SRID defaults to 0.
Examples of creating tables with geometry columns:

* Create a table holding any kind of geometry with the default SRID:

https://proj.org
http://spatialreference.org/
http://spatialreference.org/ref/epsg/4326/
http://spatialreference.org/ref/epsg/4269/
http://spatialreference.org/ref/epsg/3395/
http://spatialreference.org/ref/epsg/3395/
http://spatialreference.org/ref/epsg/2163/
http://trac.osgeo.org/postgis/wiki/UsersWikiplpgsqlfunctionsDistance
http://trac.osgeo.org/postgis/wiki/UsersWikiplpgsqlfunctionsDistance
http://spatialreference.org
http://spatialreference.org/ref/iau2000/mars-2000/
https://www.postgresql.org/docs/current/sql-createtable.html

PostGIS 3.6.0rc2 Manual 46/918

CREATE TABLE geoms (gid serial PRIMARY KEY, geom geometry);

* Create a table with 2D POINT geometry with the default SRID:

CREATE TABLE pts(gid serial PRIMARY KEY, geom geometry (POINT));

* Create a table with 3D (XYZ) POINTSs and an explicit SRID of 3005:

CREATE TABLE pts(gid serial PRIMARY KEY, geom geometry (POINTZ,3005));

* Create a table with 4D (XYZM) LINESTRING geometry with the default SRID:

CREATE TABLE lines(gid serial PRIMARY KEY, geom geometry (LINESTRINGZM));

* Create a table with 2D POLYGON geometry with the SRID 4267 (NAD 1927 long lat):

CREATE TABLE polys(gid serial PRIMARY KEY, geom geometry (POLYGON, 4267));

It is possible to have more than one geometry column in a table. This can be specified when the table is created, or a column can
be added using the ALTER TABLE SQL statement. This example adds a column that can hold 3D LineStrings:

ALTER TABLE roads ADD COLUMN geom2 geometry (LINESTRINGZ,4326);

4.6.2 GEOMETRY_COLUMNS View

The OGC Simple Features Specification for SOL defines the GEOMETRY_ COLUMNS metadata table to describe geometry table
structure. In PostGIS geometry_columns is a view reading from database system catalog tables. This ensures that the spatial
metadata information is always consistent with the currently defined tables and views. The view structure is:

\d geometry_columns

View "public.geometry_columns"
Column | Type

()
f_table_schema character varying(256)
f_table_name character varying(256)

()

character varying (256

+
f_table_catalog | character varying (256

|

|

f_geometry_column |

|

|

|

coord_dimension integer
srid integer
type character varying(30)

The columns are:

f table_catalog, f_table_schema, f_table_name The fully qualified name of the feature table containing the
geometry column. There is no PostgreSQL analogue of "catalog" so that column is left blank. For "schema" the Post-
greSQL schema name is used (public is the default).

f _geometry_column The name of the geometry column in the feature table.
coord_dimension The coordinate dimension (2, 3 or 4) of the column.

srid The ID of the spatial reference system used for the coordinate geometry in this table. It is a foreign key reference to the
spatial_ref_sys table (see Section 4.5.1).

type The type of the spatial object. To restrict the spatial column to a single type, use one of: POINT, LINESTRING, POLY-
GON, MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, GEOMETRYCOLLECTION or corresponding XYM
versions POINTM, LINESTRINGM, POLYGONM, MULTIPOINTM, MULTILINESTRINGM, MULTIPOLYGONM,
GEOMETRYCOLLECTIONM. For heterogeneous (mixed-type) collections, you can use "GEOMETRY" as the type.

https://www.postgresql.org/docs/current/sql-altertable.html

PostGIS 3.6.0rc2 Manual 47 /918

4.6.3 Manually Registering Geometry Columns

Two of the cases where you may need this are the case of SQL Views and bulk inserts. For bulk insert case, you can correct
the registration in the geometry_columns table by constraining the column or doing an alter table. For views, you could expose
using a CAST operation. Note, if your column is typmod based, the creation process would register it correctly, so no need to do
anything. Also views that have no spatial function applied to the geometry will register the same as the underlying table geometry
column.

—— Lets say you have a view created like this

CREATE VIEW public.vwmytablemercator AS
SELECT gid, ST_Transform(geom, 3395) As geom, f_name
FROM public.mytable;

-— For it to register correctly

—— You need to cast the geometry

DROP VIEW public.vwmytablemercator;

CREATE VIEW public.vwmytablemercator AS
SELECT gid, ST_Transform(geom, 3395) ::geometry (Geometry, 3395) As geom, f_name
FROM public.mytable;

—-— If you know the geometry type for sure is a 2D POLYGON then you could do
DROP VIEW public.vwmytablemercator;
CREATE VIEW public.vwmytablemercator AS
SELECT gid, ST_Transform(geom,3395) ::geometry (Polygon, 3395) As geom, f_name
FROM public.mytable;

—-Lets say you created a derivative table by doing a bulk insert

SELECT poi.gid, poi.geom, citybounds.city_name

INTO myschema.my_special_pois

FROM poi INNER JOIN citybounds ON ST_Intersects (citybounds.geom, poi.geom);

—— Create 2D index on new table
CREATE INDEX idx_myschema_myspecialpois_geom_gist
ON myschema.my_special_pois USING gist (geom) ;

—-— If your points are 3D points or 3M points,
—— then you might want to create an nd index instead of a 2D index
CREATE INDEX my_special_pois_geom_gist_nd

ON my_special_pois USING gist (geom gist_geometry_ops_nd);

—-— To manually register this new table's geometry column in geometry_columns.
—-— Note it will also change the underlying structure of the table to

—-— to make the column typmod based.

SELECT populate_geometry_columns ('myschema.my_special_pois'::regclass);

—— If you are using PostGIS 2.0 and for whatever reason, you

—-— you need the constraint based definition behavior

—— (such as case of inherited tables where all children do not have the same type and srid)
—-— set optional use_typmod argument to false

SELECT populate_geometry_columns ('myschema.my_special_ pois'::regclass, false);

Although the old-constraint based method is still supported, a constraint-based geometry column used directly in a view, will not
register correctly in geometry_columns, as will a typmod one. In this example we define a column using typmod and another
using constraints.

CREATE TABLE pois_ny(gid SERIAL PRIMARY KEY, poi_name text, cat text, geom geometry (POINT <
,4326));
SELECT AddGeometryColumn ('pois_ny', 'geom_2160', 2160, 'POINT', 2, false);

If we run in psql

PostGIS 3.6.0rc2 Manual

48/918

\d pois_ny;

We observe they are defined differently -- one is typmod, one is constraint

Table "public.pois_ny"

Column | Type | Modifiers
___________ T
gid | integer | not null default nextval ('pois_ny_gid_seq'::regclass)
poi_name | text |
cat | character varying(20) |
geom | geometry (Point,4326) |
geom_2160 | geometry |
Indexes:

"pois_ny_pkey" PRIMARY KEY, btree (gid)
Check constraints:

"enforce_dims_geom_2160" CHECK (st_ndims (geom_2160) = 2)

"enforce_geotype_geom_2160" CHECK (geometrytype (geom_2160) = 'POINT'::text
OR geom_2160 IS NULL)

"enforce_srid_geom_2160" CHECK (st_srid(geom_2160) = 2160)

In geometry_columns, they both register correctly

SELECT f_table_name, f_geometry_column, srid, type
FROM geometry_columns

WHERE f_table_name = 'pois_ny';
f_table_name | f_geometry_column | srid | type
7777777777777 o
pois_ny | geom | 4326 | POINT
pois_ny | geom_2160 | 2160 | POINT

However -- if we were to create a view like this

CREATE VIEW vw_pois_ny_parks AS
SELECT =

FROM pois_ny

WHERE cat='park';

SELECT f_table_name, f_geometry_column, srid, type

FROM geometry_columns
WHERE f_table_name = 'vw_pois_ny_parks';

The typmod based geom view column registers correctly, but the constraint based one does not.

f _table_name | f_geometry_column | srid | type
—————————————————— o
vw_pois_ny_parks | geom | 4326 | POINT
vw_pois_ny_parks | geom_2160 | 0 | GEOMETRY

This may change in future versions of PostGIS, but for now to force the constraint-based view column to register correctly, you

need to do this:

DROP VIEW vw_pois_ny_parks;
CREATE VIEW vw_pois_ny_parks AS
SELECT gid, poi_name, cat,
geom,
geom_2160: :geometry (POINT,2160) As geom_2160
FROM pois_ny
WHERE cat = 'park';
SELECT f_table_name, f_geometry_column, srid, type

PostGIS 3.6.0rc2 Manual 49/918

FROM geometry_columns

WHERE f_table_name = 'vw_pois_ny_parks';

f _table_name | f_geometry_column | srid | type
—————————————————— Bt e
vw_pois_ny_parks | geom | 4326 | POINT
vw_pois_ny_parks | geom_ 2160 | 2160 | POINT

4.7 Loading Spatial Data

Once you have created a spatial table, you are ready to upload spatial data to the database. There are two built-in ways to get
spatial data into a PostGIS/PostgreSQL database: using formatted SQL statements or using the Shapefile loader.

4.7.1 Using SQL to Load Data

If spatial data can be converted to a text representation (as either WKT or WKB), then using SQL might be the easiest way to get
data into PostGIS. Data can be bulk-loaded into PostGIS/PostgreSQL by loading a text file of SQL INSERT statements using
the psgl SQL utility.

A SQL load file (roads . sgl for example) might look like this:

BEGIN;
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (1, 'LINESTRING (191232 243118,191108 243242)"','Jeff Rd');
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (2, 'LINESTRING (189141 244158,189265 244817)"', 'Geordie Rd');
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (3, 'LINESTRING (192783 228138,192612 229814) "', 'Paul St');
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (4, 'LINESTRING (189412 252431,189631 259122)"', 'Graeme Ave');
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (5, '"LINESTRING (190131 224148,190871 228134)"','Phil Tce');
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (6, 'LINESTRING (198231 263418,198213 268322) "', 'Dave Cres');
COMMIT;

The SQL file can be loaded into PostgreSQL using psql:

psgl —-d [database] —-f roads.sgl

4.7.2 Using the Shapefile Loader

The shp2pgsqgl data loader converts Shapefiles into SQL suitable for insertion into a PostGIS/PostgreSQL database either in
geometry or geography format. The loader has several operating modes selected by command line flags.

There is also a shp2pgsgl—-gui graphical interface with most of the options as the command-line loader. This may be easier
to use for one-off non-scripted loading or if you are new to PostGIS. It can also be configured as a plugin to PgAdminlIII.

(claldlp) These are mutually exclusive options:

—c Creates a new table and populates it from the Shapefile. This is the default mode.

—a Appends data from the Shapefile into the database table. Note that to use this option to load multiple files, the files
must have the same attributes and same data types.

—d Drops the database table before creating a new table with the data in the Shapefile.

PostGIS 3.6.0rc2 Manual 50/918

-w

—-e

—p Only produces the table creation SQL code, without adding any actual data. This can be used if you need to completely
separate the table creation and data loading steps.

Display help screen.

Use the PostgreSQL "dump" format for the output data. This can be combined with -a, -c and -d. It is much faster to load
than the default "insert" SQL format. Use this for very large data sets.

[<FROM_SRID>:]<SRID> Creates and populates the geometry tables with the specified SRID. Optionally specifies that
the input shapefile uses the given FROM_SRID, in which case the geometries will be reprojected to the target SRID.

Keep identifiers’ case (column, schema and attributes). Note that attributes in Shapefile are all UPPERCASE.

Coerce all integers to standard 32-bit integers, do not create 64-bit bigints, even if the DBF header signature appears to
warrant it.

Create a GiST index on the geometry column.

-m a_file_name Specify a file containing a set of mappings of (long) column names to 10 character DBF column names.
The content of the file is one or more lines of two names separated by white space and no trailing or leading space. For
example:

COLUMNNAME DBFFIELDI1
AVERYLONGCOLUMNNAME DBFFIELD2

Generate simple geometries instead of MULTI geometries. Will only succeed if all the geometries are actually single (L.E. a
MULTIPOLYGON with a single shell, or or a MULTIPOINT with a single vertex).

<dimensionality> Force the output geometry to have the specified dimensionality. Use the following strings to indi-
cate the dimensionality: 2D, 3DZ, 3DM, 4D.

If the input has fewer dimensions that specified, the output will have those dimensions filled in with zeroes. If the input
has more dimensions that specified, the unwanted dimensions will be stripped.

Output WKT format, instead of WKB. Note that this can introduce coordinate drifts due to loss of precision.

Execute each statement on its own, without using a transaction. This allows loading of the majority of good data when there
are some bad geometries that generate errors. Note that this cannot be used with the -D flag as the "dump" format always
uses a transaction.

<encoding> Specify encoding of the input data (dbf file). When used, all attributes of the dbf are converted from the
specified encoding to UTF8. The resulting SQL output will contain a SET CLIENT_ENCODING to UTF8 command,
so that the backend will be able to reconvert from UTFS§ to whatever encoding the database is configured to use internally.

<policy> NULL geometries handling policy (insert*,skip,abort)

-n Only import DBF file. If your data has no corresponding shapefile, it will automatically switch to this mode and load just
the dbf. So setting this flag is only needed if you have a full shapefile set, and you only want the attribute data and no
geometry.

Use geography type instead of geometry (requires lon/lat data) in WGS84 long lat (SRID=4326)

<tablespace> Specify the tablespace for the new table. Indexes will still use the default tablespace unless the -X
parameter is also used. The PostgreSQL documentation has a good description on when to use custom tablespaces.

<tablespace> Specify the tablespace for the new table’s indexes. This applies to the primary key index, and the GIST
spatial index if -I is also used.

When used, this flag will prevent the generation of ANALYZE statements. Without the -Z flag (default behavior), the
ANALYZE statements will be generated.

An example session using the loader to create an input file and loading it might look like this:

PostGIS 3.6.0rc2 Manual 51/918

shp2pgsgl -c -D -s 4269 -i -I shaperoads.shp myschema.roadstable > roads.sqgl
psgl -d roadsdb -f roads.sql

A conversion and load can be done in one step using UNIX pipes:

shp2pgsgl shaperoads.shp myschema.roadstable | psgl -d roadsdb

4.8 Extracting Spatial Data

Spatial data can be extracted from the database using either SQL or the Shapefile dumper. The section on SQL presents some of
the functions available to do comparisons and queries on spatial tables.

4.8.1 Using SQL to Extract Data

The most straightforward way of extracting spatial data out of the database is to use a SQL SELECT query to define the data set
to be extracted and dump the resulting columns into a parsable text file:

db=# SELECT road_id, ST_AsText (road_geom) AS geom, road_name FROM roads;

road_id | geom | road_name
________ e S
1 | LINESTRING (191232 243118,191108 243242) | Jeff Rd
2 | LINESTRING (189141 244158,189265 244817) | Geordie Rd
3 | LINESTRING (192783 228138,192612 229814) | Paul St
4 | LINESTRING (189412 252431,189631 259122) | Graeme Ave
5 | LINESTRING (190131 224148,190871 228134) | Phil Tce
6 | LINESTRING (198231 263418,198213 268322) | Dave Cres
7 | LINESTRING (218421 284121,224123 241231) | Chris Way
(6 rows)

There will be times when some kind of restriction is necessary to cut down the number of records returned. In the case of
attribute-based restrictions, use the same SQL syntax as used with a non-spatial table. In the case of spatial restrictions, the
following functions are useful:

ST_Intersects This function tells whether two geometries share any space.

= This tests whether two geometries are geometrically identical. For example, if "'POLYGON((0 0,1 1,1 0,0 0))’ is the same as
’POLYGON((0 0,1 1,1 0,0 0))’ (it is).

Next, you can use these operators in queries. Note that when specifying geometries and boxes on the SQL command line, you
must explicitly turn the string representations into geometries function. The 312 is a fictitious spatial reference system that
matches our data. So, for example:

SELECT road_id, road_name
FROM roads
WHERE roads_geom="'SRID=312; LINESTRING (191232 243118,191108 243242) '::geometry;

The above query would return the single record from the "ROADS_GEOM" table in which the geometry was equal to that value.
To check whether some of the roads passes in the area defined by a polygon:

SELECT road_id, road_name
FROM roads
WHERE ST_Intersects (roads_geom, 'SRID=312;POLYGON((...))");

PostGIS 3.6.0rc2 Manual 52/918

The most common spatial query will probably be a "frame-based" query, used by client software, like data browsers and web
mappers, to grab a "map frame" worth of data for display.

When using the "&&" operator, you can specify either a BOX3D as the comparison feature or a GEOMETRY. When you specify
a GEOMETRY, however, its bounding box will be used for the comparison.

Using a "BOX3D" object for the frame, such a query looks like this:

SELECT ST_AsText (roads_geom) AS geom
FROM roads
WHERE
roads_geom && ST_MakeEnvelope (191232, 243117,191232, 243119,312);

Note the use of the SRID 312, to specify the projection of the envelope.

4.8.2 Using the Shapefile Dumper

The pgsgl2shp table dumper connects to the database and converts a table (possibly defined by a query) into a shape file. The
basic syntax is:

pgsgl2shp [<options>] <database> [<schema>.]<table>
pgsgl2shp [<options>] <database> <query>
The commandline options are:

—-f <filename> Write the output to a particular filename.

-h <host> The database host to connect to.

-p <port> The port to connect to on the database host.

-P <password> The password to use when connecting to the database.
—u <user> The username to use when connecting to the database.

—-g <geometry column> In the case of tables with multiple geometry columns, the geometry column to use when writing
the shape file.

-b Use a binary cursor. This will make the operation faster, but will not work if any NON-geometry attribute in the table lacks
a cast to text.

—r Raw mode. Do not drop the gid field, or escape column names.

-m filename Remap identifiers to ten character names. The content of the file is lines of two symbols separated by a single
white space and no trailing or leading space: VERYLONGSYMBOL SHORTONE ANOTHERVERYLONGSYMBOL
SHORTER etc.

4.9 Spatial Indexes

Spatial indexes make using a spatial database for large data sets possible. Without indexing, a search for features requires a
sequential scan of every record in the database. Indexing speeds up searching by organizing the data into a structure which can
be quickly traversed to find matching records.

The B-tree index method commonly used for attribute data is not very useful for spatial data, since it only supports storing and
querying data in a single dimension. Data such as geometry (which has 2 or more dimensions) requires an index method that
supports range query across all the data dimensions. One of the key advantages of PostgreSQL for spatial data handling is that it
offers several kinds of index methods which work well for multi-dimensional data: GiST, BRIN and SP-GiST indexes.

PostGIS 3.6.0rc2 Manual 53/918

non non

* GiST (Generalized Search Tree) indexes break up data into "things to one side", "things which overlap", "things which are
inside" and can be used on a wide range of data-types, including GIS data. PostGIS uses an R-Tree index implemented on top
of GiST to index spatial data. GiST is the most commonly-used and versatile spatial index method, and offers very good query
performance.

* BRIN (Block Range Index) indexes operate by summarizing the spatial extent of ranges of table records. Search is done via
a scan of the ranges. BRIN is only appropriate for use for some kinds of data (spatially sorted, with infrequent or no update).
But it provides much faster index create time, and much smaller index size.

* SP-GiST (Space-Partitioned Generalized Search Tree) is a generic index method that supports partitioned search trees such
as quad-trees, k-d trees, and radix trees (tries).

Spatial indexes store only the bounding box of geometries. Spatial queries use the index as a primary filter to quickly deter-
mine a set of geometries potentially matching the query condition. Most spatial queries require a secondary filter that uses a
spatial predicate function to test a more specific spatial condition. For more information on queying with spatial predicates see
Section 5.2.

See also the PostGIS Workshop section on spatial indexes, and the PostgreSQL manual.

4.9.1 GiST Indexes

GiST stands for "Generalized Search Tree" and is a generic form of indexing for multi-dimensional data. PostGIS uses an R-Tree
index implemented on top of GiST to index spatial data. GiST is the most commonly-used and versatile spatial index method,
and offers very good query performance. Other implementations of GiST are used to speed up searches on all kinds of irregular
data structures (integer arrays, spectral data, etc) which are not amenable to normal B-Tree indexing. For more information see
the PostgreSQL manual.

Once a spatial data table exceeds a few thousand rows, you will want to build an index to speed up spatial searches of the data
(unless all your searches are based on attributes, in which case you’ll want to build a normal index on the attribute fields).

The syntax for building a GiST index on a "geometry" column is as follows:

CREATE INDEX [indexname] ON [tablename] USING GIST ([geometryfield]);

The above syntax will always build a 2D-index. To get the an n-dimensional index for the geometry type, you can create one
using this syntax:

CREATE INDEX [indexname] ON [tablename] USING GIST ([geometryfield] gist_geometry_ops_nd);

Building a spatial index is a computationally intensive exercise. It also blocks write access to your table for the time it creates,
so on a production system you may want to do in in a slower CONCURRENTLY-aware way:

CREATE INDEX CONCURRENTLY [indexname] ON [tablename] USING GIST ([geometryfield]);

After building an index, it is sometimes helpful to force PostgreSQL to collect table statistics, which are used to optimize query
plans:

VACUUM ANALYZE [table_name] [(column_name)];

4.9.2 BRIN Indexes

BRIN stands for "Block Range Index". It is a general-purpose index method introduced in PostgreSQL 9.5. BRIN is a lossy
index method, meaning that a secondary check is required to confirm that a record matches a given search condition (which is
the case for all provided spatial indexes). It provides much faster index creation and much smaller index size, with reasonable
read performance. Its primary purpose is to support indexing very large tables on columns which have a correlation with their
physical location within the table. In addition to spatial indexing, BRIN can speed up searches on various kinds of attribute data
structures (integer, arrays etc). For more information see the PostgreSQL manual.

https://postgis.net/workshops/postgis-intro/indexing.html
https://www.postgresql.org/docs/current/indexes.html
https://www.postgresql.org/docs/current/gist.html
https://www.postgresql.org/docs/current/brin.html

PostGIS 3.6.0rc2 Manual 54 /918

Once a spatial table exceeds a few thousand rows, you will want to build an index to speed up spatial searches of the data. GiST
indexes are very performant as long as their size doesn’t exceed the amount of RAM available for the database, and as long as
you can afford the index storage size, and the cost of index update on write. Otherwise, for very large tables BRIN index can be
considered as an alternative.

A BRIN index stores the bounding box enclosing all the geometries contained in the rows in a contiguous set of table blocks,
called a block range. When executing a query using the index the block ranges are scanned to find the ones that intersect the
query extent. This is efficient only if the data is physically ordered so that the bounding boxes for block ranges have minimal
overlap (and ideally are mutually exclusive). The resulting index is very small in size, but is typically less performant for read
than a GiST index over the same data.

Building a BRIN index is much less CPU-intensive than building a GiST index. It’s common to find that a BRIN index is ten
times faster to build than a GiST index over the same data. And because a BRIN index stores only one bounding box for each
range of table blocks, it’s common to use up to a thousand times less disk space than a GiST index.

You can choose the number of blocks to summarize in a range. If you decrease this number, the index will be bigger but will
probably provide better performance.

For BRIN to be effective, the table data should be stored in a physical order which minimizes the amount of block extent overlap.
It may be that the data is already sorted appropriately (for instance, if it is loaded from another dataset that is already sorted in
spatial order). Otherwise, this can be accomplished by sorting the data by a one-dimensional spatial key. One way to do this is
to create a new table sorted by the geometry values (which in recent PostGIS versions uses an efficient Hilbert curve ordering):

CREATE TABLE table_sorted AS
SELECT * FROM table ORDER BY geom;

Alternatively, data can be sorted in-place by using a GeoHash as a (temporary) index, and clustering on that index:

CREATE INDEX idx_temp_geohash ON table
USING btree (ST_GeoHash(ST_Transform(geom, 4326), 20));
CLUSTER table USING idx_temp_geohash;

The syntax for building a BRIN index on a geomet ry column is:

CREATE INDEX [indexname] ON [tablename] USING BRIN ([geome_col]);

The above syntax builds a 2D index. To build a 3D-dimensional index, use this syntax:

CREATE INDEX [indexname] ON [tablename]
USING BRIN ([geome_col] brin_geometry_inclusion_ops_3d);

You can also get a 4D-dimensional index using the 4D operator class:

CREATE INDEX [indexname] ON [tablename]
USING BRIN ([geome_col] brin_geometry_inclusion_ops_4d);

The above commands use the default number of blocks in a range, which is 128. To specify the number of blocks to summarise
in a range, use this syntax

CREATE INDEX [indexname] ON [tablename]
USING BRIN ([geome_col]) WITH (pages_per_range = [number]);

Keep in mind that a BRIN index only stores one index entry for a large number of rows. If your table stores geometries with
a mixed number of dimensions, it’s likely that the resulting index will have poor performance. You can avoid this performance
penalty by choosing the operator class with the least number of dimensions of the stored geometries

The geography datatype is supported for BRIN indexing. The syntax for building a BRIN index on a geography column is:

CREATE INDEX [indexname] ON [tablename] USING BRIN ([geog_col]);

PostGIS 3.6.0rc2 Manual 55/918

The above syntax builds a 2D-index for geospatial objects on the spheroid.

Currently, only "inclusion support" is provided, meaning that just the & &, ~ and @ operators can be used for the 2D cases (for both
geometry and geography), and just the & & & operator for 3D geometries. There is currently no support for KNN searches.

An important difference between BRIN and other index types is that the database does not maintain the index dynamically.
Changes to spatial data in the table are simply appended to the end of the index. This will cause index search performance to de-

grade over time. The index can be updated by performing a VACUUM, or by using a special functionbrin_summarize_new_values
For this reason BRIN may be most appropriate for use with data that is read-only, or only rarely changing. For more information

refer to the manual.

To summarize using BRIN for spatial data:

* Index build time is very fast, and index size is very small.

* Index query time is slower than GiST, but can still be very acceptable.

* Requires table data to be sorted in a spatial ordering.

* Requires manual index maintenance.

* Most appropriate for very large tables, with low or no overlap (e.g. points), which are static or change infrequently.

* More effective for queries which return relatively large numbers of data records.

4.9.3 SP-GiST Indexes

SP-GiST stands for "Space-Partitioned Generalized Search Tree" and is a generic form of indexing for multi-dimensional data
types that supports partitioned search trees, such as quad-trees, k-d trees, and radix trees (tries). The common feature of these
data structures is that they repeatedly divide the search space into partitions that need not be of equal size. In addition to spatial
indexing, SP-GiST is used to speed up searches on many kinds of data, such as phone routing, ip routing, substring search, etc.
For more information see the PostgreSQL manual.

As it is the case for GiST indexes, SP-GiST indexes are lossy, in the sense that they store the bounding box enclosing spatial
objects. SP-GiST indexes can be considered as an alternative to GiST indexes.

Once a GIS data table exceeds a few thousand rows, an SP-GiST index may be used to speed up spatial searches of the data. The
syntax for building an SP-GiST index on a "geometry" column is as follows:

CREATE INDEX [indexname] ON [tablename] USING SPGIST ([geometryfield]);

The above syntax will build a 2-dimensional index. A 3-dimensional index for the geometry type can be created using the 3D
operator class:

CREATE INDEX [indexname] ON [tablename] USING SPGIST ([geometryfield] <+

spgist_geometry_ops_3d);

Building a spatial index is a computationally intensive operation. It also blocks write access to your table for the time it creates,
so on a production system you may want to do in in a slower CONCURRENTLY-aware way:

CREATE INDEX CONCURRENTLY [indexname] ON [tablename] USING SPGIST ([geometryfield]);

After building an index, it is sometimes helpful to force PostgreSQL to collect table statistics, which are used to optimize query
plans:

VACUUM ANALYZE [table_name] [(column_name)];

An SP-GiST index can accelerate queries involving the following operators:

¢ <<, &<, &>, >>, <<, &<, 1&>, [>>, &&, @>, <@, and ~=, for 2-dimensional indexes,

e &/&, ~==, @>>, and <<@, for 3-dimensional indexes.

There is no support for kNN searches at the moment.

https://www.postgresql.org/docs/current/brin-intro.html#BRIN-OPERATION
https://www.postgresql.org/docs/current/spgist.html

PostGIS 3.6.0rc2 Manual 56 /918

4.9.4 Tuning Index Usage

Ordinarily, indexes invisibly speed up data access: once an index is built, the PostgreSQL query planner automatically decides
when to use it to improve query performance. But there are some situations where the planner does not choose to use existing
indexes, so queries end up using slow sequential scans instead of a spatial index.

If you find your spatial indexes are not being used, there are a few things you can do:

» Examine the query plan and check your query actually computes the thing you need. An erroneous JOIN, either forgotten or
to the wrong table, can unexpectedly retrieve table records multiple times. To get the query plan, execute with EXPLAIN in
front of the query.

* Make sure statistics are gathered about the number and distributions of values in a table, to provide the query planner with
better information to make decisions around index usage. VACUUM ANALYZE will compute both.

You should regularly vacuum your databases anyways. Many PostgreSQL DBAs run VACUUM as an off-peak cron job on a
regular basis.

* If vacuuming does not help, you can temporarily force the planner to use the index information by using the command SET
ENABLE_SEQSCAN TO OFF;. This way you can check whether the planner is at all able to generate an index-accelerated
query plan for your query. You should only use this command for debugging; generally speaking, the planner knows better
than you do about when to use indexes. Once you have run your query, do not forget to run SET ENABLE_SEQSCAN TO
ON; so that the planner will operate normally for other queries.

e If SET ENABLE_SEQSCAN TO OFF; helps your query to run faster, your Postgres is likely not tuned for your hardware. If
you find the planner wrong about the cost of sequential versus index scans try reducing the value of RANDOM_PAGE_COST in
postgresqgl.conf, or use SET RANDOM_PAGE_COST TO 1.1;. The default value for RANDOM_PAGE_COST is 4.0.
Try setting it to 1.1 (for SSD) or 2.0 (for fast magnetic disks). Decreasing the value makes the planner more likely to use index
scans.

» If SET ENABLE_SEQSCAN TO OFF; does not help your query, the query may be using a SQL construct that the Postgres
planner is not yet able to optimize. It may be possible to rewrite the query in a way that the planner is able to handle.
For example, a subquery with an inline SELECT may not produce an efficient plan, but could possibly be rewritten using a
LATERAL JOIN.

For more information see the Postgres manual section on Query Planning.

https://www.postgresql.org/docs/current/runtime-config-query.html

PostGIS 3.6.0rc2 Manual 57 /918

Chapter 5

Spatial Queries

The raison d’etre of spatial databases is to perform queries inside the database which would ordinarily require desktop GIS
functionality. Using PostGIS effectively requires knowing what spatial functions are available, how to use them in queries, and
ensuring that appropriate indexes are in place to provide good performance.

5.1 Determining Spatial Relationships

Spatial relationships indicate how two geometries interact with one another. They are a fundamental capability for querying
geometry.

5.1.1 Dimensionally Extended 9-Intersection Model

According to the OpenGIS Simple Features Implementation Specification for SQL, "the basic approach to comparing two ge-
ometries is to make pair-wise tests of the intersections between the Interiors, Boundaries and Exteriors of the two geometries and
to classify the relationship between the two geometries based on the entries in the resulting “intersection’ matrix."

In the theory of point-set topology, the points in a geometry embedded in 2-dimensional space are categorized into three sets:

Boundary

The boundary of a geometry is the set of geometries of the next lower dimension. For POINTs, which have a dimension
of 0, the boundary is the empty set. The boundary of a LINESTRING is the two endpoints. For POLYGONSs, the boundary
is the linework of the exterior and interior rings.

Interior

The interior of a geometry are those points of a geometry that are not in the boundary. For POINTS, the interior is the point
itself. The interior of a LINESTRING is the set of points between the endpoints. For POLYGONs, the interior is the areal
surface inside the polygon.

Exterior

The exterior of a geometry is the rest of the space in which the geometry is embedded; in other words, all points not in the
interior or on the boundary of the geometry. It is a 2-dimensional non-closed surface.

The Dimensionally Extended 9-Intersection Model (DE-9IM) describes the spatial relationship between two geometries by spec-
ifying the dimensions of the 9 intersections between the above sets for each geometry. The intersection dimensions can be
formally represented in a 3x3 intersection matrix.

For a geometry g the Interior, Boundary, and Exterior are denoted using the notation I(g), B(g), and E(g). Also, dim(s) denotes
the dimension of a set s with the domain of {0,1,2,F}:

http://www.opengeospatial.org/standards/sfs
http://en.wikipedia.org/wiki/DE-9IM

PostGIS 3.6.0rc2 Manual 58/918
e 0 => point
e 1 =>line
e 2 =>area
* F' =>empty set
Using this notation, the intersection matrix for two geometries a and b is:
Interior Boundary Exterior
Interior dim(I(a) N I(b)) dim(I(a) N B(b)) dim(I(a) N E(b))
Boundary dim(B(a) N I(b)) dim(B(a) N B(b)) dim(B(a) N E(b))
Exterior dim(E(a) N I(b)) dim(E(a) N B(b)) dim(E(a) N E(b))

Visually, for two overlapping polygonal geometries, this looks like:

PostGIS 3.6.0rc2 Manual 59/918

Interior Boundary Exterior

i

< Interior

dim(I(a)NI(b))=2 | dim(Ka)NB(b)=1 | dim(I(a)E(b))=2

il
———
———

Boundary

dim(B(a) N 1I(b)) =1 | dim(B(a) " B(b))=0 | dim(B(a) " E(b))=1

- -
e

Exterior

dim(E(a) N I(b)) =2 | dim(E(a) NB(b)) =1 | dim(E(a) N E(b) =2

Reading from left to right and top to bottom, the intersection matrix is represented as the text string *212101212’.

For more information, refer to:

* OpenGIS Simple Features Implementation Specification for SQL (version 1.1, section 2.1.13.2)
* Wikipedia: Dimensionally Extended Nine-Intersection Model (DE-9IM)
* GeoTools: Point Set Theory and the DE-9IM Matrix

5.1.2 Named Spatial Relationships

To make it easy to determine common spatial relationships, the OGC SFS defines a set of named spatial relationship predi-
cates. PostGIS provides these as the functions ST_Contains, ST_Crosses, ST_Disjoint, ST_Equals, ST_Intersects, ST_Overlaps,
ST_Touches, ST_Within. It also defines the non-standard relationship predicates ST_Covers, ST_CoveredBy, and ST_ContainsProperly.

Spatial predicates are usually used as conditions in SQL WHERE or JOIN clauses. The named spatial predicates automatically
use a spatial index if one is available, so there is no need to use the bounding box operator && as well. For example:

SELECT city.name, state.name, city.geom
FROM city JOIN state ON ST_Intersects(city.geom, state.geom);

For more details and illustrations, see the PostGIS Workshop.

http://www.opengeospatial.org/standards/sfs
https://en.wikipedia.org/wiki/DE-9IM
http://docs.geotools.org/latest/userguide/library/jts/dim9.html
https://postgis.net/workshops/postgis-intro/spatial_relationships.html

PostGIS 3.6.0rc2 Manual 60/918

5.1.3 General Spatial Relationships

In some cases the named spatial relationships are insufficient to provide a desired spatial filter condition.

For example, consider a linear dataset representing a road network. It may be required to identify all road segments that
cross each other, not at a point, but in a line (perhaps to validate some business rule). In this case ST_Crosses does not
provide the necessary spatial filter, since for linear features it returns t rue only where they cross at a point.

A two-step solution would be to first compute the actual intersection (ST_Intersection) of pairs of road lines that spatially
intersect (ST_Intersects), and then check if the intersection’s ST_GeometryType is 'LINESTRING’ (properly dealing
with cases that return GEOMETRYCOLLECTIONs of [MULTI]POINTS, [MULTI]LINESTRINGsS, etc.).

Clearly, a simpler and faster solution is desirable.

PostGIS 3.6.0rc2 Manual 61/918

A second example is locating wharves that intersect a lake’s boundary on a line and where one end of the wharf is up on
shore. In other words, where a wharf is within but not completely contained by a lake, intersects the boundary of a lake on
a line, and where exactly one of the wharf’s endpoints is within or on the boundary of the lake. It is possible to use a
combination of spatial predicates to find the required features:

¢ ST_Contains(lake, wharf) = TRUE
¢ ST_ContainsProperly(lake, wharf) = FALSE
e ST_GeometryType(ST_Intersection(wharf, lake)) = "LINESTRING’

e ST_NumGeometries(ST_Multi(ST_Intersection(ST_Boundary(wharf), ST_Boundary(lake)))) = 1

... but needless to say, this is quite complicated.

These requirements can be met by computing the full DE-9IM intersection matrix. PostGIS provides the ST_Relate function to
do this:

SELECT ST _Relate('LINESTRING (1 1, 5 5)',
'"POLYGON ((3 3, 3 7, 7 7, 7 3, 3 3))");
st_relate

1010F0212

To test a particular spatial relationship, an intersection matrix pattern is used. This is the matrix representation augmented with
the additional symbols {T, *}:

e T => intersection dimension is non-empty; i.e. isin {0, 1,2}

e x =>don’t care

Using intersection matrix patterns, specific spatial relationships can be evaluated in a more succinct way. The ST_Relate and the
ST_RelateMatch functions can be used to test intersection matrix patterns. For the first example above, the intersection matrix
pattern specifying two lines intersecting in a line is *1#*1##*1%%*’;

—-— Find road segments that intersect in a line
SELECT a.id
FROM roads a, roads b
WHERE a.id != b.id
AND a.geom && b.geom
AND ST_Relate(a.geom, b.geom, '"lxlxx*xlxx");

PostGIS 3.6.0rc2 Manual 62/918

For the second example, the intersection matrix pattern specifying a line partly inside and partly outside a polygon is "102101FF2’:

—-— Find wharves partly on a lake's shoreline
SELECT a.lake_id, b.wharf_id
FROM lakes a, wharfs b
WHERE a.geom && b.geom
AND ST_Relate(a.geom, b.geom, '102101FF2");

5.2 Using Spatial Indexes

When constructing queries using spatial conditions, for best performance it is important to ensure that a spatial index is used, if
one exists (see Section 4.9). To do this, a spatial operator or index-aware function must be used in a WHERE or ON clause of the

query.

Spatial operators include the bounding box operators (of which the most commonly used is &&; see Section 7.10.1 for the full
list) and the distance operators used in nearest-neighbor queries (the most common being <->; see Section 7.10.2 for the full list.)

Index-aware functions automatically add a bounding box operator to the spatial condition. Index-aware functions include the
named spatial relationship predicates ST_Contains, ST_ContainsProperly, ST_CoveredBy, ST_Covers, ST_Crosses, ST_Intersects,
ST_Overlaps, ST_Touches, ST_Within, ST_Within, and ST_3DIntersects, and the distance predicates ST_DWithin, ST_DFullyWithin,
ST_3DDFullyWithin, and ST_3DDWithin .)

Functions such as ST_Distance do not use indexes to optimize their operation. For example, the following query would be quite
slow on a large table:

SELECT geom
FROM geom_table
WHERE ST_Distance(geom, 'SRID=312;POINT (100000 200000)") < 100

This query selects all the geometries in geom_table which are within 100 units of the point (100000, 200000). It will be
slow because it is calculating the distance between each point in the table and the specified point, ie. one ST_Distance ()
calculation is computed for every row in the table.

The number of rows processed can be reduced substantially by using the index-aware function ST_DWithin:

SELECT geom
FROM geom_table
WHERE ST_DWithin(geom, 'SRID=312;POINT (100000 200000)"', 100)

This query selects the same geometries, but it does it in a more efficient way. This is enabled by ST_DWithin () using the &&
operator internally on an expanded bounding box of the query geometry. If there is a spatial index on geom, the query planner
will recognize that it can use the index to reduce the number of rows scanned before calculating the distance. The spatial index
allows retrieving only records with geometries whose bounding boxes overlap the expanded extent and hence which might be
within the required distance. The actual distance is then computed to confirm whether to include the record in the result set.

For more information and examples see the PostGIS Workshop.

5.3 Examples of Spatial SQL

The examples in this section make use of a table of linear roads, and a table of polygonal municipality boundaries. The definition
of the bc__roads table is:

Column | Type | Description

__________ o

gid | integer | Unique ID

name | character varying | Road Name

geom | geometry | Location Geometry (Linestring)

https://postgis.net/workshops/postgis-intro/indexing.html

PostGIS 3.6.0rc2 Manual 63/918

The definition of the bc_municipality table is:

Column | Type | Description

,,,,,,,,, SO

gid | integer | Unique ID

code | integer | Unique ID

name | character varying | City / Town Name

geom | geometry | Location Geometry (Polygon)

1. What is the total length of all roads, expressed in kilometers?

You can answer this question with a very simple piece of SQL:

SELECT sum(ST_Length (geom)) /1000 AS km_roads FROM bc_roads;

km_roads

70842.1243039643

2. How large is the city of Prince George, in hectares?

This query combines an attribute condition (on the municipality name) with a spatial calculation (of the polygon area):

SELECT

ST_Area (geom) /10000 AS hectares
FROM bc_municipality
WHERE name = 'PRINCE GEORGE';

hectares

32657.9103824927

3. What is the largest municipality in the province, by area?

This query uses a spatial measurement as an ordering value. There are several ways of approaching this problem, but the
most efficient is below:

SELECT

name,

ST_Area (geom) /10000 AS hectares
FROM bc_municipality
ORDER BY hectares DESC

LIMIT 1;

name | hectares
777777777777777 +77777777777777777
TUMBLER RIDGE | 155020.02556131

Note that in order to answer this query we have to calculate the area of every polygon. If we were doing this a lot it
would make sense to add an area column to the table that could be indexed for performance. By ordering the results in
a descending direction, and them using the PostgreSQL "LIMIT" command we can easily select just the largest value
without using an aggregate function like MAX().

4. What is the length of roads fully contained within each municipality?

This is an example of a "spatial join", which brings together data from two tables (with a join) using a spatial interaction
("contained") as the join condition (rather than the usual relational approach of joining on a common key):

SELECT

m.name,

sum (ST_Length (r.geom)) /1000 as roads_km
FROM bc_roads AS r
JOIN bc_municipality AS m

PostGIS 3.6.0rc2 Manual 64 /918

ON ST_Contains (m.geom, r.geom)
GROUP BY m.name
ORDER BY roads_km;

name | roads_km

____________________________ +__________________

SURREY | 1539.47553551242

VANCOUVER | 1450.33093486576

LANGLEY DISTRICT | 833.793392535662

BURNABY | 773.769091404338
|

PRINCE GEORGE 694.37554369147

This query takes a while, because every road in the table is summarized into the final result (about 250K roads for the
example table). For smaller datasets (several thousand records on several hundred) the response can be very fast.

5. Create a new table with all the roads within the city of Prince George.

This is an example of an "overlay", which takes in two tables and outputs a new table that consists of spatially clipped
or cut resultants. Unlike the "spatial join" demonstrated above, this query creates new geometries. An overlay is like a
turbo-charged spatial join, and is useful for more exact analysis work:

CREATE TABLE pg_roads as
SELECT
ST_Intersection(r.geom, m.geom) AS intersection_geom,
ST_Length (r.geom) AS rd_orig_length,
r.*
FROM bc_roads AS r
JOIN bc_municipality AS m
ON ST_Intersects(r.geom, m.geom)
WHERE
m.name = 'PRINCE GEORGE';

6. What is the length in kilometers of "Douglas St" in Victoria?

SELECT

sum (ST_Length (r.geom)) /1000 AS kilometers
FROM bc_roads r
JOIN bc_municipality m

ON ST_Intersects(m.geom, r.geom

WHERE
r.name = 'Douglas St'
AND m.name = 'VICTORIA';
kilometers

4.89151904172838

7. What is the largest municipality polygon that has a hole?

SELECT gid, name, ST_Area(geom) AS area
FROM bc_municipality

WHERE ST_NRings (geom) > 1

ORDER BY area DESC LIMIT 1;

12 | SPALLUMCHEEN | 257374619.430216

PostGIS 3.6.0rc2 Manual 65/918

Chapter 6

Performance Tips

6.1 Small tables of large geometries

6.1.1 Problem description

Current PostgreSQL versions (including 9.6) suffer from a query optimizer weakness regarding TOAST tables. TOAST tables
are a kind of "extension room" used to store large (in the sense of data size) values that do not fit into normal data pages (like long
texts, images or complex geometries with lots of vertices), see the PostgreSQL Documentation for TOAST for more information).

The problem appears if you happen to have a table with rather large geometries, but not too many rows of them (like a table
containing the boundaries of all European countries in high resolution). Then the table itself is small, but it uses lots of TOAST
space. In our example case, the table itself had about 80 rows and used only 3 data pages, but the TOAST table used 8225 pages.

Now issue a query where you use the geometry operator && to search for a bounding box that matches only very few of those
rows. Now the query optimizer sees that the table has only 3 pages and 80 rows. It estimates that a sequential scan on such a
small table is much faster than using an index. And so it decides to ignore the GIST index. Usually, this estimation is correct.
But in our case, the && operator has to fetch every geometry from disk to compare the bounding boxes, thus reading all TOAST
pages, too.

To see whether your suffer from this issue, use the "EXPLAIN ANALYZE" postgresql command. For more information and
the technical details, you can read the thread on the PostgreSQL performance mailing list: http://archives.postgresql.org/pgsql-
performance/2005-02/msg00030.php

and newer thread on PostGIS https://lists.osgeo.org/pipermail/postgis-devel/2017-June/026209.html

6.1.2 Workarounds

The PostgreSQL people are trying to solve this issue by making the query estimation TOAST-aware. For now, here are two
workarounds:

The first workaround is to force the query planner to use the index. Send "SET enable_seqscan TO off;" to the server before
issuing the query. This basically forces the query planner to avoid sequential scans whenever possible. So it uses the GIST index
as usual. But this flag has to be set on every connection, and it causes the query planner to make misestimations in other cases,
so you should "SET enable_seqscan TO on;" after the query.

The second workaround is to make the sequential scan as fast as the query planner thinks. This can be achieved by creating an
additional column that "caches" the bbox, and matching against this. In our example, the commands are like:

SELECT AddGeometryColumn ('myschema', 'mytable', '"bbox', '4326"', '"GEOMETRY"', '2");
UPDATE mytable SET bbox = ST_Envelope (ST_Force2D (geom)) ;

Now change your query to use the && operator against bbox instead of geom_column, like:

http://www.postgresql.org/docs/current/static/storage-toast.html
http://archives.postgresql.org/pgsql-performance/2005-02/msg00030.php
http://archives.postgresql.org/pgsql-performance/2005-02/msg00030.php
https://lists.osgeo.org/pipermail/postgis-devel/2017-June/026209.html

PostGIS 3.6.0rc2 Manual 66 /918

SELECT geom_column
FROM mytable
WHERE bbox && ST_SetSRID('BOX3D(0 0,1 1)'::box3d,4326);

Of course, if you change or add rows to mytable, you have to keep the bbox "in sync". The most transparent way to do this would
be triggers, but you also can modify your application to keep the bbox column current or run the UPDATE query above after
every modification.

6.2 CLUSTERing on geometry indices

For tables that are mostly read-only, and where a single index is used for the majority of queries, PostgreSQL offers the CLUS-
TER command. This command physically reorders all the data rows in the same order as the index criteria, yielding two
performance advantages: First, for index range scans, the number of seeks on the data table is drastically reduced. Second, if
your working set concentrates to some small intervals on the indices, you have a more efficient caching because the data rows
are spread along fewer data pages. (Feel invited to read the CLUSTER command documentation from the PostgreSQL manual
at this point.)

However, currently PostgreSQL does not allow clustering on PostGIS GIST indices because GIST indices simply ignores NULL
values, you get an error message like:

lwgeom=# CLUSTER my_geom_index ON my_table;
ERROR: cannot cluster when index access method does not handle null values
HINT: You may be able to work around this by marking column "geom" NOT NULL.

As the HINT message tells you, one can work around this deficiency by adding a "not null" constraint to the table:

lwgeom=# ALTER TABLE my_table ALTER COLUMN geom SET not null;
ALTER TABLE

Of course, this will not work if you in fact need NULL values in your geometry column. Additionally, you must use the above
method to add the constraint, using a CHECK constraint like "ALTER TABLE blubb ADD CHECK (geometry is not null);" will
not work.

6.3 Avoiding dimension conversion

Sometimes, you happen to have 3D or 4D data in your table, but always access it using OpenGIS compliant ST_AsText() or
ST_AsBinary() functions that only output 2D geometries. They do this by internally calling the ST_Force2D() function, which
introduces a significant overhead for large geometries. To avoid this overhead, it may be feasible to pre-drop those additional
dimensions once and forever:

UPDATE mytable SET geom = ST_Force2D (geom) ;
VACUUM FULL ANALYZE mytable;

Note that if you added your geometry column using AddGeometryColumn() there’ll be a constraint on geometry dimension. To
bypass it you will need to drop the constraint. Remember to update the entry in the geometry_columns table and recreate the
constraint afterwards.

In case of large tables, it may be wise to divide this UPDATE into smaller portions by constraining the UPDATE to a part of the
table via a WHERE clause and your primary key or another feasible criteria, and running a simple "VACUUM;" between your
UPDATE:s. This drastically reduces the need for temporary disk space. Additionally, if you have mixed dimension geometries,
restricting the UPDATE by "WHERE dimension(geom)>2" skips re-writing of geometries that already are in 2D.

PostGIS 3.6.0rc2 Manual 67 /918

Chapter 7

PostGIS Reference

The functions given below are the ones which a user of PostGIS is likely to need. There are other functions which are required
support functions to the PostGIS objects which are not of use to a general user.

Note
B PostGIS has begun a transition from the existing naming convention to an SQL-MM-centric convention. As a result,
N"'M most of the functions that you know and love have been renamed using the standard spatial type (ST) prefix. Previous
functions are still available, though are not listed in this document where updated functions are equivalent. The non
ST_ functions not listed in this documentation are deprecated and will be removed in a future release so STOP USING
THEM.

7.1 PostGIS Geometry/Geography/Box Data Types

7.1.1 box2d

box2d — The type representing a 2-dimensional bounding box.

Description

box2d is a spatial data type used to represent the two-dimensional bounding box enclosing a geometry or collection of geome-
tries. For example, the ST_Extent aggregate function returns a box2d object.

The representation contains the values xmin, ymin, xmax, ymax. These are the minimum and maximum values of the X
and Y extents.

box2d objects have a text representation which looks like BOX (1 2,5 6).

Casting Behavior

This table lists the automatic and explicit casts allowed for this data type:

Cast To Behavior
box3d automatic
geometry automatic

PostGIS 3.6.0rc2 Manual 68/918

See Also

Section 13.7

7.1.2 box3d

box3d — The type representing a 3-dimensional bounding box.

Description

box3d is a PostGIS spatial data type used to represent the three-dimensional bounding box enclosing a geometry or collection
of geometries. For example, the ST_3DExtent aggregate function returns a box3d object.

The representation contains the values xmin, ymin, zmin, xmax, ymax, zmax. These are the minimum and maxi-
mum values of the X, Y and Z extents.

box3d objects have a text representation which looks like BOX3D (1 2 3,5 6 5).

Casting Behavior

This table lists the automatic and explicit casts allowed for this data type:

Cast To Behavior

box automatic

box2d automatic

geometry automatic
See Also

Section 13.7

7.1.3 geometry

geometry — The type representing spatial features with planar coordinate systems.

Description

geometry is a fundamental PostGIS spatial data type used to represent a feature in planar (Euclidean) coordinate systems.

All spatial operations on geometry use the units of the Spatial Reference System the geometry is in.

Casting Behavior

This table lists the automatic and explicit casts allowed for this data type:

Cast To Behavior

box automatic
box2d automatic
box3d automatic
bytea automatic
geography automatic
text automatic

PostGIS 3.6.0rc2 Manual 69/918

See Also

Section 4.1, Section 13.3

7.1.4 geometry_dump

geometry_dump — A composite type used to describe the parts of complex geometry.

Description
geometry_dump is a composite data type containing the fields:

* geom - a geometry representing a component of the dumped geometry. The geometry type depends on the originating function.

e path[] - an integer array that defines the navigation path within the dumped geometry to the geom component. The path
array is 1-based (i.e. path[1] is the first element.)

It is used by the ST_Dump* family of functions as an output type to explode a complex geometry into its constituent parts.

See Also

Section 13.6

7.1.5 geography

geography — The type representing spatial features with geodetic (ellipsoidal) coordinate systems.

Description

geography is a spatial data type used to represent a feature in geodetic coordinate systems. Geodetic coordinate systems model
the earth using an ellipsoid.

Spatial operations on the geography type provide more accurate results by taking the ellipsoidal model into account.

Casting Behavior

This table lists the automatic and explicit casts allowed for this data type:

Cast To Behavior
geometry explicit
See Also

Section 4.3, Section 13.4

7.2 Table Management Functions

7.2.1 AddGeometryColumn

AddGeometryColumn — Adds a geometry column to an existing table.

https://www.postgresql.org/docs/current/rowtypes.html

PostGIS 3.6.0rc2 Manual 70/918

Synopsis

text AddGeometryColumn(varchar table_name, varchar column_name, integer srid, varchar type, integer dimension, boolean
use_typmod=true);

text AddGeometryColumn(varchar schema_name, varchar table_name, varchar column_name, integer srid, varchar type, inte-
ger dimension, boolean use_typmod=true);

text AddGeometryColumn(varchar catalog_name, varchar schema_name, varchar table_name, varchar column_name, integer
srid, varchar type, integer dimension, boolean use_typmod=true);

Description

Adds a geometry column to an existing table of attributes. The schema_name is the name of the table schema. The srid
must be an integer value reference to an entry in the SPATIAL_REF_SYS table. The t ype must be a string corresponding to the
geometry type, eg, 'POLYGON’ or 'MULTILINESTRING’ . An error is thrown if the schemaname doesn’t exist (or not visible
in the current search_path) or the specified SRID, geometry type, or dimension is invalid.

Note
. Changed: 2.0.0 This function no longer updates geometry_columns since geometry_columns is a view that reads from
Nf’l"! system catalogs. It by default also does not create constraints, but instead uses the built in type modifier behavior of
PostgreSQL. So for example building a wgs84 POINT column with this function is now equivalent to: ALTER TABLE
some_table ADD COLUMN geom geometry (Point,4326);
Changed: 2.0.0 If you require the old behavior of constraints use the default use_t ypmod, but set it to false.

Note
= Changed: 2.0.0 Views can no longer be manually registered in geometry_columns, however views built against geome-
N"'ld try typmod tables geometries and used without wrapper functions will register themselves correctly because they inherit
the typmod behavior of their parent table column. Views that use geometry functions that output other geometries will
need to be cast to typmod geometries for these view geometry columns to be registered correctly in geometry_columns.
Refer to Section 4.6.3.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves.

Enhanced: 2.0.0 use_typmod argument introduced. Defaults to creating typmod geometry column instead of constraint-based.

Examples

—-— Create schema to hold data

CREATE SCHEMA my_schema;

—— Create a new simple PostgreSQL table

CREATE TABLE my_schema.my_spatial_table (id serial);

—— Describing the table shows a simple table with a single "id" column.
postgis=# \d my_schema.my_spatial_table
Table "my_schema.my_spatial_table"
Column | Type | Modifiers

id | integer | not null default nextval ('my_schema.my_spatial_table_id_seq'::regclass)

http://www.opengeospatial.org/standards/sfs

PostGIS 3.6.0rc2 Manual 71/918

—-— Add a spatial column to the table
SELECT AddGeometryColumn ('my_schema', 'my_spatial_table', 'geom',6 4326, 'POINT', 2);

—-— Add a point using the old constraint based behavior
SELECT AddGeometryColumn ('my_schema', 'my_spatial_table', 'geom_c',4326, 'POINT',2, false);

—--Add a curvepolygon using old constraint behavior
SELECT AddGeometryColumn ('my_schema', 'my_spatial_table', 'geomcp_c',4326, 'CURVEPOLYGON',2, <=
false);

—— Describe the table again reveals the addition of a new geometry columns.
\d my_schema.my_spatial_table
addgeometrycolumn

my_schema.my_spatial_table.geomcp_c SRID:4326 TYPE:CURVEPOLYGON DIMS:2

(1 row)
Table "my_schema.my_spatial_table"
Column | Type | Modifiers
__________ e
id | integer | not null default nextval ('my_schema.
my_spatial_table_id_seq'::regclass)
geom | geometry (Point, 4326) |
geom_c | geometry |
geomcp_c | geometry |
Check constraints:
"enforce_dims_geom_c" CHECK (st_ndims (geom_c) = 2)
"enforce_dims_geomcp_c" CHECK (st_ndims (geomcp_c) = 2)
"enforce_geotype_geom_c" CHECK (geometrytype (geom_c) = 'POINT'::text OR geom_c IS NULL)
"enforce_geotype_geomcp_c" CHECK (geometrytype (geomcp_c) = 'CURVEPOLYGON'::text OR <>
geomcp_c IS NULL)
"enforce_srid_geom_c" CHECK (st_srid(geom_c) = 4326)
"enforce_srid_geomcp_c" CHECK (st_srid(geomcp_c) = 4326)

—-— geometry_columns view also registers the new columns —-—
SELECT f_geometry_column As col_name, type, srid, coord_dimension As ndims
FROM geometry_columns

WHERE f_table_name = 'my_spatial_table' AND f_table_schema = 'my_schema';
col_name | type | srid | ndims
7777777777 B e et
geom | Point | 4326 | 2
geom_cC | Point | 4326 | 2
geomcp_c | CurvePolygon | 4326 | 2
See Also

DropGeometryColumn, DropGeometryTable, Section 4.6.2, Section 4.6.3

7.2.2 DropGeometryColumn

DropGeometryColumn — Removes a geometry column from a spatial table.

Synopsis

text DropGeometryColumn(varchar table_name, varchar column_name);
text DropGeometryColumn(varchar schema_name, varchar table_name, varchar column_name);
text DropGeometryColumn(varchar catalog_name, varchar schema_name, varchar table_name, varchar column_name);

PostGIS 3.6.0rc2 Manual 72/918

Description

Removes a geometry column from a spatial table. Note that schema_name will need to match the f_table_schema field of the
table’s row in the geometry_columns table.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves.

otet Note
N Changed: 2.0.0 This function is provided for backward compatibility. Now that since geometry_columns is now a view
against the system catalogs, you can drop a geometry column like any other table column using ALTER TABLE

Examples
SELECT DropGeometryColumn ('my_schema', 'my_spatial_table', 'geom');

————-RESULT output ---
dropgeometrycolumn

my_schema.my_spatial_table.geom effectively removed.

—— In PostGIS 2.0+ the above is also equivalent to the standard
—— the standard alter table. Both will deregister from geometry_columns
ALTER TABLE my_schema.my_spatial_table DROP column geom;

See Also

AddGeometryColumn, DropGeometryTable, Section 4.6.2

7.2.3 DropGeometryTable

DropGeometryTable — Drops a table and all its references in geometry_columns.

Synopsis
boolean DropGeometryTable(varchar table_name);

boolean DropGeometryTable(varchar schema_name, varchar table_name);
boolean DropGeometryTable(varchar catalog_name, varchar schema_name, varchar table_name);

Description

Drops a table and all its references in geometry_columns. Note: uses current_schema() on schema-aware pgsql installations if
schema is not provided.

et Note
N Changed: 2.0.0 This function is provided for backward compatibility. Now that since geometry_columns is now a view
against the system catalogs, you can drop a table with geometry columns like any other table using DROP TABLE

http://www.opengeospatial.org/standards/sfs

PostGIS 3.6.0rc2 Manual 73/918

Examples

SELECT DropGeometryTable ('my_schema', 'my_spatial_table');
—-———RESULT output ---
my_schema.my_spatial_table dropped.

—— The above is now equivalent to —--—
DROP TABLE my_schema.my_spatial_table;

See Also

AddGeometryColumn, DropGeometryColumn, Section 4.6.2

7.2.4 Find_SRID

Find_SRID — Returns the SRID defined for a geometry column.

Synopsis

integer Find_SRID(varchar a_schema_name, varchar a_table_name, varchar a_geomfield_name);

Description

Returns the integer SRID of the specified geometry column by searching through the GEOMETRY_COLUMNS table. If the
geometry column has not been properly added (e.g. with the AddGeometryColumn function), this function will not work.

Examples

SELECT Find_SRID('public', 'tiger_us_state_2007', 'geom_4269"'");
find_srid

See Also

ST_SRID

7.2.5 Populate_Geometry_Columns

Populate_Geometry_Columns — Ensures geometry columns are defined with type modifiers or have appropriate spatial con-
straints.

Synopsis

text Populate_Geometry_Columns(boolean use_typmod=true);
int Populate_Geometry_Columns(oid relation_oid, boolean use_typmod=true);

PostGIS 3.6.0rc2 Manual 74/918

Description

Ensures geometry columns have appropriate type modifiers or spatial constraints to ensure they are registered correctly in the
geometry_columns view. By default will convert all geometry columns with no type modifier to ones with type modifiers.

For backwards compatibility and for spatial needs such as table inheritance where each child table may have different geometry
type, the old check constraint behavior is still supported. If you need the old behavior, you need to pass in the new optional
argument as false use_typmod=false. When this is done geometry columns will be created with no type modifiers but will
have 3 constraints defined. In particular, this means that every geometry column belonging to a table has at least three constraints:

* enforce_dims_geom - ensures every geometry has the same dimension (see ST_NDims)
* enforce_geotype_geom - ensures every geometry is of the same type (see GeometryType)

* enforce_srid_geom - ensures every geometry is in the same projection (see ST_SRID)

If a table oid is provided, this function tries to determine the srid, dimension, and geometry type of all geometry columns in the
table, adding constraints as necessary. If successful, an appropriate row is inserted into the geometry_columns table, otherwise,
the exception is caught and an error notice is raised describing the problem.

If the oid of a view is provided, as with a table oid, this function tries to determine the srid, dimension, and type of all
the geometries in the view, inserting appropriate entries into the geometry_columns table, but nothing is done to enforce
constraints.

The parameterless variant is a simple wrapper for the parameterized variant that first truncates and repopulates the geome-
try_columns table for every spatial table and view in the database, adding spatial constraints to tables where appropriate. It
returns a summary of the number of geometry columns detected in the database and the number that were inserted into the
geometry_columns table. The parameterized version simply returns the number of rows inserted into the geometry_columns
table.

Auwailability: 1.4.0

Changed: 2.0.0 By default, now uses type modifiers instead of check constraints to constrain geometry types. You can still use
check constraint behavior instead by using the new use_typmod and setting it to false.

Enhanced: 2.0.0 use_typmod optional argument was introduced that allows controlling if columns are created with typmodi-
fiers or with check constraints.

Examples

CREATE TABLE public.myspatial_table(gid serial, geom geometry);

INSERT INTO myspatial_table (geom) VALUES (ST_GeomFromText ('LINESTRING(1 2, 3 4)',4326));
—— This will now use typ modifiers. For this to work, there must exist data

SELECT Populate_Geometry_Columns ('public.myspatial_table'::regclass);

populate_geometry_columns

1
\d myspatial_table
Table "public.myspatial_table"
Column | Type | Modifiers
________ +___________________________+___
gid | integer | not null default nextval ('myspatial_table_gid_seqg'::

regclass)
geom | geometry (LineString,4326) |

PostGIS 3.6.0rc2 Manual 75/918

—— This will change the geometry columns to use constraints if they are not typmod or have <+
constraints already.

—-—For this to work, there must exist data

CREATE TABLE public.myspatial_table_cs(gid serial, geom geometry) ;

INSERT INTO myspatial_table_cs (geom) VALUES (ST_GeomFromText ('LINESTRING(1 2, 3 4)',4326));

SELECT Populate_Geometry_Columns ('public.myspatial_table_cs'::regclass, false);

populate_geometry_columns

Table "public.myspatial_table_cs"

Column | Type | Modifiers
________ o
gid | integer | not null default nextval ('myspatial_table_cs_gid_seq'::regclass)
geom | geometry |
Check constraints:
"enforce_dims_geom" CHECK (st_ndims(geom) = 2)
"enforce_geotype_geom" CHECK (geometrytype (geom) = 'LINESTRING'::text OR geom IS NULL)
"enforce_srid_geom" CHECK (st_srid(geom) = 4326)

7.2.6 UpdateGeometrySRID

UpdateGeometrySRID — Updates the SRID of all features in a geometry column, and the table metadata.

Synopsis

text UpdateGeometrySRID(varchar table_name, varchar column_name, integer srid);

text UpdateGeometrySRID(varchar schema_name, varchar table_name, varchar column_name, integer srid);

text UpdateGeometrySRID(varchar catalog_name, varchar schema_name, varchar table_name, varchar column_name, integer
srid);

Description

Updates the SRID of all features in a geometry column, updating constraints and reference in geometry_columns. If the column
was enforced by a type definition, the type definition will be changed. Note: uses current_schema() on schema-aware pgsql
installations if schema is not provided.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves.

Examples

Insert geometries into roads table with a SRID set already using EWKT format:

COPY roads (geom) FROM STDIN;
SRID=4326; LINESTRING(0O 0, 10 10)
SRID=4326; LINESTRING (10 10, 15 0)
\.

This will change the srid of the roads table to 4326 from whatever it was before:

SELECT UpdateGeometrySRID ('roads', 'geom',4326);

PostGIS 3.6.0rc2 Manual 76 /918

The prior example is equivalent to this DDL statement:

ALTER TABLE roads
ALTER COLUMN geom TYPE geometry (MULTILINESTRING, 4326)
USING ST_SetSRID (geom,4326);

If you got the projection wrong (or brought it in as unknown) in load and you wanted to transform to web mercator all in one
shot you can do this with DDL but there is no equivalent PostGIS management function to do so in one go.

ALTER TABLE roads
ALTER COLUMN geom TYPE geometry (MULTILINESTRING, 3857) USING ST_Transform(ST_SetSRID (geom <
,4326),3857) ;

See Also

UpdateRasterSRID, ST_SetSRID, ST_Transform, ST_GeomFromEWKT

7.3 Geometry Constructors

7.3.1 ST _Collect

ST_Collect — Creates a GeometryCollection or Multi* geometry from a set of geometries.

Synopsis

geometry ST_Collect(geometry g1, geometry g2);
geometry ST_Collect(geometry[] gl_array);
geometry ST_Collect(geometry set glfield);

Description

Collects geometries into a geometry collection. The result is either a Multi* or a GeometryCollection, depending on whether
the input geometries have the same or different types (homogeneous or heterogeneous). The input geometries are left unchanged
within the collection.

Variant 1: accepts two input geometries
Variant 2: accepts an array of geometries

Variant 3: aggregate function accepting a rowset of geometries.

. Note
N"‘R’! If any of the input geometries are collections (Multi* or GeometryCollection) ST_Collect returns a GeometryCollection
(since that is the only type which can contain nested collections). To prevent this, use ST_Dump in a subquery to
expand the input collections to their atomic elements (see example below).

. Note
Nf"""! ST_Collect and ST_Union appear similar, but in fact operate quite differently. ST_Collect aggregates geometries into
a collection without changing them in any way. ST_Union geometrically merges geometries where they overlap, and
splits linestrings at intersections. It may return single geometries when it dissolves boundaries.

Availability: 1.4.0 - ST_Collect(geomarray) was introduced. ST_Collect was enhanced to handle more geometries faster.
This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves.

PostGIS 3.6.0rc2 Manual

77/918

Examples - Two-input variant

Collect 2D points.
SELECT ST_AsText (ST_Collect (ST_GeomFromText ('POINT(1 2)"'),
ST_GeomFromText ('POINT (-2 3)')));

st_astext

MULTIPOINT ((1 2), (=2 3))

Collect 3D points.

SELECT ST_ASEWKT(ST_Collect (ST_GeomFromEWKT ('POINT(1 2 3)"),
ST_GeomFromEWKT ('"POINT (1 2 4)")));

st_asewkt

MULTIPOINT (1 2 3,1 2 4)

Collect curves.

SELECT ST_AsText (ST_Collect ('CIRCULARSTRING (220268 150415,220227 150505,220227

'CIRCULARSTRING (220227 150406,2220227 150407,220227 150406) ")) ;

st_astext

MULTICURVE (CIRCULARSTRING (220268 150415,220227 150505,220227 150406),
CIRCULARSTRING (220227 150406,2220227 150407,220227 150406))

Examples - Array variant

Using an array constructor for a subquery.

SELECT ST_Collect (ARRAY(SELECT geom FROM sometable));

Using an array constructor for values.

SELECT ST_AsText (ST_Collect (
ARRAY [ST_GeomFromText ('LINESTRING(1 2, 3 4)"'),
ST_GeomFromText ('LINESTRING(3 4, 4 5)')])) As wktcollect;

--wkt collect —--—
MULTILINESTRING((1 2,3 4), (3 4,4 5))

Examples - Aggregate variant

Creating multiple collections by grouping geometries in a table.

SELECT stusps, ST_Collect (f.geom) as geom
FROM (SELECT stusps, (ST_Dump (geom)) .geom As geom
FROM
somestatetable) As f
GROUP BY stusps

See Also

ST_Dump, ST_Union

150406) ',

PostGIS 3.6.0rc2 Manual

78/918

7.3.2 ST_LineFromMultiPoint

ST_LineFromMultiPoint — Creates a LineString from a MultiPoint geometry.

Synopsis

geometry ST_LineFromMultiPoint(geometry aMultiPoint);

Description

Creates a LineString from a MultiPoint geometry.

Use ST_MakeLine to create lines from Point or LineString inputs.

This function supports 3d and will not drop the z-index.

Examples

Create a 3D line string from a 3D MultiPoint

SELECT ST_ASEWKT (ST _LineFromMultiPoint ('MULTIPOINT(1 2 3, 4 5 6, 7 8 9)'));

——result—-
LINESTRING(1 2 3,4 5 6,7 8 9)

See Also

ST_ASEWKT, ST_MakeLine

7.3.3 ST_MakeEnvelope

ST_MakeEnvelope — Creates a rectangular Polygon from minimum and maximum coordinates.

Synopsis

geometry ST_MakeEnvelope(float xmin, float ymin, float xmax, float ymax, integer srid=unknown);

Description

Creates a rectangular Polygon from the minimum and maximum values for X and Y. Input values must be in the spatial reference

system specified by the SRID. If no SRID is specified the unknown spatial reference system (SRID 0) is used.

Auvailability: 1.5

Enhanced: 2.0: Ability to specify an envelope without specifying an SRID was introduced.

Example: Building a bounding box polygon

SELECT ST_AsText (ST_MakeEnvelope (10, 10, 11, 11, 4326));

st_asewkt

POLYGON ((10 10, 10 11, 11 11, 11 10, 10 10))

PostGIS 3.6.0rc2 Manual 79/918

See Also

ST_MakePoint, ST_MakeLine, ST_MakePolygon, ST_TileEnvelope

7.3.4 ST_MakeLine

ST_MakeLine — Creates a LineString from Point, MultiPoint, or LineString geometries.

Synopsis

geometry ST_MakeLine(geometry geoml, geometry geom?2);
geometry ST_MakeLine(geometry[] geoms_array);
geometry ST_MakeLine(geometry set geoms);

Description

Creates a LineString containing the points of Point, MultiPoint, or LineString geometries. Other geometry types cause an error.
Variant 1: accepts two input geometries
Variant 2: accepts an array of geometries

Variant 3: aggregate function accepting a rowset of geometries. To ensure the order of the input geometries use ORDER BY in
the function call, or a subquery with an ORDER BY clause.

Repeated nodes at the beginning of input LineStrings are collapsed to a single point. Repeated points in Point and MultiPoint
inputs are not collapsed. ST_RemoveRepeatedPoints can be used to collapse repeated points from the output LineString.

This function supports 3d and will not drop the z-index.
Auvailability: 2.3.0 - Support for MultiPoint input elements was introduced
Awailability: 2.0.0 - Support for LineString input elements was introduced

Auvailability: 1.4.0 - ST_MakeLine(geomarray) was introduced. ST_MakeLine aggregate functions was enhanced to handle more
points faster.

Examples: Two-input variant

Create a line composed of two points.

SELECT ST_AsText (ST_MakeLine (ST _Point(1,2), ST _Point(3,4)));

st_astext

LINESTRING(1 2,3 4)

Create a 3D line from two 3D points.

SELECT ST_ASEWKT (ST_MakeLine (ST_MakePoint (1,2,3), ST_MakePoint (3,4,5)));

st_asewkt

LINESTRING(1 2 3,3 4 5)

Create a line from two disjoint LineStrings.

select ST_AsText (ST_MakeLine('LINESTRING(O 0, 1 1)', 'LINESTRING(2 2, 3 3)'"));

st_astext

LINESTRING(O 0,1 1,2 2,3 3)

PostGIS 3.6.0rc2 Manual 80/918

Examples: Array variant

Create a line from an array formed by a subquery with ordering.

SELECT ST_MakeLine(ARRAY(SELECT ST_Centroid(geom) FROM visit_locations ORDER BY <>
visit_time));

Create a 3D line from an array of 3D points

SELECT ST_ASEWKT (ST_MakeLine (
ARRAY[ST_MakePoint (1,2,3), ST_MakePoint (3,4,5), ST_MakePoint (6,6,6)]));

st_asewkt

LINESTRING(1 2 3,3 4 5,6 6 6)

Examples: Aggregate variant

This example queries time-based sequences of GPS points from a set of tracks and creates one record for each track. The result
geometries are LineStrings composed of the GPS track points in the order of travel.

Using aggregate ORDER BY provides a correctly-ordered LineString.

SELECT gps.track_id, ST_MakeLine (gps.geom ORDER BY gps_time) As geom
FROM gps_points As gps
GROUP BY track_id;

Prior to PostgreSQL 9, ordering in a subquery can be used. However, sometimes the query plan may not respect the order of the
subquery.

SELECT gps.track_id, ST_MakelLine (gps.geom) As geom
FROM (SELECT track_id, gps_time, geom
FROM gps_points ORDER BY track_id, gps_time) As gps
GROUP BY track_id;

See Also

ST_RemoveRepeatedPoints, ST_ASEWKT, ST_AsText, ST_GeomFromText, ST_MakePoint, ST_Point

7.3.5 ST _MakePoint

ST_MakePoint — Creates a 2D, 3DZ or 4D Point.

Synopsis

geometry ST_MakePoint(float x, float y);
geometry ST _MakePoint(float x, float y, float z);

geometry ST_MakePoint(float x, float y, float z, float m);

PostGIS 3.6.0rc2 Manual 81/918

Description

Creates a 2D XY, 3D XYZ or 4D XYZM Point geometry. Use ST_MakePointM to make points with XYM coordinates.
Use ST_SetSRID to specify a SRID for the created point.

While not OGC-compliant, ST_MakePoint is faster than ST_GeomFromText and ST_PointFromText. It is also easier to use
for numeric coordinate values.

Not? Note

For geodetic coordinates, X is longitude and Y is latitude

Net Note
The functions ST_Point, ST_PointZ, ST_PointM, and ST_PointZM can be used to create points with a given SRID.

ﬂ This function supports 3d and will not drop the z-index.

Examples

—-— Create a point with unknown SRID
SELECT ST_MakePoint (-71.1043443253471, 42.3150676015829) ;

—— Create a point in the WGS 84 geodetic CRS
SELECT ST_SetSRID (ST_MakePoint (-71.1043443253471, 42.3150676015829),4326);

—-— Create a 3D point (e.g. has altitude)
SELECT ST_MakePoint (1, 2,1.5);

-— Get z of point
SELECT ST_Z (ST_MakePoint (1, 2,1.5));
result

See Also

ST_GeomFromText, ST PointFromText, ST _SetSRID, ST MakePointM, ST_Point, ST PointZ, ST PointM, ST_PointZM

7.3.6 ST_MakePointM

ST MakePointM — Creates a Point from X, Y and M values.

Synopsis

geometry ST_MakePointM(float x, float y, float m);

PostGIS 3.6.0rc2 Manual 82/918

Description

Creates a point with X, Y and M (measure) ordinates. Use ST_MakePoint to make points with XY, XYZ, or XYZM coordinates.
Use ST_SetSRID to specify a SRID for the created point.

Not? Note

For geodetic coordinates, X is longitude and Y is latitude

Not? Note

The functions ST_PointM, and ST_PointZM can be used to create points with an M value and a given SRID.

Examples

Not Note
ST_AsEWKT is used for text output because ST_AsText does not support M values.

Create point with unknown SRID.

SELECT ST_ASEWKT(ST_MakePointM(-71.1043443253471, 42.3150676015829, 10));
st_asewkt

POINTM(-71.1043443253471 42.3150676015829 10)

Create point with a measure in the WGS 84 geodetic coordinate system.

SELECT ST_ASEWKT (ST_SetSRID(ST_MakePointM(-71.104, 42.315, 10), 4326));

st_asewkt

SRID=4326;POINTM(-71.104 42.315 10)

Get measure of created point.

SELECT ST_M(ST_MakePointM(-71.104, 42.315, 10)) 8

result

See Also

ST_MakePoint, ST_SetSRID, ST_PointM, ST_PointZM

7.3.7 ST_MakePolygon

ST_MakePolygon — Creates a Polygon from a shell and optional list of holes.

PostGIS 3.6.0rc2 Manual 83/918

Synopsis

geometry ST_MakePolygon(geometry linestring);

geometry ST_MakePolygon(geometry outerlinestring, geometry[] interiorlinestrings);

Description

Creates a Polygon formed by the given shell and optional array of holes. Input geometries must be closed LineStrings (rings).
Variant 1: Accepts one shell LineString.

Variant 2: Accepts a shell LineString and an array of inner (hole) LineStrings. A geometry array can be constructed using the
PostgreSQL array_agg(), ARRAY[] or ARRAY() constructs.

ote} Note
N This function does not accept MultiLineStrings. Use ST_LineMerge to generate a LineString, or ST_Dump to extract
LineStrings.

This function supports 3d and will not drop the z-index.

Examples: Single input variant

Create a Polygon from a 2D LineString.

SELECT ST_MakePolygon(ST_GeomFromText ('LINESTRING (75 29,77 29,77 29, 75 29)"'));

Create a Polygon from an open LineString, using ST_StartPoint and ST_AddPoint to close it.

SELECT ST_MakePolygon (ST_AddPoint (foo.open_line, ST_StartPoint (foo.open_line)))
FROM (
SELECT ST_GeomFromText ('LINESTRING (75 29,77 29,77 29, 75 29)') As open_line) As foo;

Create a Polygon from a 3D LineString

SELECT ST_ASEWKT (ST_MakePolygon('LINESTRING(75.15 29.53 1,77 29 1,77.6 29.5 1, 75.15 <+
29.53 1)"));

st_asewkt

POLYGON ((75.15 29.53 1,77 29 1,77.6 29.5 1,75.15 29.53 1))

Create a Polygon from a LineString with measures

SELECT ST_ASEWKT (ST_MakePolygon('LINESTRINGM(75.15 29.53 1,77 29 1,77.6 29.5 2, 75.15 <
29.53 2)"'));

st_asewkt

POLYGONM ((75.15 29.53 1,77 29 1,77.6 29.5 2,75.15 29.53 2))

PostGIS 3.6.0rc2 Manual 84 /918

Examples: Outer shell with inner holes variant

Create a donut Polygon with an extra hole

SELECT ST_MakePolygon(ST_ExteriorRing(ST_Buffer (ring.line, 10)),
ARRAY[ST_Translate(ring.line, 1, 1),
ST_ExteriorRing (ST_Buffer (ST_Point (20,20),1))]

)
FROM (SELECT ST_ExteriorRing (
ST_Buffer (ST_Point (10,10),10,10)) AS line) AS ring;

Create a set of province boundaries with holes representing lakes. The input is a table of province Polygons/MultiPolygons and a
table of water linestrings. Lines forming lakes are determined by using ST_IsClosed. The province linework is extracted by using
ST_Boundary. As required by ST_MakePolygon, the boundary is forced to be a single LineString by using ST_LineMerge.
(However, note that if a province has more than one region or has islands this will produce an invalid polygon.) Using a LEFT
JOIN ensures all provinces are included even if they have no lakes.

N;’R’! Note

The CASE construct is used because passing a null array into ST_MakePolygon results in a NULL return value.

SELECT p.gid, p.province_name,

CASE WHEN array_agg(w.geom) IS NULL

THEN p.geom

ELSE ST_MakePolygon(ST_LineMerge (ST_Boundary (p.geom)),

array_agg (w.geom)) END

FROM

provinces p LEFT JOIN waterlines w

ON (ST_Within(w.geom, p.geom) AND ST_IsClosed(w.geom))

GROUP BY p.gid, p.province_name, p.geom;

Another technique is to utilize a correlated subquery and the ARRAY() constructor that converts a row set to an array.

SELECT p.gid, p.province_name,
CASE WHEN EXISTS(SELECT w.geom
FROM waterlines w
WHERE ST_Within (w.geom, p.geom)
AND ST_IsClosed(w.geom))
THEN ST_MakePolygon (
ST_LineMerge (ST_Boundary (p.geom)),
ARRAY (SELECT w.geom
FROM waterlines w
WHERE ST_Within(w.geom, p.geom)
AND ST_IsClosed(w.geom)))
ELSE p.geom
END AS geom
FROM provinces p;

See Also

ST_BuildArea ST_Polygon

7.3.8 ST _Point

ST _Point — Creates a Point with X, Y and SRID values.

PostGIS 3.6.0rc2 Manual 85/918

Synopsis

geometry ST_Point(float x, float y);

geometry ST_Point(float x, float y, integer srid=unknown);
Description

Returns a Point with the given X and Y coordinate values. This is the SQL-MM equivalent for ST_MakePoint that takes just X
and Y.

N:"H’! Note

For geodetic coordinates, X is longitude and Y is latitude

Enhanced: 3.2.0 srid as an extra optional argument was added. Older installs require combining with ST_SetSRID to mark the
srid on the geometry.

i

%" This method implements the SQL/MM specification. SQL-MM 3: 6.1.2

Examples: Geometry

SELECT ST_Point(-71.104, 42.315);

Creating a point with SRID specified:

SELECT ST _Point(-71.104, 42.315, 4326);

Alternative way of specifying SRID:

SELECT ST_SetSRID(ST_Point(-71.104, 42.315), 4326);

Examples: Geography

Create geography points using the : : cast syntax:

SELECT ST_Point(-71.104, 42.315, 4326) ::geography;

Pre-PostGIS 3.2 code, using CAST:

SELECT CAST(ST_SetSRID(ST_Point (-71.104, 42.315), 4326) AS geography);

If the point coordinates are not in a geodetic coordinate system (such as WGS84), then they must be reprojected before casting
to a geography. In this example a point in Pennsylvania State Plane feet (SRID 2273) is projected to WGS84 (SRID 4326).

SELECT ST_Transform(ST_Point(3637510, 3014852, 2273), 4326) ::geography;

See Also

ST MakePoint, ST_PointZ, ST_PointM, ST_PointZM, ST_SetSRID, ST_Transform

7.3.9 ST_PointZ

ST_PointZ — Creates a Point with X, Y, Z and SRID values.

PostGIS 3.6.0rc2 Manual 86/918

Synopsis

geometry ST_PointZ(float x, float y, float z, integer srid=unknown);

Description

Returns an Point with the given X, Y and Z coordinate values, and optionally an SRID number.

Enhanced: 3.2.0 srid as an extra optional argument was added. Older installs require combining with ST_SetSRID to mark the
srid on the geometry.

Examples

SELECT ST _PointZ(-71.104, 42.315, 3.4, 4326)
SELECT ST _PointZ(-71.104, 42.315, 3.4, srid => 4326)

SELECT ST _PointZ(-71.104, 42.315, 3.4)

See Also

ST MakePoint, ST_Point, ST_PointM, ST_PointZM

7.3.10 ST_PointM

ST _PointM — Creates a Point with X, Y, M and SRID values.

Synopsis

geometry ST_PointM(float x, float y, float m, integer srid=unknown);

Description

Returns an Point with the given X, Y and M coordinate values, and optionally an SRID number.

Enhanced: 3.2.0 srid as an extra optional argument was added. Older installs require combining with ST_SetSRID to mark the
srid on the geometry.

Examples

SELECT ST_PointM(-71.104, 42.315, 3.4, 4326)
SELECT ST_PointM(-71.104, 42.315, 3.4, srid => 4326)

SELECT ST _PointM(-71.104, 42.315, 3.4)

See Also

ST_MakePoint, ST_Point, ST_PointZ, ST_PointZM

PostGIS 3.6.0rc2 Manual 87/918

7.3.11 ST_PointZM

ST_PointZM — Creates a Point with X, Y, Z, M and SRID values.

Synopsis

geometry ST_PointZM(float x, float y, float z, float m, integer srid=unknown);

Description

Returns an Point with the given X, Y, Z and M coordinate values, and optionally an SRID number.

Enhanced: 3.2.0 srid as an extra optional argument was added. Older installs require combining with ST_SetSRID to mark the
srid on the geometry.

Examples
SELECT ST_PointzZM(-71.104, 42.315, 3.4, 4.5, 4326)
SELECT ST_PointzZM(-71.104, 42.315, 3.4, 4.5, srid => 4326)

SELECT ST_PointzZM(-71.104, 42.315, 3.4, 4.5)

See Also

ST MakePoint, ST_Point, ST_PointM, ST_PointZ, ST_SetSRID

7.3.12 ST_Polygon

ST_Polygon — Creates a Polygon from a LineString with a specified SRID.

Synopsis

geometry ST_Polygon(geometry lineString, integer srid);

Description

Returns a polygon built from the given LineString and sets the spatial reference system from the srid.
ST_Polygon is similar to ST_MakePolygon Variant 1 with the addition of setting the SRID.
To create polygons with holes use ST_MakePolygon Variant 2 and then ST_SetSRID.

4 Note
N This function does not accept MultiLineStrings. Use ST_LineMerge to generate a LineString, or ST_Dump to extract
LineStrings.

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
ﬂ This method implements the SQL/MM specification. SQL-MM 3: 8.3.2

ﬂ This function supports 3d and will not drop the z-index.

http://www.opengeospatial.org/standards/sfs

PostGIS 3.6.0rc2 Manual 88/918

Examples

Create a 2D polygon.

SELECT ST_AsText (ST_Polygon ('LINESTRING(75 29, 77 29, 77 29, 75 29)'::geometry, 4326));

-— result —-—
POLYGON ((75 29, 77 29, 77 29, 75 29))

Create a 3D polygon.
SELECT ST_ASEWKT (ST_Polygon(ST_GeomFromEWKT ('LINESTRING (75 29 1, 77 29 2, 77 29 3, 75 29 +
1)"), 4326));

-— result —-
SRID=4326; POLYGON ((75 29 1, 77 29 2, 77 29 3, 75 29 1))

See Also

ST_AsEWKT, ST_AsText, ST_GeomFromEWKT, ST_GeomFromText, ST_LineMerge, ST_MakePolygon

7.3.13 ST_TileEnvelope

ST_TileEnvelope — Creates a rectangular Polygon in Web Mercator (SRID:3857) using the XYZ tile system.

Synopsis

geometry ST_TileEnvelope(integer tileZoom, integer tileX, integer tileY, geometry bounds=SRID=3857;LINESTRING(-20037508.342
-20037508.342789,20037508.342789 20037508.342789), float margin=0.0);

Description

Creates a rectangular Polygon giving the extent of a tile in the XYZ tile system. The tile is specified by the zoom level Z and
the XY index of the tile in the grid at that level. Can be used to define the tile bounds required by ST_AsMVTGeom to convert
geometry into the MVT tile coordinate space.

By default, the tile envelope is in the Web Mercator coordinate system (SRID:3857) using the standard range of the Web Mercator
system (-20037508.342789, 20037508.342789). This is the most common coordinate system used for MVT tiles. The optional
bounds parameter can be used to generate tiles in any coordinate system. It is a geometry that has the SRID and extent of the
"Zoom Level zero" square within which the XYZ tile system is inscribed.

The optional margin parameter can be used to expand a tile by the given percentage. E.g. margin=0.125 expands the tile by
12.5%, which is equivalent to buffer=512 when the tile extent size is 4096, as used in ST_AsMVTGeom. This is useful to create
a tile buffer to include data lying outside of the tile’s visible area, but whose existence affects the tile rendering. For example, a
city name (a point) could be near an edge of a tile, so its label should be rendered on two tiles, even though the point is located
in the visible area of just one tile. Using expanded tiles in a query will include the city point in both tiles. Use a negative value
to shrink the tile instead. Values less than -0.5 are prohibited because that would eliminate the tile completely. Do not specify a
margin when using with ST_AsMVTGeom. See the example for ST_AsMVT.

Enhanced: 3.1.0 Added margin parameter.
Auvailability: 3.0.0

https://en.wikipedia.org/wiki/Web_Mercator_projection
https://en.wikipedia.org/wiki/Tiled_web_map
https://en.wikipedia.org/wiki/Tiled_web_map
https://en.wikipedia.org/wiki/Web_Mercator_projection

PostGIS 3.6.0rc2 Manual 89/918

Example: Building a tile envelope

SELECT ST_AsText (ST_TileEnvelope (2, 1, 1));
st_astext

POLYGON ((-10018754.1713945 0,-10018754.1713945 10018754.1713945,0 10018754.1713945,0 <«
0,-10018754.1713945 0))

SELECT ST_AsText (ST_TileEnvelope(3, 1, 1, ST_MakeEnvelope(-180, -90, 180, 90, 4326)));

st_astext

POLYGON ((=135 45,-135 67.5,-90 67.5,-90 45,-135 45))

See Also

ST_MakeEnvelope

7.3.14 ST_HexagonGrid

ST_HexagonGrid — Returns a set of hexagons and cell indices that completely cover the bounds of the geometry argument.

Synopsis

setof record ST_HexagonGrid(float8 size, geometry bounds);

Description

Starts with the concept of a hexagon tiling of the plane. (Not a hexagon tiling of the globe, this is not the H3 tiling scheme.) For
a given planar SRS, and a given edge size, starting at the origin of the SRS, there is one unique hexagonal tiling of the plane,
Tiling(SRS, Size). This function answers the question: what hexagons in a given Tiling(SRS, Size) overlap with a given bounds.

https://github.com/uber/h3

-1.,4 1.4 3.4 5.4 7.4
ROSONOSOS
-1,2 n 7,2

— — 7.1
-1 'ﬂ Q ?*D

-1,-1 1,-1 3,-1 5,-1 7,-1

The SRS for the output hexagons is the SRS provided by the bounds geometry.

Doubling or tripling the edge size of the hexagon generates a new parent tiling that fits with the origin tiling. Unfortunately, it is
not possible to generate parent hexagon tilings that the child tiles perfectly fit inside.

PostGIS 3.6.0rc2 Manual 91/918

N =N20
=N O=N
==

Availability: 3.1.0

Example: Counting points in hexagons

To do a point summary against a hexagonal tiling, generate a hexagon grid using the extent of the points as the bounds, then
spatially join to that grid.

SELECT COUNT (*), hexes.geom
FROM
ST_HexagonGrid (
10000,
ST_SetSRID (ST_EstimatedExtent ('pointtable', 'geom'), 3857)
) AS hexes
INNER JOIN
pointtable AS pts
ON ST_Intersects (pts.geom, hexes.geom)
GROUP BY hexes.geom;

Example: Generating hex coverage of polygons

If we generate a set of hexagons for each polygon boundary and filter out those that do not intersect their hexagons, we end up
with a tiling for each polygon.

PostGIS 3.6.0rc2 Manual 92/918

MEXICO

ViAo

Tiling states results in a hexagon coverage of each state, and multiple hexagons overlapping at the borders between states.

N:"d Note
The LATERAL keyword is implied for set-returning functions when referring to a prior table in the FROM list. So CROSS
JOIN LATERAL, CROSS JOIN, or just plain , are equivalent constructs for this example.

SELECT adminl.gid, hex.geom
FROM

adminl

CROSS JOIN

ST_HexagonGrid (100000, adminl.geom) AS hex
WHERE

admO0_a3 = 'USA'

AND

ST_Intersects (adminl.geom, hex.geom)

See Also

ST_EstimatedExtent, ST_SetSRID, ST_SquareGrid, ST_TileEnvelope

7.3.15 ST_Hexagon

ST_Hexagon — Returns a single hexagon, using the provided edge size and cell coordinate within the hexagon grid space.

Synopsis

geometry ST_Hexagon(float8 size, integer cell_i, integer cell_j, geometry origin);

PostGIS 3.6.0rc2 Manual 93/918

Description

Uses the same hexagon tiling concept as ST_HexagonGrid, but generates just one hexagon at the desired cell coordinate. Op-
tionally, can adjust origin coordinate of the tiling, the default origin is at 0,0.

Hexagons are generated with no SRID set, so use ST_SetSRID to set the SRID to the one you expect.

Availability: 3.1.0

Example: Creating a hexagon at the origin

SELECT ST_AsText (ST_SetSRID(ST_Hexagon (1.0, 0, 0), 3857));

POLYGON ((-1 0,-0.5
-0.866025403784439,0.5
-0.866025403784439,1
0,08
0.866025403784439,-0.5
0.866025403784439,-1 0))

See Also

ST_TileEnvelope, ST_HexagonGrid, ST_Square

7.3.16 ST_SquareGrid

ST_SquareGrid — Returns a set of grid squares and cell indices that completely cover the bounds of the geometry argument.

Synopsis

setof record ST_SquareGrid(float8 size, geometry bounds);

Description

Starts with the concept of a square tiling of the plane. For a given planar SRS, and a given edge size, starting at the origin of the
SRS, there is one unique square tiling of the plane, Tiling(SRS, Size). This function answers the question: what grids in a given
Tiling(SRS, Size) overlap with a given bounds.

The SRS for the output squares is the SRS provided by the bounds geometry.

Doubling or edge size of the square generates a new parent tiling that perfectly fits with the original tiling. Standard web map
tilings in mercator are just powers-of-two square grids in the mercator plane.

Availability: 3.1.0

Example: Generating a 1 degree grid for a country

The grid will fill the whole bounds of the country, so if you want just squares that touch the country you will have to filter
afterwards with ST _Intersects.

WITH grid AS (
SELECT (ST_SquareGrid(l, ST_Transform(geom,4326))) .x%
FROM adminO WHERE name = 'Canada'
)
SELEcT ST_AsText (geom)
FROM grid

PostGIS 3.6.0rc2 Manual 94 /918

Example: Counting points in squares (using single chopped grid)

To do a point summary against a square tiling, generate a square grid using the extent of the points as the bounds, then spatially
join to that grid. Note the estimated extent might be off from actual extent, so be cautious and at very least make sure you’ve
analyzed your table.

SELECT COUNT (%), squares.geom
FROM
pointtable AS pts
INNER JOIN
ST_SquareGrid (
1000,
ST_SetSRID (ST_EstimatedExtent ('pointtable', 'geom'), 3857)
) AS sqguares
ON ST_Intersects (pts.geom, squares.geom)
GROUP BY squares.geom

Example: Counting points in squares using set of grid per point

This yields the same result as the first example but will be slower for a large number of points

SELECT COUNT (*), squares.geom
FROM
pointtable AS pts
INNER JOIN
ST_SquareGrid (
1000,

pts.geom
) AS squares
ON ST_Intersects (pts.geom, squares.geom)
GROUP BY squares.geom

See Also

ST_TileEnvelope, ST_HexagonGrid , ST_EstimatedExtent , ST_SetSRID

7.3.17 ST_Square

ST_Square — Returns a single square, using the provided edge size and cell coordinate within the square grid space.

Synopsis

geometry ST_Square(float8 size, integer cell_i, integer cell_j, geometry origin="POINT(0 0)’);

Description
Uses the same square tiling concept as ST_SquareGrid, but generates just one square at the desired cell coordinate. Optionally,
can adjust origin coordinate of the tiling, the default origin is at 0,0.

Squares are generated with the SRID of the given origin. Use ST_SetSRID to set the SRID if the given origin has an unknown
SRID (as is the case by default).

Availability: 3.1.0

PostGIS 3.6.0rc2 Manual 95/918

Example: Creating a square at the origin

SELECT ST_AsText (ST_SetSRID(ST_Square(l1.0, 0, 0), 3857));

POLYGON((O 0,0 1,1 1,1 0,0 0))

See Also

ST_TileEnvelope, ST_SquareGrid, ST_Hexagon

7.3.18 ST Letters

ST_Letters — Returns the input letters rendered as geometry with a default start position at the origin and default text height of
100.

Synopsis

geometry ST_Letters(text letters, json font);

Description

Uses a built-in font to render out a string as a multipolygon geometry. The default text height is 100.0, the distance from the
bottom of a descender to the top of a capital. The default start position places the start of the baseline at the origin. Over-riding
the font involves passing in a json map, with a character as the key, and base64 encoded TWKB for the font shape, with the fonts
having a height of 1000 units from the bottom of the descenders to the tops of the capitals.

The text is generated at the origin by default, so to reposition and resize the text, first apply the ST_Scale function and then
apply the ST_Translate function.

Availability: 3.3.0

Example: Generating the word ’Yo’

SELECT ST_AsText (ST_Letters('Yo'), 1);

Letters generated by ST_Letters

PostGIS 3.6.0rc2 Manual 96/918

Example: Scaling and moving words

SELECT ST_Translate(ST_Scale(ST_Letters('Yo'), 10, 10), 100,100);

See Also

ST_AsTWKB, ST_Scale, ST _Translate

7.4 Geometry Accessors

7.4.1 GeometryType

GeometryType — Returns the type of a geometry as text.

Synopsis

text GeometryType(geometry geomA);

Description

Returns the type of the geometry as a string. Eg: "LINESTRING’, "’POLYGON’, "MULTIPOINT”, etc.

OGC SPEC s2.1.1.1 - Returns the name of the instantiable subtype of Geometry of which this Geometry instance is a member.
The name of the instantiable subtype of Geometry is returned as a string.

N;ﬂ"’! Note

This function also indicates if the geometry is measured, by returning a string of the form 'POINTM’.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
This method supports Circular Strings and Curves.
This function supports 3d and will not drop the z-index.
This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

SELECT GeometryType (ST_GeomFromText ('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 <+
29.07)"));
geometrytype

LINESTRING

http://www.opengeospatial.org/standards/sfs

PostGIS 3.6.0rc2 Manual 97 /918

SELECT ST_GeometryType (ST_GeomFromEWKT ('POLYHEDRALSURFACE(((O0 0 0, 0 0 1, 01 1, 01 0, 0 <
0 0)),
((<0 00, 010, 110,100, 00O0)), (COOO0CG, 100, 201, 001, 000,
(¢(z10, 111, 101, 100, 11 0)),
(¢0 2 0,011, 111, 110, 010)), ((OO0OC1I, 101, 211, 01T 1, 001)Y"));
—-—result
POLYHEDRALSURFACE

SELECT GeometryType (geom) as result

FROM
(SELECT
ST_GeomFromEWKT ("TIN (((
00 O,
001,
01 0,
00O
)) ., ((
00 O,
010,
110,
00O
))
)') AS geom
) AS g;
result
TIN
See Also

ST_GeometryType

7.4.2 ST_Boundary

ST_Boundary — Returns the boundary of a geometry.

Synopsis

geometry ST_Boundary(geometry geomA);

Description

Returns the closure of the combinatorial boundary of this Geometry. The combinatorial boundary is defined as described in
section 3.12.3.2 of the OGC SPEC. Because the result of this function is a closure, and hence topologically closed, the resulting
boundary can be represented using representational geometry primitives as discussed in the OGC SPEC, section 3.12.2.

Performed by the GEOS module

N:rld Note

Prior to 2.0.0, this function throws an exception if used with GEOMETRYCOLLECTION. From 2.0.0 up it will return
NULL instead (unsupported input).

PostGIS 3.6.0rc2 Manual

98/918

ﬁ This method implements the OGC Simple Features Implementation Specification for SQL 1.1. OGC SPEC s2.1.1.1

ﬂ This method implements the SQL/MM specification. SQL-MM IEC 13249-3: 5.1.17

ﬂ This function supports 3d and will not drop the z-index.

Enhanced: 2.1.0 support for Triangle was introduced

Changed: 3.2.0 support for TIN, does not use geos, does not linearize curves

Examples

Linestring with boundary points overlaid

SELECT ST_Boundary (geom)
FROM (SELECT 'LINESTRING (100 150,50 60, —

ST_AsText output

MULTIPOINT ((100 150), (160 170))

70 80, 160 170)'::geometry As geom) As f

polygon holes with boundary multilinestring

SELECT ST_Boundary (geom)
FROM (SELECT
'POLYGON ((10 130, 50 190, 110 190, 140 <«
150, 150 80, 100 10, 20 40, 10 130),
(70 40, 100 50, 120 80, 80 110, <«
50 90, 70 40))'::geometry As geom) As f

ST_AsText output

MULTILINESTRING((10 130,50 190,110 <>
190,140 150,150 80,100 10,20 40,10 130),
(70 40,100 50,120 80,80 110,50 <
90,70 40))

SELECT ST_AsText (ST_Boundary (ST_GeomFromText ('LINESTRING(1 1,0 0, -1 1)')));

st_astext

MULTIPOINT ((1 1), (-1 1))

SELECT ST_AsText (ST_Boundary (ST_GeomFromText ('POLYGON((1 1,0 0, -1 1, 1 1))")));

st_astext

LINESTRING(1 1,0 O0,-1 1,1 1)

http://www.opengeospatial.org/standards/sfs

PostGIS 3.6.0rc2 Manual 99/918

--Using a 3d polygon
SELECT ST_ASEWKT (ST_Boundary (ST_GeomFromEWKT ('POLYGON((1 1 1,0 0 1, -1 1 1, 1 1 1))"')));

st_asewkt

LINESTRING(1 1 1,0 0 1,-1 1 1,1 1 1)
—-Using a 3d multilinestring

SELECT ST_ASEWKT (ST_Boundary (ST_GeomFromEWKT ('MULTILINESTRING((1 1 1,0 0 0.5, -1 1 1),(1 1 <>
0.5,0 0 0.5, -1 10.5, 110.5))")));

st_asewkt

MULTIPOINT ((-1 1 1), (1 1 0.75))

See Also

ST_AsText, ST_ExteriorRing, ST_MakePolygon

7.4.3 ST_BoundingDiagonal

ST_BoundingDiagonal — Returns the diagonal of a geometry’s bounding box.

Synopsis

geometry ST_BoundingDiagonal(geometry geom, boolean fits=false);

Description

Returns the diagonal of the supplied geometry’s bounding box as a LineString. The diagonal is a 2-point LineString with the
minimum values of each dimension in its start point and the maximum values in its end point. If the input geometry is empty, the
diagonal line is a LINESTRING EMPTY.

The optional £its parameter specifies if the best fit is needed. If false, the diagonal of a somewhat larger bounding box can
be accepted (which is faster to compute for geometries with many vertices). In either case, the bounding box of the returned
diagonal line always covers the input geometry.

The returned geometry retains the SRID and dimensionality (Z and M presence) of the input geometry.

N:’M Note

In degenerate cases (i.e. a single vertex in input) the returned linestring will be formally invalid (no interior). The result
is still topologically valid.

Auvailability: 2.2.0
This function supports 3d and will not drop the z-index.

This function supports M coordinates.

PostGIS 3.6.0rc2 Manual

100/918

Examples

—— Get the minimum X in a buffer around a point

SELECT ST_X(ST_StartPoint (ST_BoundingDiagonal (
ST_Buffer (ST_Point (0,0),10)

))) i

See Also

ST_StartPoint, ST_EndPoint, ST_X, ST_Y, ST_Z, ST_M, ST_Envelope

7.4.4 ST_CoordDim

ST_CoordDim — Return the coordinate dimension of a geometry.

Synopsis

integer ST_CoordDim(geometry geomA);

Description

Return the coordinate dimension of the ST_Geometry value.

This is the MM compliant alias name for ST_NDims

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
ﬂ This method implements the SQL/MM specification. SQL-MM 3: 5.1.3

ﬂ This method supports Circular Strings and Curves.

ﬂ This function supports 3d and will not drop the z-index.

ﬂ This function supports Polyhedral surfaces.

ﬂ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
SELECT ST_CoordDim('CIRCULARSTRING(1 2 3, 1 3 4, 56 7, 8 9 10, 11 12 13)");
———result—--—
3
SELECT ST_CoordDim(ST_Point (1,2));

——result—-
2

See Also

ST NDims

http://www.opengeospatial.org/standards/sfs

PostGIS 3.6.0rc2 Manual 101/918

7.4.5 ST_Dimension

ST_Dimension — Returns the topological dimension of a geometry.

Synopsis

integer ST_Dimension(geometry g);

Description

Return the topological dimension of this Geometry object, which must be less than or equal to the coordinate dimension. OGC
SPEC s2.1.1.1 - returns O for POINT, 1 for LINESTRING, 2 for POLYGON, and the largest dimension of the components of a
GEOMETRYCOLLECTION. If the dimension is unknown (e.g. for an empty GEOMETRYCOLLECTION) O is returned.

This method implements the SQL/MM specification. SQL-MM 3: 5.1.2

Enhanced: 2.0.0 support for Polyhedral surfaces and TINs was introduced. No longer throws an exception if given empty
geometry.

N;ﬂ"! Note

Prior to 2.0.0, this function throws an exception if used with empty geometry.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

SELECT ST_Dimension ('GEOMETRYCOLLECTION (LINESTRING(1 1,0 0),POINT (0 0))"');
ST_Dimension

See Also

ST_NDims

7.4.6 ST_Dump

ST_Dump — Returns a set of geometry_dump rows for the components of a geometry.

Synopsis

geometry_dump[] ST_Dump(geometry gl);

PostGIS 3.6.0rc2 Manual 102/918

Description

A set-returning function (SRF) that extracts the components of a geometry. It returns a set of geometry_dump rows, each
containing a geometry (geom field) and an array of integers (path field).

For an atomic geometry type (POINT,LINESTRING,POLYGON) a single record is returned with an empty path array and the
input geometry as geom. For a collection or multi-geometry a record is returned for each of the collection components, and the
path denotes the position of the component inside the collection.

ST_Dump is useful for expanding geometries. It is the inverse of a ST_Collect / GROUP BY, in that it creates new rows. For
example it can be use to expand MULTIPOLY GONS into POLY GONS.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Auvailability: PostGIS 1.0.0RC1. Requires PostgreSQL 7.3 or higher.

N;’""! Note

Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

This method supports Circular Strings and Curves.
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

This function supports 3d and will not drop the z-index.

Standard Examples

SELECT sometable.fieldl, sometable.fieldl,

(ST_Dump (sometable.geom)) .geom AS geom
FROM sometable;

—-— Break a compound curve into its constituent linestrings and circularstrings
SELECT ST_ASEWKT (a.geom), ST_HasArc (a.geom)
FROM (SELECT (ST_Dump (p_geom)) .geom AS geom
FROM (SELECT ST_GeomFromEWKT ('COMPOUNDCURVE (CIRCULARSTRING(O 0O, 1 1, 1 0), (1 0, 0 <
1))') AS p_geom) AS b
) AS a;
st_asewkt

CIRCULARSTRING(O 0,1 1,1 0)
LINESTRING(1 0,0 1)
(2 rows)

Polyhedral Surfaces, TIN and Triangle Examples

—— Polyhedral surface example

—-— Break a Polyhedral surface into its faces

SELECT (a.p_geom) .path[l] As path, ST_ASEWKT ((a.p_geom).geom) As geom_ewkt

FROM (SELECT ST_Dump (ST_GeomFromEWKT ('POLYHEDRALSURFACE (

((<0o o0, 001, 011, 01 00 0)),

((0 00, 010, 110, 10O oo0®0)), (¢<0O000, 1200, 101, 001, 00 0)), ((1 10, 1 1 ¢«
i, 101, 100, 110)),

(¢0 2 0,011, 111, 110, 010, ((<0 01, 101, 111, 011, 00 1))

0,
0,

PostGIS 3.6.0rc2 Manual

103/918

)')) AS p_geom) AS a;

path
1 POLYGON ((0 0 O
2 POLYGON ((0O O O
3 POLYGON ((0 0 O
4 POLYGON((1 1 0
5 POLYGON ((0 1 O
6 POLYGON ((0 0 1

-— TIN —-

SELECT (g.gdump) .path,
FROM

(SELECT
ST_Dump (ST_GeomFromEWKT ("TIN (((
0 0 O,
00 1,
010,
000
)) .
0 0 O,
010,
110,
00O
))
)')) AS gdump
) AS g;
-— result —-
path | wkt
______ +_____________________________________
{1} | TRIANGLE((O O 0,0 0 1,0 1 0,0 0 0))
{2} | TRIANGLE((O O 0,0 1 0,1 1 0,0 0 0))

See Also

geom_ewkt

|
777777 +77
|
|
|
|
|
|

ST_ASEWKT ((g.gdump) .

geom) as wkt

geometry_dump, Section 13.6, ST_Collect, ST_GeometryN

7.4.7 ST_DumpPoints

ST_DumpPoints — Returns a set of geomet ry_dump rows for the coordinates in a geometry.

Synopsis

geometry_dump[] ST_DumpPoints(geometry geom);

Description

A set-returning function (SRF) that extracts the coordinates (vertices) of a geometry. It returns a set of geometry_dump rows,

each containing a geometry (geom field) and an array of integers (path field).

* the geom field POINTSs represent the coordinates of the supplied geometry.

* the pathfield (an integer [])is an index enumerating the coordinate positions in the elements of the supplied geometry. The
indices are 1-based. For example, for a LINESTRING the paths are { 1} where i is the nth coordinate in the LINESTRING.
For a POLYGON the paths are {1, j} where i is the ring number (1 is outer; inner rings follow) and 7j is the coordinate position

in the ring.

PostGIS 3.6.0rc2 Manual 104 /918

To obtain a single geometry containing the coordinates use ST_Points.

Enhanced: 2.1.0 Faster speed. Reimplemented as native-C.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Availability: 1.5.0

G This method supports Circular Strings and Curves.
ﬁ This function supports Polyhedral surfaces.
G This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

G This function supports 3d and will not drop the z-index.

Classic Explode a Table of LineStrings into nodes

SELECT edge_id, (dp).path[l] As index, ST_AsText ((dp).geom) As wktnode
FROM (SELECT 1 As edge_id

, ST_DumpPoints (ST_GeomFromText ('LINESTRING(1 2, 3 4, 10 10)')) AS dp
UNION ALL
SELECT 2 As edge_id
, ST_DumpPoints (ST_GeomFromText ('LINESTRING(3 5, 5 6, 9 10)')) AS dp
) As foo;
edge_id | index | wktnode
_________ +_______+______________
1 1 | POINT(1 2)
1] 2 | POINT(3 4)
1 | 3 | POINT (10 10)
2 | 1 | POINT (3 5)
2 2 | POINT (5 6)
2| 3 | POINT(9 10)

Standard Geometry Examples

AN
_—

SELECT path, ST_AsText (geom)

FROM (
SELECT (ST_DumpPoints (g.geom)) .x*
FROM

PostGIS 3.6.0rc2 Manual 105/918

(SELECT
' GEOMETRYCOLLECTION (

POINT (0 1),

LINESTRING (0 3, 3 4),

POLYGON ((2 0, 2 3, 0 2, 2 0)),

POLYGON ((3 0, 3 3, 6 3, 6 0, 3 0),
(51, 42, 52, 51)),

MULTIPOLYGON (
(¢05 08, 48, 45, 05),
(16, 36, 27, 16)),
((54, 58, 617, 4)

)
) '::geometry AS geom

) AS g
) Ji
path | st_astext
,,,,,,,,,,, [,
{1,1} | POINT (0 1)
{2,1} | POINT (0 3)
{2,2} | POINT (3 4)
{3,1,1} | POINT (2 0)
{3,1,2} | POINT (2 3)
3,1,3} | POINT (0 2)
{3,1,4} | POINT (2 0)
{4,1,1} | POINT (3 0)
{4,1,2} | POINT (3 3)
{4,1,3} | POINT (6 3)
{4,1,4} | POINT (6 0)
{4,1,5} | POINT (3 0)
{4,2,1} | POINT (5 1)
{4,2,2} | POINT (4 2)
{4,2,3} | POINT (5 2)
{4,2,4} | POINT (5 1)
{5,1,1,1} | POINT (0 5)
{5,1,1,2} | POINT (0 8)
{5,1,1,3} | POINT (4 8)
{5,1,1,4} | POINT (4 5)
{5,1,1,5} | POINT (0 5)
{5,1,2,1} | POINT(1l 6)
{5,1,2,2} | POINT(3 6)
{5,1,2,3} | POINT (2 7)
{5,1,2,4} | POINT(1l 6)
{5,2,1,1} | POINT(5 4)
{5,2,1,2} | POINT(5 8)
{5,2,1,3} | POINT(6 7)
{5,2,1,4} | POINT (5 4)
(29 rows)

Polyhedral Surfaces, TIN and Triangle Examples

—— Polyhedral surface cube —-
SELECT (g.gdump) .path, ST_ASEWKT ((g.gdump) .geom) as wkt

FROM
(SELECT
ST_DumpPoints (ST_GeomFromEWKT ('POLYHEDRALSURFACE(((0 0 0, 0 01, 011, 010, 00 <
0)),
(¢<0o o0, 010, 110, 100, 00O0)), ((OOCO0B, 200, 101, 001, 00 0),
((110, 111,101, 100, 110)),
(010,011, 111, 110, 010)), ((0p01, 101, 111, 011, 00 1)))')) AS gdump

PostGIS 3.6.0rc2 Manual 106/918

) AS g;
-— result —-
path | wkt
,,,,,,,,, O,
{1,1,1} | POINT(O O 0)
{1,1,2} | POINT(O O 1)
{1,1,3} | POINT(O 1 1)
{1,1,4} | POINT(0 1 0)
{1,1,5} | POINT(O O 0)
{2,1,1} | POINT(O O 0)
{2,1,2} | POINT(O 1 0)
{2,1,3} | POINT(1 1 0)
{2,1,4} | POINT(1 O 0)
{2,1,5} | POINT (O O 0)
{3,1,1} | POINT(O O 0)
{3,1,2} | POINT(1 O 0)
{3,1,3} | POINT(1 0 1)
{3,1,4} | POINT(O O 1)
{3,1,5} | POINT(O O 0)
{4,1,1} | POINT(1 1 0)
{4,1,2} | POINT(1 1 1)
{4,1,3} | POINT(1 O 1)
{4,1,4} | POINT(1 0O 0)
{4,1,5} | POINT(1 1 0)
{5,1,1} | POINT(O 1 0)
{5,1,2} | POINT(0 1 1)
{5,1,3} | POINT(1 1 1)
{5,1,4} | POINT(1 1 0)
{5,1,5} | POINT(0 1 0)
{6,1,1} | POINT(O O 1)
{6,1,2} | POINT(1 O 1)
{6,1,3} | POINT(1 1 1)
{6,1,4} | POINT(O 1 1)
{6,1,5} | POINT(O O 1)
(30 rows)
—-— Triangle -—-
SELECT (g.gdump) .path, ST_AsText ((g.gdump).geom) as wkt
FROM
(SELECT
ST_DumpPoints (ST_GeomFromEWKT ('TRIANGLE ((
0 o,
0 9,
9 0,
00
)) ")) AS gdump
) AS g;
-— result —-
path | wkt
,,,,,, JTIS
{1} | POINT (O 0)
{2} | POINT (0 9)
{3} | POINT (9 0)
{4} | POINT (0 0)
== TN ==
SELECT (g.gdump) .path, ST_ASEWKT ((g.gdump) .geom) as wkt
FROM
(SELECT

ST_DumpPoints (ST_GeomFromEWKT ('TIN (((
0 0 O,

PostGIS 3.6.0rc2 Manual 107 /918

001,
010,
000
)) . ((
00 0,
010,
110,
00O
))
)')) AS gdump
) AS g;
-— result —-—
path | wkt
_________ e
{1,1,1} | POINT(O O 0)
{1,1,2} | POINT(O O 1)
{1,1,3} | POINT(O 1 0)
{1,1,4} | POINT(O O 0)
{2,1,1} | POINT (O 0 0)
{2,1,2} | POINT(O 1 0)
{2,1,3} | POINT(1 1 0)
{2,1,4} | POINT(O 0 0)
(8 rows)
See Also

geometry_dump, Section 13.6, ST_Dump, ST_DumpRings, ST_Points

7.4.8 ST_DumpSegments

ST_DumpSegments — Returns a set of geomet ry_dump rows for the segments in a geometry.

Synopsis

geometry_dump[] ST_DumpSegments(geometry geom);

Description

A set-returning function (SRF) that extracts the segments of a geometry. It returns a set of geometry_dump rows, each containing
a geometry (geom field) and an array of integers (path field).

* the geom field LINESTRINGSs represent the linear segments of the supplied geometry, while the CTRCULARSTRINGS repre-
sent the arc segments.

* the path field (an integer[]) is an index enumerating the segment start point positions in the elements of the supplied
geometry. The indices are 1-based. For example, for a LINESTRING the paths are {1} where i is the nth segment start
point in the LINESTRING. For a POLYGON the paths are {1, j} where i is the ring number (1 is outer; inner rings follow)
and 7 is the segment start point position in the ring.

Availability: 3.2.0

F

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

o

F

%" This function supports 3d and will not drop the z-index.

PostGIS 3.6.0rc2 Manual 108/918

Standard Geometry Examples

SELECT path, ST_AsText (geom)

FROM (
SELECT (ST_DumpSegments (g.geom)) .x*
FROM (SELECT 'GEOMETRYCOLLECTION (
LINESTRING(1 1, 3 3, 4 4),
POLYGON((5 5, 6 6, 7 7, 5 5))

) '::geometry AS geom

) AS g

{1,1} │ LINESTRING(1 1,3
{1,2} │ LINESTRING(3 3,4
{2,1,1} │ LINESTRING(5 5,6
{2,1,2} │ LINESTRING (6 6,7
{2,1,3} │ LINESTRING(7 7,5
(5 rows)

0 J o x> W

TIN and Triangle Examples

—-— Triangle —-

SELECT path, ST_AsText (geom)

FROM (
SELECT
FROM (

(ST_DumpSegments (g.geom)) . *
ELECT 'TRIANGLE ((

14

14

14

O w0 O O
O O W O Wn

)) '::geometry AS geom
) AS g

path │ st_astext

{1,1} │ LINESTRING (
{1,2} │ LINESTRING (
{1,3} │ LINESTRING (

o O O
o 0 O
~
o v O
o O W

-— TIN —-

SELECT path, ST_ASEWKT (geom)

FROM (
SELECT (ST_DumpSegments (g.geom)) .*
FROM (SELECT 'TIN(((

O!

’

1
0,
0

o P O O

~

~

-
~
O R OO ~ O O O O

o R P O
o O O O
~

) '::geometry AS geom

PostGIS 3.6.0rc2 Manual 109/918

) AS g
) Ji

path │ st_asewkt
{1,1,1} │ LINESTRING(0 O 0,0 0 1)
{1,1,2} │ LINESTRING(0O 0 1,0 1 0)
{1,1,3} │ LINESTRING(O 1 0,0 0 0)
{2,1,1} │ LINESTRING(0 0 0,0 1 0)
{2,1,2} │ LINESTRING(0O 1 0,1 1 0)
{2,1,3} │ LINESTRING(1 1 0,0 0 0)
(6 rows)
See Also

geometry_dump, Section 13.6, ST_Dump, ST_DumpRings

7.4.9 ST _DumpRings

ST_DumpRings — Returns a set of geomet ry_dump rows for the exterior and interior rings of a Polygon.

Synopsis

geometry_dump[] ST_DumpRings(geometry a_polygon);

Description
A set-returning function (SRF) that extracts the rings of a polygon. It returns a set of geometry_dump rows, each containing a
geometry (geom field) and an array of integers (path field).

The geom field contains each ring as a POLYGON. The path field is an integer array of length 1 containing the polygon ring
index. The exterior ring (shell) has index 0. The interior rings (holes) have indices of 1 and higher.

Not¢ Note
This only works for POLYGON geometries. It does not work for MULTIPOLYGONS

Auvailability: PostGIS 1.1.3. Requires PostgreSQL 7.3 or higher.

This function supports 3d and will not drop the z-index.

Examples

General form of query.

SELECT polyTable.fieldl, polyTable.fieldl,
(ST_DumpRings (polyTable.geom)) .geom As geom
FROM polyTable;

A polygon with a single hole.

PostGIS 3.6.0rc2 Manual 110/918

SELECT path, ST_ASEWKT (geom) As geom
FROM ST_DumpRings (

ST_GeomFromEWKT ('POLYGON ((-8149064 5133092 1,-8149064 5132986 1,-8148996 5132839 <
1,-8148972 5132767 1,-8148958 5132508 1,-8148941 5132466 1,-8148924 5132394 1,

-8148903 5132210 1,-8148930 5131967 1,-8148992 5131978 1,-8149237 5132093 1,-8149404 <+
5132211 1,-8149647 5132310 1,-8149757 5132394 1,

-8150305 5132788 1,-8149064 5133092 1),

(-8149362 5132394 1,-8149446 5132501 1,-8149548 5132597 1,-8149695 5132675 1,-8149362 <
5132394 1))")

) as foo;

{0} | POLYGON((-8149064 5133092 1,-8149064 5132986 1,-8148996 5132839 1,-8148972 5132767 <
1,-8148958 5132508 1,
—-8148941 5132466 1,-8148924 5132394 1,
-8148903 5132210 1,-8148930 5131967 1,
-8148992 5131978 1,-8149237 5132093 1,
-8149404 5132211 1,-8149647 5132310 1,
1,-8149064 5133092 1))
{1} | POLYGON((—-8149362 5132394 1,-8149446 5132501 1,
| —-8149548 5132597 1,-8149695 5132675 1,-8149362 5132394 1))

-8149757 5132394 1,-8150305 5132788 <

See Also

geometry_dump, Section 13.6, ST_Dump, ST_ExteriorRing, ST_InteriorRingN

7.4.10 ST_EndPoint

ST_EndPoint — Returns the last point of a LineString or CircularLineString.

Synopsis

geometry ST_EndPoint(geometry g);

Description

Returns the last point of a LINESTRING or CIRCULARLINESTRING geometry as a POINT. Returns NULL if the input is not
a LINESTRING or CIRCULARLINESTRING.

This method implements the SQL/MM specification. SQL-MM 3: 7.1.4
This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves.

Note
N;ﬂd Changed: 2.0.0 no longer works with single geometry MultiLineStrings. In older versions of PostGIS a single-line Multi-
LineString would work with this function and return the end point. In 2.0.0 it returns NULL like any other MultiLineString.
The old behavior was an undocumented feature, but people who assumed they had their data stored as LINESTRING
may experience these returning NULL in 2.0.0.

&

PostGIS 3.6.0rc2 Manual 111/918

Examples

End point of a LineString

postgis=# SELECT ST_AsText (ST_EndPoint ('LINESTRING(1 1, 2 2, 3 3)'::geometry));
st_astext

POINT (3 3)

End point of a non-LineString is NULL

SELECT ST_EndPoint ('"POINT(1 1)'::geometry) IS NULL AS is_null;
is_null

End point of a 3D LineString

—--3d endpoint
SELECT ST_ASEWKT (ST_EndPoint ('LINESTRING(1 1 2, 1 2 3, 0 0 5)"));
st_asewkt

POINT (O 0 5)

End point of a CircularString

SELECT ST_AsText (ST_EndPoint ('CIRCULARSTRING(5 2,-3 1.999999, -2 1, -4 2, 6 3)'::geometry)) <

4
st_astext

POINT (6 3)

See Also

ST PointN, ST_StartPoint

7.4.11 ST_Envelope

ST_Envelope — Returns a geometry representing the bounding box of a geometry.

Synopsis

geometry ST_Envelope(geometry gl);

Description

Returns the double-precision (float8) minimum bounding box for the supplied geometry, as a geometry. The polygon is defined
by the corner points of the bounding box ((MINX, MINY), (MINX, MAXY), (MAXX, MAXY), (MAXX, MINY), (MINX, MINY)).
(PostGIS will add a ZMIN/ZMAX coordinate as well).

Degenerate cases (vertical lines, points) will return a geometry of lower dimension than POLYGON, ie. POINT or LINESTRING.

Availability: 1.5.0 behavior changed to output double precision instead of float4
ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.1

ﬂ This method implements the SQL/MM specification. SQL-MM 3: 5.1.19

http://www.opengeospatial.org/standards/sfs

PostGIS 3.6.0rc2 Manual 112/918
Examples
SELECT ST_AsText (ST_Envelope ('POINT (1 3)'::geometry));

st_astext

POINT (1 3)
(1 row)
SELECT ST_AsText (ST_Envelope ('LINESTRING(0 0, 1 3)'::geometry));

st_astext
POLYGON((0 0,0 3,1 3,1 0,0 0))
(1 row)
SELECT ST_AsText (ST_Envelope ('POLYGON((O O, O 1, 1.0000001 1, 1.0000001 0, O 0))'::geometry <«
)) i
st_astext
POLYGON((0 0,0 1,1.00000011920929 1,1.00000011920929 0,0 0))
(1 row)
SELECT ST_AsText (ST_Envelope ('POLYGON((0O 0, O 1, 1.0000000001 1, 1.0000000001 0, O 0Q0))':: ¢«
geometry)) ;
st_astext

POLYGON((0 0,0 1,1.00000011920929 1,1.00000011920929 0,0 0))
(1 row)
SELECT Box3D (geom), Box2D (geom), ST_AsText (ST_Envelope (geom)) As envelopewkt

FROM (SELECT 'POLYGON((O 0, 0 1000012333334.34545678, 1.0000001 1, 1.0000001 0, O 0))':: ¢«

geometry As geom) As foo;

Envelope of a point and linestring.

SELECT ST_AsText (ST_Envelope (
ST_Collect (
ST_GeomFromText ('LINESTRING (55 75,125 150)"),
ST _Point (20, 80))

PostGIS 3.6.0rc2 Manual 113/918

)) As wktenv;
wktenv

POLYGON ((20 75,20 150,125 150,125 75,20 75))

See Also

Box2D, Box3D, ST_OrientedEnvelope

7.4.12 ST_ExteriorRing

ST_ExteriorRing — Returns a LineString representing the exterior ring of a Polygon.

Synopsis

geometry ST _ExteriorRing(geometry a_polygon);

Description

Returns a LINESTRING representing the exterior ring (shell) of a POLYGON. Returns NULL if the geometry is not a polygon.

oA Note
N This function does not support MULTIPOLYGONSs. For MULTIPOLYGONSs use in conjunction with ST_GeometryN or
ST_Dump

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1. 2.1.5.1
ﬂ This method implements the SQL/MM specification. SQL-MM 3: 8.2.3, 8.3.3

ﬂ This function supports 3d and will not drop the z-index.

Examples

——If you have a table of polygons
SELECT gid, ST_ExteriorRing(geom) AS ering
FROM sometable;

-—-If you have a table of MULTIPOLYGONs
—-—and want to return a MULTILINESTRING composed of the exterior rings of each polygon
SELECT gid, ST_Collect (ST_ExteriorRing(geom)) AS erings
FROM (SELECT gid, (ST_Dump (geom)) .geom As geom
FROM sometable) As foo
GROUP BY gid;

-—-3d Example

SELECT ST_AsEWKT (
ST_ExteriorRing (
ST_GeomFromEWKT ('POLYGON((O O 1, 1 11, 1 2 1, 111, 00 1))")
)

)i

st_asewkt

LINESTRING(O O 1,1 1 1,1 2 1,1 1 1,0 0 1)

http://www.opengeospatial.org/standards/sfs

PostGIS 3.6.0rc2 Manual 114 /918

See Also

ST_InteriorRingN, ST_Boundary, ST_NumlnteriorRings

7.4.13 ST_GeometryN

ST_GeometryN — Return an element of a geometry collection.

Synopsis

geometry ST_GeometryN(geometry geomA, integer n);

Description

Return the 1-based Nth element geometry of an input geometry which is a GEOMETRYCOLLECTION, MULTIPOINT, MUL-
TILINESTRING, MULTICURVE, MULTI)POLYGON, or POLYHEDRALSURFACE. Otherwise, returns NULL.

Not? Note

Index is 1-based as for OGC specs since version 0.8.0. Previous versions implemented this as 0-based instead.

Not? Note

To extract all elements of a geometry, ST_Dump is more efficient and works for atomic geometries.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.

Changed: 2.0.0 Prior versions would return NULL for singular geometries. This was changed to return the geometry for
ST_GeometryN(..,1) case.

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
ﬂ This method implements the SQL/MM specification. SQL-MM 3: 9.1.5

ﬂ This function supports 3d and will not drop the z-index.

ﬂ This method supports Circular Strings and Curves.

ﬂ This function supports Polyhedral surfaces.

ﬂ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Standard Examples

—-—-Extracting a subset of points from a 3d multipoint

SELECT n, ST_ASEWKT (ST_GeometryN(geom, n)) As geomewkt

FROM (

VALUES (ST_GeomFromEWKT ('MULTIPOINT((1 2 7), (3 4 7), (5 6 7), (8 9 10))"')),

(ST_GeomFromEWKT ("MULTICURVE (CIRCULARSTRING (2.5 2.5,4.5 2.5, 3.5 3.5), (10 11, 12 11))"))
)As foo (geom)
CROSS JOIN generate_series(1,100) n

http://www.opengeospatial.org/standards/sfs

PostGIS 3.6.0rc2 Manual

115/918

WHERE n <= ST_NumGeometries (geom) ;

—-—-Extracting all geometries
SELECT gid,
FROM sometable CROSS JOIN generate_series(1,100)

POINT (1
POINT (3

POINT (5

POINT (8

CIRCULARSTRING (2.5 2.5,4.5 2.5,3.5 3.5)

7)
10

geomewkt

)

LINESTRING(10 11,12 11)

n,

(useful when you want to assign an id)

ST_GeometryN (geom, n)

WHERE n <= ST_NumGeometries (geom) ;

Polyhedral Surfaces, TIN and Triangle Examples

—— Polyhedral surface example
—— Break a Polyhedral surface into its faces

SELECT ST_ASEWKT (ST_GeometryN (p_geom, 3))

0

e

FROM

((0 00, 001,
((000, 010,
((000, 100,
((1 10, 111,
(0010, 011,
(001, 101,
)') AS p_geom)

POLYGON((O O 0,1 0 0,1 0 1,0

-— TIN --

geom_ewkt

1, 0
’
’

’

R RO o P
R R 2o
[

14

AS aj;

1

= P O O O

0,
’
’
’

14

= O O O

~

O O O O O

0 0)),

O P P O O

SELECT ST_ASEWKT (ST_GeometryN (geom, 2))

FRO

(SELECT
ST_GeomFromEWKT ('TIN

) AS g;

M

-— result —-—

~

0

O OO ~ 0O O O

0 0,

14

1
0,
0

o = O

~

O = P O
o O O O
~ ~

>
n

geom

(((

TRIANGLE((O O 0,0 1 0,1 1 0,0 O 0))

as wkt

As geom_ewkt
(SELECT ST_GeomFromEWKT ('POLYHEDRALSURFACE (

PostGIS 3.6.0rc2 Manual 116/918

See Also

ST_Dump, ST_NumGeometries

7.4.14 ST_GeometryType

ST_GeometryType — Returns the SQL-MM type of a geometry as text.

Synopsis

text ST_GeometryType(geometry gl);

Description
Returns the type of the geometry as a string. EG: ST_LineString’, ’ST_Polygon’,”ST_MultiPolygon’ etc. This function differs

from GeometryType(geometry) in the case of the string and ST in front that is returned, as well as the fact that it will not indicate
whether the geometry is measured.

Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
ﬂ This method implements the SQL/MM specification. SQL-MM 3: 5.1.4
ﬂ This function supports 3d and will not drop the z-index.

ﬂ This function supports Polyhedral surfaces.

Examples

SELECT ST_GeometryType (ST_GeomFromText ('LINESTRING(77.29 29.07,77.42 29.26,77.27 <&
29.31,77.29 29.07)"));
——result
ST_LineString

SELECT ST_GeometryType (ST_GeomFromEWKT ('POLYHEDRALSURFACE(((O0 0 0, 0 0 1, 01 1, 01 0, 0 <
0 0)),
(¢<0 0o 0, 010, 1210, 100, 000O0)), (COOO0CQ, 100, 101, 001, 000y,
(210, 1211, 1201, 100, 11 0)),
(¢<02 0,011,111, 110, 010)), (COO0C1, 101, 111, 011, 001L)y)y)y
—-—-result

ST_PolyhedralSurface

SELECT ST_GeometryType (ST_GeomFromEWKT ('POLYHEDRALSURFACE(((O0 0 0, 0 0 1, 01 1, 01 0, 0 <
O O)) ’
((<0 o0, 010, 1210, 100, 000O0)), (COOO0CB, 100, 101, 001, 000,
(210, 1211, 1201, 100, 11 0)),
(¢0120,011,111,110, 010)), (¢(OO0C1, 101, 111, 011, 001)))")):
——result

ST_PolyhedralSurface

SELECT ST_GeometryType (geom) as result
FROM
(SELECT
ST_GeomFromEWKT ("TIN (((
00 0,
001,

PostGIS 3.6.0rc2 Manual 117 /918

01 0,
00O
)) .
0 0 0O,
01 0,
110,
000
))
)') AS geom
) AS g;
result
ST_Tin
See Also
GeometryType

7.4.15 ST_HasArc

ST_HasArc — Tests if a geometry contains a circular arc

Synopsis

boolean ST_HasArc(geometry geomA);

Description

Returns true if a geometry or geometry collection contains a circular string

Auvailability: 1.2.37
ﬂ This function supports 3d and will not drop the z-index.

ﬂ This method supports Circular Strings and Curves.

Examples

SELECT ST_HasArc(ST_Collect ('LINESTRING(1 2, 3 4, 5 6)', 'CIRCULARSTRING(1 1, 2 3, 4 5, 6 <+
7, 5 6)'));
st_hasarc

See Also

ST_CurveToLine, ST LineToCurve

7.4.16 ST_InteriorRingN

ST_InteriorRingN — Returns the Nth interior ring (hole) of a Polygon.

PostGIS 3.6.0rc2 Manual 118/918

Synopsis

geometry ST_InteriorRingN(geometry a_polygon, integer n);

Description

Returns the Nth interior ring (hole) of a POLYGON geometry as a LINESTRING. The index starts at 1. Returns NULL if the
geometry is not a polygon or the index is out of range.

o4 Note
N This function does not support MULTIPOLYGONSs. For MULTIPOLYGONSs use in conjunction with ST_GeometryN or
ST_Dump

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
ﬂ This method implements the SQL/MM specification. SQL-MM 3: 8.2.6, 8.3.5

ﬂ This function supports 3d and will not drop the z-index.

Examples

SELECT ST_AsText (ST_InteriorRingN(geom, 1)) As geom
FROM (SELECT ST_BuildArea (
ST_Collect (ST_Buffer (ST_Point (1,2), 20,3),
ST_Buffer (ST_Point (1, 2), 10,3))) As geom
) as foo;

See Also

ST_ExteriorRing, ST_BuildArea, ST_Collect, ST_Dump, ST_NumlInteriorRing, ST_NumlInteriorRings

7.4.17 ST_NumCurves

ST_NumCurves — Return the number of component curves in a CompoundCurve.

Synopsis

integer ST_NumCurves(geometry a_compoundcurve);

Description

Return the number of component curves in a CompoundCurve, zero for an empty CompoundCurve, or NULL for a non-
CompoundCurve input.

ﬂ This method implements the SQL/MM specification. SQL-MM 3: 8.2.6, 8.3.5

ﬂ This function supports 3d and will not drop the z-index.

http://www.opengeospatial.org/standards/sfs

PostGIS 3.6.0rc2 Manual 119/918

Examples

—-— Returns 3
SELECT ST_NumCurves ('COMPOUNDCURVE (
(2 2, 2.5 2.5),
CIRCULARSTRING (2.5 2.5, 4.5 2.5, 3.5 3.5),
(3.5 3.5, 2.5 4.5, 35, 2 2)
) ')

—-— Returns 0
SELECT ST_NumCurves ('COMPOUNDCURVE EMPTY') ;

See Also

ST_CurveN, ST_Dump, ST_ExteriorRing, ST_NumlnteriorRings, ST_NumGeometries

7.4.18 ST_CurveN

ST_CurveN — Returns the Nth component curve geometry of a CompoundCurve.

Synopsis

geometry ST_CurveN(geometry a_compoundcurve, integer index);

Description

Returns the Nth component curve geometry of a CompoundCurve. The index starts at 1. Returns NULL if the geometry is not a
CompoundCurve or the index is out of range.

ﬂ This method implements the SQL/MM specification. SQL-MM 3: 8.2.6, 8.3.5

ﬂ This function supports 3d and will not drop the z-index.

Examples

SELECT ST_AsText (ST_CurveN ('COMPOUNDCURVE (
(2 2, 2.5 2.9),

CIRCULARSTRING (2.5 2.5, 4.5 2.5, 3.5 3.5),
(3.5 3.5, 2.5 4.5, 35, 2 2)
)', 1))
See Also

ST_NumCurves, ST_Dump, ST_ExteriorRing, ST_NumlInteriorRings, ST_NumGeometries

7.4.19 ST IsClosed

ST_IsClosed — Tests if a LineStrings’s start and end points are coincident. For a PolyhedralSurface tests if it is closed (volu-
metric).

PostGIS 3.6.0rc2 Manual 120/918

Synopsis

boolean ST_IsClosed(geometry g);

Description

Returns TRUE if the LINESTRING’s start and end points are coincident. For Polyhedral Surfaces, reports if the surface is areal
(open) or volumetric (closed).

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1.

ﬂ This method implements the SQL/MM specification. SQL-MM 3: 7.1.5,9.3.3

N;'R’! Note

SQL-MM defines the result of ST_IsClosed (NULL) to be 0, while PostGIS returns NULL.

ﬂ This function supports 3d and will not drop the z-index.

ﬂ This method supports Circular Strings and Curves.
Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.

ﬂ This function supports Polyhedral surfaces.

Line String and Point Examples

postgis=# SELECT ST_IsClosed('LINESTRING(0O 0, 1 1)'::geometry);
st_isclosed

postgis=# SELECT ST_IsClosed('LINESTRING(O O, 0 1, 1 1, 0 0)'::geometry);
st_isclosed

postgis=# SELECT ST_IsClosed('MULTILINESTRING((O O, 0 1, 1 1, 0 0), (0 0, 1 1))"'::geometry);
st_isclosed

postgis=# SELECT ST_IsClosed('POINT (0O 0)'::geometry);
st_isclosed

postgis=# SELECT ST_IsClosed('MULTIPOINT((0 0), (1 1))'::geometry);
st_isclosed

http://www.opengeospatial.org/standards/sfs

PostGIS 3.6.0rc2 Manual

121/918

Polyhedral Surface Examples

-— A cube —-—
SELECT ST_IsClosed(ST_GeomFromEWKT ('POLYHEDRALSURFACE(((O0 0 O,
0 0)),
((<0 o0, 010, 110,100, 0D0O0), ((OOCOD, 100, 101, 0
(10, 111, 1201, 100, 110)),
(¢<020,011,111,110, 010)), ((OOC1, 101, 111, 0
st_isclosed
t
—-— Same as cube but missing a side —--
SELECT ST_IsClosed(ST_GeomFromEWKT ('POLYHEDRALSURFACE(((O0 0 O,
0)),
(<0 o0, 010,110,100, 0O00O0), ((OOCOD, 100, 101, 0
(10, 111, 1201, 100, 110)),
(020,011, 12121, 1210, 010)))"));

See Also

ST_IsRing

~

7.4.20 ST IsCollection

ST_IsCollection — Tests if a geometry is a geometry collection type.

Synopsis

boolean ST_IsCollection(geometry g);

Description

0

0

1

0

0

1,

1,

ll

1,

1, 01

l’

00 0)),

00 1))

11, 0

00 0)),

01

) ')

10,

Returns TRUE if the geometry type of the argument a geometry collection type. Collection types are the following:

* GEOMETRYCOLLECTION

* MULTI{POINT,POLY GON,LINESTRING,CURVE,SURFACE}

« COMPOUNDCURVE

0 <«

0 <

N:ﬂ"’! Note

This function analyzes the type of the geometry. This means that it will return TRUE on collections that are empty or
that contain a single element.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves.

PostGIS 3.6.0rc2 Manual 122 /918

Examples

postgis=# SELECT
st_iscollection

postgis=# SELECT
st_iscollection

postgis=# SELECT
st_iscollection

postgis=# SELECT
st_iscollection

postgis=# SELECT
st_iscollection

See Also

ST_NumGeometries

ST_IsCollection ('LINESTRING(O O, 1 1)'::geometry),;

ST_IsCollection ('MULTIPOINT EMPTY'::geometry);

ST_IsCollection ('MULTIPOINT((0 0))'::geometry);

ST_IsCollection ('MULTIPOINT((O 0), (42 42))'::geometry);

ST_IsCollection ('GEOMETRYCOLLECTION (POINT (O 0)) '::geometry);

7.4.21 ST_IsEmpty

ST_IsEmpty — Tests if a geometry is empty.

Synopsis

boolean ST_IsEmpty(geometry geomA);

Description

Returns true if this Geometry is an empty geometry. If true, then this Geometry represents an empty geometry collection,

polygon, point etc.

N;'R’! Note

SQL-MM defines the result of ST_IsEmpty(NULL) to be 0, while PostGIS returns NULL.

PostGIS 3.6.0rc2 Manual 123/918

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.1
ﬂ This method implements the SQL/MM specification. SQL-MM 3: 5.1.7

ﬂ This method supports Circular Strings and Curves.

Warning

Changed: 2.0.0 In prior versions of PostGIS ST_GeomFromText(GEOMETRYCOLLECTION(EMPTY)’) was allowed.
This is now illegal in PostGIS 2.0.0 to better conform with SQL/MM standards

Examples

SELECT ST_IsEmpty (ST_GeomFromText ('GEOMETRYCOLLECTION EMPTY'));
st_isempty

SELECT ST_IsEmpty (ST_GeomFromText ('POLYGON EMPTY'));
st_isempty

SELECT ST_IsEmpty (ST_GeomFromText ('POLYGON((1 2, 3 4, 56, 1 2))"));

st_isempty

SELECT ST_IsEmpty (ST_GeomFromText ('POLYGON((1 2, 3 4, 56, 1 2))')) = false;
?column?

SELECT ST_IsEmpty (ST_GeomFromText ('CIRCULARSTRING EMPTY'));
st_isempty

7.4.22 ST_lIsPolygonCCW

ST_IsPolygonCCW — Tests if Polygons have exterior rings oriented counter-clockwise and interior rings oriented clockwise.

Synopsis

boolean ST_IsPolygonCCW (geometry geom);

http://www.opengeospatial.org/standards/sfs

PostGIS 3.6.0rc2 Manual 124 /918

Description

Returns true if all polygonal components of the input geometry use a counter-clockwise orientation for their exterior ring, and a
clockwise direction for all interior rings.

Returns true if the geometry has no polygonal components.

N:"R’! Note

Closed linestrings are not considered polygonal components, so you would still get a true return by passing a single
closed linestring no matter its orientation.

NO'H'! Note

If a polygonal geometry does not use reversed orientation for interior rings (i.e., if one or more interior rings are oriented
in the same direction as an exterior ring) then both ST_IsPolygonCW and ST_IsPolygonCCW will return false.

Availability: 2.4.0
This function supports 3d and will not drop the z-index.

This function supports M coordinates.

See Also

ST_ForcePolygonCW , ST_ForcePolygonCCW , ST_IsPolygonCW

7.4.23 ST_lIsPolygonCW

ST_IsPolygonCW — Tests if Polygons have exterior rings oriented clockwise and interior rings oriented counter-clockwise.

Synopsis

boolean ST_IsPolygonCW (geometry geom);

Description

Returns true if all polygonal components of the input geometry use a clockwise orientation for their exterior ring, and a counter-
clockwise direction for all interior rings.

Returns true if the geometry has no polygonal components.

N;‘t"! Note

Closed linestrings are not considered polygonal components, so you would still get a true return by passing a single
closed linestring no matter its orientation.

No'ld Note

If a polygonal geometry does not use reversed orientation for interior rings (i.e., if one or more interior rings are oriented
in the same direction as an exterior ring) then both ST_IsPolygonCW and ST_IsPolygonCCW will return false.

PostGIS 3.6.0rc2 Manual 125/918

Availability: 2.4.0
ﬂ This function supports 3d and will not drop the z-index.

ﬂ This function supports M coordinates.

See Also

ST_ForcePolygonCW , ST_ForcePolygonCCW , ST_IsPolygonCW

7.4.24 ST_lIsRing

ST_IsRing — Tests if a LineString is closed and simple.

Synopsis

boolean ST_IsRing(geometry g);

Description

Returns TRUE if this LINESTRING is both ST_IsClosed (ST_StartPoint (g) ~= ST_Endpoint (g))and ST_IsSimple
(does not self intersect).

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1. 2.1.5.1

ﬂ This method implements the SQL/MM specification. SQL-MM 3: 7.1.6

Not¢ Note
SQL-MM defines the result of ST_TIsRing (NULL) to be 0, while PostGIS returns NULL.

Examples

SELECT ST_IsRing(geom), ST_IsClosed(geom), ST _IsSimple (geom)
FROM (SELECT 'LINESTRING(O O, 0 1, 1 1, 1 0, O 0)'::geometry AS geom) AS foo;
st_isring | st_isclosed | st_issimple

SELECT ST_IsRing(geom), ST_IsClosed(geom), ST_IsSimple (geom)

FROM (SELECT 'LINESTRING(O O, 0 1, 1 0, 1 1, 0 0)'::geometry AS geom) AS foo;
st_isring | st_isclosed | st_issimple

___________ +_____________+_____________

f |t | £

(1 row)

See Also

ST_IsClosed, ST_IsSimple, ST_StartPoint, ST_EndPoint

http://www.opengeospatial.org/standards/sfs

PostGIS 3.6.0rc2 Manual 126 /918

7.4.25 ST IsSimple

ST_IsSimple — Tests if a geometry has no points of self-intersection or self-tangency.

Synopsis

boolean ST_IsSimple(geometry geomA);

Description

Returns true if this Geometry has no anomalous geometric points, such as self-intersection or self-tangency. For more information
on the OGC'’s definition of geometry simplicity and validity, refer to "Ensuring OpenGIS compliance of geometries"

Not? Note
SQL-MM defines the result of ST_IsSimple(NULL) to be 0, while PostGIS returns NULL.

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.1
ﬂ This method implements the SQL/MM specification. SQL-MM 3: 5.1.8

ﬂ This function supports 3d and will not drop the z-index.

Examples

SELECT ST_IsSimple (ST_GeomFromText ('"POLYGON((1 2, 3 4, 5 6, 1 2))"'"));
st_issimple

SELECT ST_IsSimple (ST_GeomFromText ('LINESTRING(1 1,2 2,2 3.5,1 3,1 2,2 1)"));
st_issimple

See Also

ST IsValid

7.426 ST M

ST_M — Returns the M coordinate of a Point.

Synopsis

float ST_M(geometry a_point);

http://www.opengeospatial.org/standards/sfs

PostGIS 3.6.0rc2 Manual 127 /918

Description

Return the M coordinate of a Point, or NULL if not available. Input must be a Point.

N;"l"! Note

This is not (yet) part of the OGC spec, but is listed here to complete the point coordinate extractor function list.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
This method implements the SQL/MM specification.

This function supports 3d and will not drop the z-index.

Examples

SELECT ST_M(ST_GeomFromEWKT ("POINT (1 2 3 4)"'));
st_m

See Also

ST _GeomFromEWKT, ST X, ST Y, ST Z

7.4.27 ST_MemSize

ST_MemSize — Returns the amount of memory space a geometry takes.

Synopsis

integer ST_MemSize(geometry geomA);

Description

Returns the amount of memory space (in bytes) the geometry takes.

This complements the PostgreSQL built-in database object functions pg_column_size, pg_size_pretty, pg_relation_size, pg_total_relatio

Note
¢ pg_relation_size which gives the byte size of a table may return byte size lower than ST_MemSize. This is because
N”’M pg_relation_size does not add toasted table contribution and large geometries are stored in TOAST tables.
pg_total_relation_size - includes, the table, the toasted tables, and the indexes.
pg_column_size returns how much space a geometry would take in a column considering compression, so may be
lower than ST_MemSize

http://www.opengeospatial.org/standards/sfs
https://www.postgresql.org/docs/current/functions-admin.html#FUNCTIONS-ADMIN-DBOBJECT

PostGIS 3.6.0rc2 Manual 128 /918

ﬂ This function supports 3d and will not drop the z-index.

ﬂ This method supports Circular Strings and Curves.

ﬂ This function supports Polyhedral surfaces.

ﬂ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
Changed: 2.2.0 name changed to ST_MemSize to follow naming convention.

Examples

——Return how much byte space Boston takes up 1in our Mass data set

SELECT pg_size_pretty (SUM(ST_MemSize (geom))) as totgeomsum,
pg_size_pretty (SUM(CASE WHEN town = 'BOSTON' THEN ST_MemSize (geom) ELSE 0 END)) As bossum,
CAST (SUM (CASE WHEN town = 'BOSTON' THEN ST_MemSize (geom) ELSE 0 END)*1.00 /

SUM (ST_MemSize (geom)) *100 As numeric(10,2)) As perbos
FROM towns;

totgeomsum bossum perbos

1522 kB 30 kB 1.99

SELECT ST_MemSize (ST_GeomFromText ('CIRCULARSTRING (220268 150415,220227 150505,220227 <>
150406) ")) ;

73

—-What percentage of our table is taken up by Jjust the geometry

SELECT pg_total_relation_size('public.neighborhoods') As fulltable_size, sum(ST_MemSize(<
geom)) As geomsize,

sum (ST_MemSize (geom)) «1.00/pg_total_relation_size ('public.neighborhoods')*100 As pergeom

FROM neighborhoods;
fulltable_size geomsize pergeom

262144 96238 36.71188354492187500000

7.4.28 ST_NDims

ST_NDims — Returns the coordinate dimension of a geometry.

Synopsis

integer ST_NDims(geometry gl);

Description

Returns the coordinate dimension of the geometry. PostGIS supports 2 - (x,y) , 3 - (X,y,z) or 2D with measure - X,y,m, and 4 - 3D
with measure space X,y,z,m

ﬂ This function supports 3d and will not drop the z-index.

PostGIS 3.6.0rc2 Manual 129/918

Examples

SELECT ST_NDims (ST_GeomFromText ('POINT(1 1)')) As d2point,
ST_NDims (ST_GeomFromEWKT ('POINT (1 1 2)')) As d3point,
ST_NDims (ST_GeomFromEWKT ('POINTM(1 1 0.5)"')) As d2pointm;

d2point | d3point | d2pointm

See Also

ST_CoordDim, ST_Dimension, ST_GeomFromEWKT

7.4.29 ST_NPoints

ST_NPoints — Returns the number of points (vertices) in a geometry.

Synopsis

integer ST_NPoints(geometry gl);

Description

Return the number of points in a geometry. Works for all geometries.

Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.

N;’R’! Note

Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

ﬂ This function supports 3d and will not drop the z-index.
ﬂ This method supports Circular Strings and Curves.

ﬂ This function supports Polyhedral surfaces.

Examples

SELECT ST_NPoints (ST_GeomFromText ('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 <+
29.07)"));

—-—result

4

—--Polygon in 3D space

SELECT ST_NPoints (ST_GeomFromEWKT ('LINESTRING(77.29 29.07 1,77.42 29.26 0,77.27 29.31 <+
-1,77.29 29.07 3)"'))

——result

4

PostGIS 3.6.0rc2 Manual 130/918

See Also

ST_NumPoints

7.4.30 ST_NRings

ST_NRings — Returns the number of rings in a polygonal geometry.

Synopsis

integer ST_NRings(geometry geomA);

Description

If the geometry is a polygon or multi-polygon returns the number of rings. Unlike NumlInteriorRings, it counts the outer rings as
well.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves.

Examples

SELECT ST_NRings (geom) As Nrings, ST_NumInteriorRings (geom) As ninterrings

FROM (SELECT ST_GeomFromText ('"POLYGON((1 2, 3 4, 5 6, 1 2))') As geom) As foo;
nrings | ninterrings
________ e
1| 0
(1 row)
See Also

ST_NumlInteriorRings

7.4.31 ST_NumGeometries

ST_NumGeometries — Returns the number of elements in a geometry collection.

Synopsis

integer ST_NumGeometries(geometry geom);

Description

Returns the number of elements in a geometry collection (GEOMETRYCOLLECTION or MULTT*). For non-empty atomic
geometries returns 1. For empty geometries returns 0.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.

Changed: 2.0.0 In prior versions this would return NULL if the geometry was not a collection/MULTT type. 2.0.0+ now returns
1 for single geometries e.g POLYGON, LINESTRING, POINT.

PostGIS 3.6.0rc2 Manual 131/918

ﬂ This method implements the SQL/MM specification. SQL-MM 3: 9.1.4
ﬂ This function supports 3d and will not drop the z-index.
ﬂ This function supports Polyhedral surfaces.

ﬂ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

—-—Prior versions would have returned NULL for this —-— in 2.0.0 this returns 1

SELECT ST_NumGeometries (ST_GeomFromText ('LINESTRING(77.29 29.07,77.42 29.26,77.27 <+
29.31,77.29 29.07)"));

—-—result

1

——Geometry Collection Example - multis count as one geom in a collection

SELECT ST_NumGeometries (ST_GeomFromEWKT ('GEOMETRYCOLLECTION (MULTIPOINT ((-2 3), (=2 2)),
LINESTRING(5 5 ,10 10),

POLYGON((-7 4.2,-7.1 5,-7.1 4.3,-7 4.2)))"));

—-—result

3

See Also

ST_GeometryN, ST_Multi

7.4.32 ST_NuminteriorRings

ST_NumlnteriorRings — Returns the number of interior rings (holes) of a Polygon.

Synopsis

integer ST_NumlInteriorRings(geometry a_polygon);

Description
Return the number of interior rings of a polygon geometry. Return NULL if the geometry is not a polygon.

ﬂ This method implements the SQL/MM specification. SQL-MM 3: 8.2.5

Changed: 2.0.0 - in prior versions it would allow passing a MULTIPOLYGON, returning the number of interior rings of first
POLYGON.

Examples

—-—-If you have a regular polygon
SELECT gid, fieldl, field2, ST_NumInteriorRings(geom) AS numholes
FROM sometable;

—--If you have multipolygons
—-—-And you want to know the total number of interior rings in the MULTIPOLYGON
SELECT gid, fieldl, field2, SUM(ST_NumInteriorRings (geom)) AS numholes

PostGIS 3.6.0rc2 Manual 132/918

FROM (SELECT gid, fieldl, field2, (ST_Dump (geom)) .geom As geom
FROM sometable) As foo
GROUP BY gid, fieldl,field2;

See Also

ST_NumlnteriorRing, ST_InteriorRingN

7.4.33 ST_NuminteriorRing

ST_NumlnteriorRing — Returns the number of interior rings (holes) of a Polygon. Aias for ST_NumlInteriorRings

Synopsis

integer ST_NumlInteriorRing(geometry a_polygon);

See Also

ST_NumlnteriorRings, ST_InteriorRingN

7.4.34 ST_NumPatches

ST_NumPatches — Return the number of faces on a Polyhedral Surface. Will return null for non-polyhedral geometries.

Synopsis

integer ST_NumPatches(geometry g1);

Description

Return the number of faces on a Polyhedral Surface. Will return null for non-polyhedral geometries. This is an alias for
ST_NumGeometries to support MM naming. Faster to use ST_NumGeometries if you don’t care about MM convention.

Auwailability: 2.0.0

ﬂ This function supports 3d and will not drop the z-index.

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
ﬂ This method implements the SQL/MM specification. SQL-MM ISO/IEC 13249-3: 8.5

ﬂ This function supports Polyhedral surfaces.

Examples

SELECT ST_NumPatches (ST_GeomFromEWKT ('POLYHEDRALSURFACE(((O 0 0, 0 01, 01 1, 010, 00 <
0)),
((<0o o0, 010, 210,100, 00O0)), (COOCO0CG, 100, 1201, 001, 000y,
((z10, 111, 101, 100, 11 0)),
(¢<0 20, 011,111,110, 010)), (COO0O1, 101, 111, 011, 001)",
—-—result

6

http://www.opengeospatial.org/standards/sfs

PostGIS 3.6.0rc2 Manual 133/918

See Also

ST _GeomFromEWKT, ST _NumGeometries

7.4.35 ST_NumPoints

ST_NumPoints — Returns the number of points in a LineString or CircularString.

Synopsis

integer ST_NumPoints(geometry gl);

Description
Return the number of points in an ST_LineString or ST_CircularString value. Prior to 1.4 only works with linestrings as the

specs state. From 1.4 forward this is an alias for ST_NPoints which returns number of vertices for not just linestrings. Consider
using ST_NPoints instead which is multi-purpose and works with many geometry types.

g

g
%" This method implements the OGC Simple Features Implementation Specification for SQL 1.1.

g

5
%" This method implements the SQL/MM specification. SQL-MM 3: 7.2.4

Examples

SELECT ST_NumPoints (ST_GeomFromText ('LINESTRING (77.29 29.07,77.42 29.26,77.27 29.31,77.29
29.07)"));
——result
4

See Also

ST_NPoints

7.4.36 ST PatchN

ST_PatchN — Returns the Nth geometry (face) of a PolyhedralSurface.

Synopsis

geometry ST_PatchN(geometry geomA, integer n);

Description

Returns the 1-based Nth geometry (face) if the geometry is a POLYHEDRALSURFACE or POLYHEDRALSURFACEM. Oth-
erwise, returns NULL. This returns the same answer as ST_GeometryN for PolyhedralSurfaces. Using ST_GeometryN is faster.

N;rl‘d Note

Index is 1-based.

http://www.opengeospatial.org/standards/sfs

PostGIS 3.6.0rc2 Manual 134 /918

N;"""! Note

If you want to extract all elements of a geometry ST_Dump is more efficient.

Availability: 2.0.0
This method implements the SQL/MM specification. SQL-MM ISO/IEC 13249-3: 8.5
This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

Examples

—-—Extract the 2nd face of the polyhedral surface
SELECT ST_ASEWKT (ST_PatchN (geom, 2)) As geomewkt
FROM (
VALUES (ST_GeomFromEWKT ('POLYHEDRALSURFACE(((O O O, 0 01, 011, 010, OO0 O0)),
(¢<00 0,010,110, 100000)), (¢<OOO0CG 100, 1201, 001, 00 0)),
(10, 11, 101, 100, 110)),
(¢0 20, 011,111,110, 010)), (COO0O1, 101, 111, 011, 001)))"))) As <
foo (geom) ;

geomewkt
777+ 777
POLYGON((O O 0,0 1 0,1 1 0,1 0 0,0 0 0))

See Also

ST_AsEWKT, ST_GeomFromEWKT, ST_Dump, ST_GeometryN, ST_NumGeometries

7.4.37 ST_PointN

ST_PointN — Returns the Nth point in the first LineString or circular LineString in a geometry.

Synopsis

geometry ST_PointN(geometry a_linestring, integer n);

Description

Return the Nth point in a single linestring or circular linestring in the geometry. Negative values are counted backwards from the
end of the LineString, so that -1 is the last point. Returns NULL if there is no linestring in the geometry.

st¢} Note
N Index is 1-based as for OGC specs since version 0.8.0. Backward indexing (negative index) is not in OGC Previous
versions implemented this as 0-based instead.

PostGIS 3.6.0rc2 Manual 135/918

N;"""! Note

If you want to get the Nth point of each LineString in a MultiLineString, use in conjunction with ST_Dump

This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
This method implements the SQL/MM specification. SQL-MM 3: 7.2.5,7.3.5
This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves.

Note

N;H’! Changed: 2.0.0 no longer works with single geometry multilinestrings. In older versions of PostGIS -- a single line
multilinestring would work happily with this function and return the start point. In 2.0.0 it just returns NULL like any other
multilinestring.
Changed: 2.3.0 : negative indexing available (-1 is last point)

Examples

—— Extract all POINTs from a LINESTRING
SELECT ST_AsText (
ST_PointN(
columnl,
generate_series (1, ST_NPoints (columnl))
))
FROM (VALUES ('LINESTRING(O 0, 1 1, 2 2)'::geometry)) AS foo;

st_astext

POINT (0O 0)
POINT (1 1)
POINT (2 2)
(3 rows)

—-—Example circular string
SELECT ST_AsText (ST_PointN (ST_GeomFromText ('CIRCULARSTRING(1 2, 3 2, 1 2)"'), 2));

st_astext

POINT (3 2)
(1 row)

SELECT ST_AsText (f)
FROM ST_GeomFromText ('LINESTRING(O O O, 1 1 1, 2 2 2)') AS g
,ST_PointN(g, -2) AS f; ——- 1 based index

st_astext

POINT Z (1 1 1)
(1 row)

http://www.opengeospatial.org/standards/sfs

PostGIS 3.6.0rc2 Manual 136/918

See Also

ST _NPoints

7.4.38 ST Points

ST_Points — Returns a MultiPoint containing the coordinates of a geometry.

Synopsis

geometry ST _Points(geometry geom);

Description

Returns a MultiPoint containing all the coordinates of a geometry. Duplicate points are preserved, including the start and end
points of ring geometries. (If desired, duplicate points can be removed by calling ST_RemoveRepeatedPoints on the result).

To obtain information about the position of each coordinate in the parent geometry use ST_DumpPoints.

M and Z coordinates are preserved if present.

ﬂ This method supports Circular Strings and Curves.

ﬂ This function supports 3d and will not drop the z-index.
Auvailability: 2.3.0

Examples

SELECT ST_AsText (ST_Points ('POLYGON Z ((30 10 4,10 30 5,40 40 6, 30 10))"));

——-result
MULTIPOINT Z ((30 10 4), (10 30 5), (40 40 6), (30 10 4))

See Also

ST_RemoveRepeatedPoints, ST_DumpPoints

7.4.39 ST_StartPoint

ST_StartPoint — Returns the first point of a LineString.

Synopsis

geometry ST_StartPoint(geometry geomA);

PostGIS 3.6.0rc2 Manual 137 /918

Description

Returns the first point of a LINESTRING or CIRCULARLINESTRING geometry as a POINT. Returns NULL if the input is not
a LINESTRING or CIRCULARLINESTRING.

This method implements the SQL/MM specification. SQL-MM 3: 7.1.3
This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves.

Note
. Enhanced: 3.2.0 returns a point for all geometries. Prior behavior returns NULLs if input was not a LineString.

NO‘R’! Changed: 2.0.0 no longer works with single geometry MultiLineStrings. In older versions of PostGIS a single-line
MultiLineString would work happily with this function and return the start point. In 2.0.0 it just returns NULL like any
other MultiLineString. The old behavior was an undocumented feature, but people who assumed they had their data
stored as LINESTRING may experience these returning NULL in 2.0.0.

Examples

Start point of a LineString

SELECT ST_AsText (ST_StartPoint ('LINESTRING(0 1, 0 2)'::geometry));
st_astext

POINT (0 1)

Start point of a non-LineString is NULL

SELECT ST_StartPoint ('POINT(0 1)'::geometry) IS NULL AS is_null;
is_null

Start point of a 3D LineString

SELECT ST_ASEWKT (ST_StartPoint ('LINESTRING(0O 1 1, 0 2 2)'::geometry));
st_asewkt

POINT (0O 1 1)

Start point of a CircularString

SELECT ST_AsText (ST_StartPoint ('CIRCULARSTRING(5 2,-3 1.999999, -2 1, -4 2, 6 3)'::geometry ¢

)) i
st_astext

POINT (5 2)

See Also

ST _EndPoint, ST_PointN

7.4.40 ST_Summary

ST_Summary — Returns a text summary of the contents of a geometry.

PostGIS 3.6.0rc2 Manual 138/918

Synopsis

text ST_Summary(geometry g);
text ST_Summary(geography g);

Description

Returns a text summary of the contents of the geometry.

Flags shown square brackets after the geometry type have the following meaning:

* M: has M coordinate

* Z: has Z coordinate

* B: has a cached bounding box
* G: is geodetic (geography)

* S: has spatial reference system

ﬂ This method supports Circular Strings and Curves.
ﬂ This function supports Polyhedral surfaces.

ﬂ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
Availability: 1.2.2

Enhanced: 2.0.0 added support for geography

Enhanced: 2.1.0 S flag to denote if has a known spatial reference system

Enhanced: 2.2.0 Added support for TIN and Curves

Examples
=# SELECT ST_Summary (ST_GeomFromText ('LINESTRING(0 0, 1 1)')) as geom,
ST_Summary (ST_GeogFromText ('POLYGON((O O, 1 1, 1 2, 1 1, 0 0))")) geog;
geom \ geog

LineString[B] with 2 points Polygon[BGS] with 1 rings

ring 0 has 5 points
(1 row)
=# SELECT ST_Summary (ST_GeogFromText ('LINESTRING(0O O 1, 1 1 1)')) As geog_line,
ST_Summary (ST_GeomFromText ('SRID=4326;POLYGON((O0 O 1, 1 1 2, 1 2 3, 1 11, 00 1)) <«
')) As geom_poly;
geog_line | geom_poly

LineString[ZBGS] with 2 points | Polygon[ZBS] with 1 rings
ring 0 has 5 points

(1 row)

PostGIS 3.6.0rc2 Manual 139/918

See Also

PostGIS_DropBBox, PostGIS_AddBBox, ST_Force3DM, ST_Force3DZ, ST_Force2D, geography
ST IsValid, ST_IsValid, ST_IsValidReason, ST_IsValidDetail

7.4.41 ST X

ST _X — Returns the X coordinate of a Point.

Synopsis

float ST_X(geometry a_point);

Description

Return the X coordinate of the point, or NULL if not available. Input must be a point.

N;'l"! Note

To get the minimum and maximum X value of geometry coordinates use the functions ST_XMin and ST_XMax.

ﬂ This method implements the SQL/MM specification. SQL-MM 3: 6.1.3

ﬂ This function supports 3d and will not drop the z-index.

Examples

SELECT ST_X(ST_GeomFromEWKT ('POINT(1 2 3 4)"'"));
st_x

SELECT ST_Y (ST_Centroid (ST_GeomFromEWKT ('LINESTRING(1 2 3 4, 1 1 1 1)'")));
st_y

See Also

ST Centroid, ST_GeomFromEWKT, ST_M, ST _XMax, ST_XMin, ST_Y, ST_Z

7.4.42 ST Y

ST_Y — Returns the Y coordinate of a Point.

PostGIS 3.6.0rc2 Manual 140/918

Synopsis

float ST_Y(geometry a_point);

Description

Return the Y coordinate of the point, or NULL if not available. Input must be a point.

N;'“’! Note

To get the minimum and maximum Y value of geometry coordinates use the functions ST_YMin and ST_YMax.

ﬁ This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
ﬂ This method implements the SQL/MM specification. SQL-MM 3: 6.1.4

ﬂ This function supports 3d and will not drop the z-index.

Examples

SELECT ST_Y (ST_GeomFromEWKT ('POINT(1 2 3 4)"'));
st_y

SELECT ST_Y (ST_Centroid (ST_GeomFromEWKT ('LINESTRING(1 2 3 4, 1 1 1 1)'")));
st_y

See Also

ST Centroid, ST _GeomFromEWKT, ST M, ST X, ST YMax, ST YMin, ST Z

7.4.43 ST Z

ST_Z — Returns the Z coordinate of a Point.

Synopsis

float ST_Z(geometry a_point);

http://www.opengeospatial.org/standards/sfs

PostGIS 3.6.0rc2 Manual 141/918

Description

Return the Z coordinate of the point, or NULL if not available. Input must be a point.

N;’R’! Note

To get the minimum and maximum Z value of geometry coordinates use the functions ST_ZMin and ST_ZMax.

ﬂ This method implements the SQL/MM specification.

ﬂ This function supports 3d and will not drop the z-index.

Examples

SELECT ST_Z (ST_GeomFromEWKT ('POINT(1 2 3 4)"'));
st_z

See Also

ST_GeomFromEWKT, ST_M, ST_X, ST_Y, ST _ZMax, ST_ZMin

7.4.44 ST_Zmflag

ST_Zmflag — Returns a code indicating the ZM coordinate dimension of a geometry.

Synopsis

smallint ST_Zmflag(geometry geomA);

Description

Returns a code indicating the ZM coordinate dimension of a geometry.

Values are: 0 =2D, 1 =3D-M, 2 =3D-Z, 3 =4D.
ﬂ This function supports 3d and will not drop the z-index.

ﬂ This method supports Circular Strings and Curves.

Examples

SELECT ST_Zmflag(ST_GeomFromEWKT ('LINESTRING(1 2, 3 4)'));
st_zmflag

SELECT ST_Zmflag(ST_GeomFromEWKT ('LINESTRINGM(1 2 3, 3 4 3)"));

PostGIS 3.6.0rc2 Manual 142 /918

st_zmflag

SELECT ST_Zmflag (ST_GeomFromEWKT ('CIRCULARSTRING(1 2 3, 3 4 3, 56 3)'"));
st_zmflag

SELECT ST_Zmflag (ST_GeomFromEWKT ('POINT(1 2 3 4)"'"));
st_zmflag

See Also

ST _CoordDim, ST_NDims, ST _Dimension

7.4.45 ST _HasZ

ST_HasZ — Checks if a geometry has a Z dimension.

Synopsis

boolean ST_HasZ(geometry geom);

Description
Checks if the input geometry has a Z dimension and returns a boolean value. If the geometry has a Z dimension, it returns true;
otherwise, it returns false.

Geometry objects with a Z dimension typically represent three-dimensional (3D) geometries, while those without it are two-
dimensional (2D) geometries.

This function is useful for determining if a geometry has elevation or height information.

Availability: 3.5.0
ﬂ This function supports 3d and will not drop the z-index.

ﬂ This function supports M coordinates.

Examples

SELECT ST_HasZ (ST_GeomFromText ('POINT(1 2 3)'"));
——result
true

SELECT ST_HasZ (ST_GeomFromText ('LINESTRING(0 0, 1 1)"'));
—-—result
false

See Also

ST_Zmflag
ST _HasM

PostGIS 3.6.0rc2 Manual 143 /918

7.4.46 ST_HasM

ST_HasM — Checks if a geometry has an M (measure) dimension.

Synopsis

boolean ST_HasM(geometry geom);

Description

Checks if the input geometry has an M (measure) dimension and returns a boolean value. If the geometry has an M dimension,
it returns true; otherwise, it returns false.

Geometry objects with an M dimension typically represent measurements or additional data associated with spatial features.
This function is useful for determining if a geometry includes measure information.

Auvailability: 3.5.0
This function supports 3d and will not drop the z-index.

This function supports M coordinates.

Examples

SELECT ST_HasM(ST_GeomFromText ('POINTM(1 2 3)'));
—-—result
true

SELECT ST_HasM(ST_GeomFromText ('LINESTRING(O O, 1 1)"'"));
——result
false

See Also

ST_Zmflag
ST _HasZ

7.5 Geometry Editors

7.5.1 ST _AddPoint

ST_AddPoint — Add a point to a LineString.

Synopsis

geometry ST_AddPoint(geometry linestring, geometry point);

geometry ST_AddPoint(geometry linestring, geometry point, integer position = -1);

PostGIS 3.6.0rc2 Manual 144 /918

Description

Adds a point to a LineString before the index position (using a 0-based index). If the position parameter is omitted or is -1
the point is appended to the end of the LineString.

Awailability: 1.1.0

This function supports 3d and will not drop the z-index.

Examples

Add a point to the end of a 3D line

SELECT ST_ASEWKT (ST_AddPoint ('LINESTRING(O 0 1, 1 1 1)', ST_MakePoint(l, 2, 3)));

st_asewkt

LINESTRING(O O 1,1 1 1,1 2 3)

Guarantee all lines in a table are closed by adding the start point of each line to the end of the line only for those that are not
closed.

UPDATE sometable

SET geom = ST_AddPoint (geom, ST_StartPoint (geom))
FROM sometable

WHERE ST_IsClosed(geom) = false;

See Also

ST _RemovePoint, ST _SetPoint

7.5.2 ST_CollectionExtract

ST_CollectionExtract — Given a geometry collection, returns a multi-geometry containing only elements of a specified type.

Synopsis

geometry ST_CollectionExtract(geometry collection);

geometry ST_CollectionExtract(geometry collection, integer type);

Description

Given a geometry collection, returns a homogeneous multi-geometry.

If the type is not specified, returns a multi-geometry containing only geometries of the highest dimension. So polygons are
preferred over lines, which are preferred over points.

If the type is specified, returns a multi-geometry containing only that type. If there are no sub-geometries of the right type, an
EMPTY geometry is returned. Only points, lines and polygons are supported. The type numbers are:

* 1 ==POINT
* 2 ==LINESTRING
* 3=POLYGON

PostGIS 3.6.0rc2 Manual 145/918

For atomic geometry inputs, the geometry is returned unchanged if the input type matches the requested type. Otherwise, the
result is an EMPTY geometry of the specified type. If required, these can be converted to multi-geometries using ST_Multi.

Warning

0 MultiPolygon results are not checked for validity. If the polygon components are adjacent or overlapping the result will
be invalid. (For example, this can occur when applying this function to an ST_Split result.) This situation can be checked
with ST_IsValid and repaired with ST_MakeValid.

Availability: 1.5.0

N:ﬂ"’! Note

Prior to 1.5.3 this function returned atomic inputs unchanged, no matter type. In 1.5.3 non-matching single geometries
returned a NULL result. In 2.0.0 non-matching single geometries return an EMPTY result of the requested type.

Examples

Extract highest-dimension type:

SELECT ST_AsText (ST_CollectionExtract (
'GEOMETRYCOLLECTION (POINT (O 0), LINESTRING(1 1, 2 2))"));
st_astext

MULTILINESTRING((1 1, 2 2))

Extract points (type 1 == POINT):

SELECT ST_AsText (ST_CollectionExtract (
'GEOMETRYCOLLECTION (GEOMETRYCOLLECTION (POINT (O 0))) "',
1))
st_astext

MULTIPOINT ((0 0))

Extract lines (type 2 == LINESTRING):

SELECT ST_AsText (ST_CollectionExtract (
'GEOMETRYCOLLECTION (GEOMETRYCOLLECTION (LINESTRING (0O 0, 1 1)),LINESTRING(2 2, 3 3)) <«

v
14

2));
st_astext

MULTILINESTRING((0 0, 1 1), (2 2, 3 3))

See Also

ST_CollectionHomogenize, ST_Multi, ST_IsValid, ST_MakeValid

7.5.3 ST_CollectionHomogenize

ST_CollectionHomogenize — Returns the simplest representation of a geometry collection.

PostGIS 3.6.0rc2 Manual 146 /918

Synopsis

geometry ST_CollectionHomogenize(geometry collection);

Description

Given a geometry collection, returns the "simplest” representation of the contents.

* Homogeneous (uniform) collections are returned as the appropriate multi-geometry.
» Heterogeneous (mixed) collections are flattened into a single GeometryCollection.
* Collections containing a single atomic element are returned as that element.

* Atomic geometries are returned unchanged. If required, these can be converted to a multi-geometry using ST_Multi.

Warning
This function does not ensure that the result is valid. In particular, a collection containing adjacent or overlapping Poly-
gons will create an invalid MultiPolygon. This situation can be checked with ST_IsValid and repaired with ST_MakeValid.

Availability: 2.0.0

Examples

Single-element collection converted to an atomic geometry

SELECT ST_AsText (ST_CollectionHomogenize ('GEOMETRYCOLLECTION (POINT (0 0)) ")) ;

st_astext

POINT (0 0)

Nested single-element collection converted to an atomic geometry:

SELECT ST_AsText (ST_CollectionHomogenize ('GEOMETRYCOLLECTION (MULTIPOINT ((O 0)))"));

st_astext

POINT (0 0)

Collection converted to a multi-geometry:

SELECT ST_AsText (ST_CollectionHomogenize ('GEOMETRYCOLLECTION (POINT (0 0),POINT(1 1))"'));

st_astext

MULTIPOINT ((O 0), (1 1))

Nested heterogeneous collection flattened to a GeometryCollection:

SELECT ST_AsText (ST_CollectionHomogenize ('GEOMETRYCOLLECTION (POINT (0O 0), GEOMETRYCOLLECTION <=
(LINESTRING(1 1, 2 2)))"));

st_astext

GEOMETRYCOLLECTION (POINT (0 0),LINESTRING(1 1,2 2))

PostGIS 3.6.0rc2 Manual 147 /918

Collection of Polygons converted to an (invalid) MultiPolygon:

SELECT ST_AsText (ST_CollectionHomogenize ('GEOMETRYCOLLECTION (POLYGON ((10 50, 50 50, 50 <>
10, 10 10, 10 50)), POLYGON ((90 50, 90 10, 50 10, 50 50, 90 50)))"));

st_astext

MULTIPOLYGON (((10 50,50 50,50 10,10 10,10 50)), ((90 50,90 10,50 10,50 50,90 50)))

See Also

ST _CollectionExtract, ST_Multi, ST_IsValid, ST_MakeValid

7.5.4 ST_CurveTolLine

ST_CurveToLine — Converts a geometry containing curves to a linear geometry.

Synopsis

geometry ST_CurveToLine(geometry curveGeom, float tolerance, integer tolerance_type, integer flags);

Description

Converts a CIRCULAR STRING to regular LINESTRING or CURVEPOLYGON to POLY GON or MULTISURFACE to MUL-
TIPOLYGON. Useful for outputting to devices that can’t support CIRCULARSTRING geometry types

Converts a given geometry to a linear geometry. Each curved geometry or segment is converted into a linear approximation using
the given “tolerance™ and options (32 segments per quadrant and no options by default).

The ’tolerance_type’ argument determines interpretation of the “tolerance™ argument. It can take the following values:

* 0 (default): Tolerance is max segments per quadrant.
¢ 1: Tolerance is max-deviation of line from curve, in source units.

 2: Tolerance is max-angle, in radians, between generating radii.
The ’flags’ argument is a bitfield. 0 by default. Supported bits are:

* 1: Symmetric (orientation independent) output.

* 2: Retain angle, avoids reducing angles (segment lengths) when producing symmetric output. Has no effect when Symmetric
flag is off.

Availability: 1.3.0
Enhanced: 2.4.0 added support for max-deviation and max-angle tolerance, and for symmetric output.

Enhanced: 3.0.0 implemented a minimum number of segments per linearized arc to prevent topological collapse.
This method implements the OGC Simple Features Implementation Specification for SQL 1.1.
This method implements the SQL/MM specification. SQL-MM 3: 7.1.7
This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves.

http://www.opengeospatial.org/standards/sfs

PostGIS 3.6.0rc2 Manual 148 /918

Examples

SELECT ST_AsText (ST_CurveToLine (ST_GeomFromText ('CIRCULARSTRING (220268 150415,220227 <
150505,220227 150406) ')));

—-—Result —-

LINESTRING (220268 150415,220269.95064912 150416.539364228,220271.823415575 <>
150418.17258804,220273.613787707 150419.895736857,

220275.317452352 150421.704659462,220276.930305234 150423.594998003,220278.448460847 <+
150425.562198489,

220279.868261823 150427.60152176,220281.186287736 150429.708054909,220282.399363347 <
150431.876723113,

220283.50456625 150434.10230186,220284.499233914 150436.379429536,220285.380970099 <+
150438.702620341,220286.147650624 150441.066277505,

220286.797428488 150443.464706771,220287.328738321 150445.892130112,220287.740300149 <+
150448.342699654,

220288.031122486 150450.810511759,220288.200504713 150453.289621251,220288.248038775 <+
150455.77405574,

220288.173610157 150458.257830005,220287.977398166 150460.734960415,220287.659875492 <+
150463.199479347,

220287.221807076 150465.64544956,220286.664248262 150468.066978495,220285.988542259 <
150470.458232479,220285.196316903 150472.81345077,

220284.289480732 150475.126959442,220283.270218395 150477.39318505,220282.140985384 <
150479.606668057,

220280.90450212 150481.762075989,220279.5637474 150483.85421628,220278.12195122 <+
150485.87804878,

220276.582586992 150487.828697901,220274.949363179 150489.701464356,220273.226214362 <+
150491.491836488,

220271.417291757 150493.195501133,220269.526953216 150494.808354014,220267.559752731 <+
150496.326509628,

220265.520429459 150497.746310603,220263.41389631 150499.064336517,220261.245228106 <
150500.277412127,

220259.019649359 150501.38261503,220256.742521683 150502.377282695,220254.419330878 <
150503.259018879,

220252.055673714 150504.025699404,220249.657244448 150504.675477269,220247.229821107 <+
150505.206787101,

220244 .779251566 150505.61834893,220242.311439461 150505.909171266,220239.832329968 <
150506.078553494,

220237.347895479 150506.126087555,220234.864121215 150506.051658938,220232.386990804 <+
150505.855446946,

220229.922471872 150505.537924272,220227.47650166 150505.099855856,220225.054972724 <
150504.542297043,

220222 .663718741 150503.86659104,220220.308500449 150503.074365683,

220217.994991777 150502.167529512,220215.72876617 150501.148267175,

220213.515283163 150500.019034164,220211.35987523 150498.7825509,

220209.267734939 150497.441796181,220207.243902439 150496,

220205.293253319 150494.460635772,220203.420486864 150492.82741196,220201.630114732 <
150491.104263143,

220199.926450087 150489.295340538,220198.313597205 150487.405001997,220196.795441592 <+
150485.437801511,

220195.375640616 150483.39847824,220194.057614703 150481.291945091,220192.844539092 <
150479.123276887,220191.739336189 150476.89769814,

220190.744668525 150474.620570464,220189.86293234 150472.297379659,220189.096251815 <
150469.933722495,

220188.446473951 150467.535293229,220187.915164118 150465.107869888,220187.50360229 <
150462.657300346,

220187.212779953 150460.189488241,220187.043397726 150457.710378749,220186.995863664 <+
150455.2259442¢6,

220187.070292282 150452.742169995,220187.266504273 150450.265039585,220187.584026947 <+
150447.800520653,

220188.022095363 150445.35455044,220188.579654177 150442.933021505,220189.25536018 <
150440.541767521,

PostGIS 3.6.0rc2 Manual 149/918

220190.047585536 150438.18654923,220190.954421707 150435.873040558,220191.973684044 <=
150433.60681495,

220193.102917055 150431.393331943,220194.339400319 150429.237924011,220195.680155039 <«
150427.14578372,220197.12195122 150425.12195122,

220198.661315447 150423.171302099,220200.29453926 150421.298535644,220202.017688077 <
150419.508163512,220203.826610682 150417.804498867,

220205.716949223 150416.191645986,220207.684149708 150414.673490372,220209.72347298 <
150413.253689397,220211.830006129 150411.935663483,

220213.998674333 150410.722587873,220216.22425308 150409.61738497,220218.501380756 <
150408.622717305,220220.824571561 150407.740981121,

220223.188228725 150406.974300596,220225.586657991 150406.324522731,220227 150406)

—-—3d example

SELECT ST_ASEWKT (ST_CurveToLine (ST_GeomFromEWKT ('CIRCULARSTRING (220268 150415 1,220227 <+
150505 2,220227 150406 3)'")));

Output

LINESTRING (220268 150415 1,220269.95064912 150416.539364228 1.0181172856673,
220271.823415575 150418.17258804 1.03623457133459,220273.613787707 150419.895736857 <
1.05435185700189,AD INFINITUM
220225.586657991 150406.324522731 1.32611114201132,220227 150406 3)

—-—use only 2 segments to approximate quarter circle
SELECT ST_AsText (ST_CurveToLine (ST_GeomFromText ('CIRCULARSTRING (220268 150415,220227 <+
150505,220227 150406)"'),2));
st_astext
LINESTRING (220268 150415,220287.740300149 150448.342699654,220278.12195122 <>
150485.87804878,
220244.779251566 150505.61834893,220207.243902439 150496,220187.50360229 150462.657300346,
220197.12195122 150425.12195122,220227 150406)

—— Ensure approximated line is no further than 20 units away from
—-— original curve, and make the result direction-neutral
SELECT ST_AsText (ST_CurveToLine (

'CIRCULARSTRING (0 0,100 -100,200 0)'::geometry,
20, —-- Tolerance
1, —— Above is max distance between curve and line
1 —- Symmetric flag

)) i
st_astext

LINESTRING (O 0,50 -86.6025403784438,150 —-86.6025403784439,200 -1.1331077795296e-13,200 0)

See Also

ST LineToCurve

7.5.5 ST Scroll

ST_Scroll — Change start point of a closed LineString.

Synopsis

geometry ST_Scroll(geometry linestring, geometry point);

PostGIS 3.6.0rc2 Manual 150/918

Description

Changes the start/end point of a closed LineString to the given vertex point.
Awailability: 3.2.0

ﬂ This function supports 3d and will not drop the z-index.

ﬂ This function supports M coordinates.

Examples

Make e closed line start at its 3rd vertex

SELECT ST_ASEWKT (ST_Scroll ('SRID=4326; LINESTRING(O O 0 1, 10 0 2 0, 55 4 2,000 1)', ' ¢«
POINT (5 5 4 2)"));

st_asewkt

SRID=4326; LINESTRING(5 5 4 2,0 0 0 1,10 0 2 0,5 5 4 2)

See Also

ST Normalize

7.5.6 ST_FlipCoordinates

ST_FlipCoordinates — Returns a version of a geometry with X and Y axis flipped.

Synopsis

geometry ST_FlipCoordinates(geometry geom);

Description

Returns a version of the given geometry with X and Y axis flipped. Useful for fixing geometries which contain coordinates
expressed as latitude/longitude (Y,X).

Auwailability: 2.0.0

ﬂ This method supports Circular Strings and Curves.

ﬂ This function supports 3d and will not drop the z-index.
ﬂ This function supports M coordinates.

ﬂ This function supports Polyhedral surfaces.

ﬂ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Example

SELECT ST_ASEWKT (ST_FlipCoordinates (GeomFromEWKT ('POINT (1 2)')));
st_asewkt

POINT (2 1)

PostGIS 3.6.0rc2 Manual 151/918

See Also

ST_SwapOrdinates

7.5.7 ST _Force2D

"

ST_Force2D — Force the geometries into a "2-dimensional mode".

Synopsis

geometry ST_Force2D(geometry geomA);

Description

Forces the geometries into a "2-dimensional mode" so that all output representations will only have the X and Y coordinates.
This is useful for force OGC-compliant output (since OGC only specifies 2-D geometries).

Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.

Changed: 2.1.0. Up to 2.0.x this was called ST_Force_2D.
This method supports Circular Strings and Curves.
This function supports Polyhedral surfaces.

This function supports 3d and will not drop the z-index.

Examples

SELECT ST_ASEWKT (ST_Force2D (ST_GeomFromEWKT ('CIRCULARSTRING(1 1 2, 2 3 2, 452, 67 2, 56 ¢«
2)")))
st_asewkt

CIRCULARSTRING(1 1,2 3,4 5,6 7,5 6)

SELECT ST _ASEWKT (ST_Force2D ('POLYGON((0 0 2,0 52,5 0 2,0 0 2),(1 12,3 12,132,112)) «<
"))

st_asewkt

POLYGON((O 0,0 5,5 0,0 0),(1 1,3 1,1 3,1 1))

See Also

ST Force3D

7.5.8 ST Force3D

ST_Force3D — Force the geometries into XYZ mode. This is an alias for ST_Force3DZ.

Synopsis

geometry ST_Force3D(geometry geomA, float Zvalue = 0.0);

PostGIS 3.6.0rc2 Manual 152 /918

Description

Forces the geometries into XYZ mode. This is an alias for ST_Force3DZ. If a geometry has no Z component, then a Zvalue Z
coordinate is tacked on.

Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
Changed: 2.1.0. Up to 2.0.x this was called ST_Force_3D.
Changed: 3.1.0. Added support for supplying a non-zero Z value.

ﬂ This function supports Polyhedral surfaces.
ﬂ This method supports Circular Strings and Curves.

ﬂ This function supports 3d and will not drop the z-index.

Examples
—--Nothing happens to an already 3D geometry
SELECT ST_ASEWKT (ST_Force3D (ST_GeomFromEWKT ('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, &

56 2)")));
st_asewkt

CIRCULARSTRING(1 1 2,2 3 2,4 5 2,6 7 2,5 6 2)

SELECT ST_ASEWKT (ST_Force3D ('POLYGON((O 0,0 5,5 0,0 0),(1 1,3 1,1 3,1 1))"'));

st_asewkt

POLYGON((O O 0,0 5 0,5 0 0,0 0 O),(1 10,3 10,13 0,110))

See Also

ST_AsEWKT, ST_Force2D, ST_Force3DM, ST_Force3DZ

7.5.9 ST _Force3DZ

ST_Force3DZ — Force the geometries into XYZ mode.

Synopsis

geometry ST_Force3DZ(geometry geomA, float Zvalue = 0.0);

Description

Forces the geometries into XYZ mode. If a geometry has no Z component, then a Zvalue Z coordinate is tacked on.
Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.

Changed: 2.1.0. Up to 2.0.x this was called ST_Force_3DZ.

Changed: 3.1.0. Added support for supplying a non-zero Z value.

ﬂ This function supports Polyhedral surfaces.
ﬂ This function supports 3d and will not drop the z-index.

ﬂ This method supports Circular Strings and Curves.

PostGIS 3.6.0rc2 Manual 153/918
Examples

—--Nothing happens to an already 3D geometry

SELECT ST_ASEWKT (ST_Force3DZ (ST_GeomFromEWKT ('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 2, 5 <«

6 .2)")));
st_asewkt

CIRCULARSTRING(1 1 2,2 3 2,4 5 2,6 7 2,5 6 2)

SELECT ST_ASEWKT (ST_Force3DZ('POLYGON((O 0,0 5,5 0,0 O0), (1 1,3 1,1 3,1 1))"));

st_asewkt

POLYGON((O O 0,0 5 0,5 0 0,0 0 O),(1 10,3 10,13 0,110))

See Also

ST_ASEWKT, ST Force2D, ST _Force3DM, ST_Force3D

7.5.10 ST Force3DM

ST_Force3DM — Force the geometries into XYM mode.

Synopsis

geometry ST_Force3DM(geometry geomA, float Mvalue = 0.0);

Description

Forces the geometries into XYM mode. If a geometry has no M component, then a Mvalue M coordinate is tacked on. If it has

a Z component, then Z is removed
Changed: 2.1.0. Up to 2.0.x this was called ST_Force_3DM.
Changed: 3.1.0. Added support for supplying a non-zero M value.

ﬂ This method supports Circular Strings and Curves.

Examples

——Nothing happens to an already 3D geometry
SELECT ST_ASEWKT (ST_Force3DM (ST_GeomFromEWKT ('CIRCULARSTRING(1 1 2, 2 3 2, 4 5
6.2)")));
st_asewkt

CIRCULARSTRINGM(1 1 0,2 3 0,4 5 0,6 7 0,5 6 0)

SELECT ST_ASEWKT (ST_Force3DM('POLYGON((O O 1,0 51,50 1,00 1),(1 11,3 11,1 31,11 1)) ¢

st_asewkt

pPOLYGONM((O O 0,0 5 0,50 0,0 0 O0),(1 10,310,113 0,1 10))

PostGIS 3.6.0rc2 Manual 154 /918

See Also

ST _ASEWKT, ST _Force2D, ST _Force3DM, ST_Force3D, ST_GeomFromEWKT

7.5.11 ST_Force4D

ST_Force4D — Force the geometries into XYZM mode.

Synopsis

geometry ST_Force4D(geometry geomA, float Zvalue = 0.0, float Mvalue = 0.0);

Description

Forces the geometries into XYZM mode. Zvalue and Mvalue is tacked on for missing Z and M dimensions, respectively.
Changed: 2.1.0. Up to 2.0.x this was called ST_Force_4D.
Changed: 3.1.0. Added support for supplying non-zero Z and M values.

ﬂ This function supports 3d and will not drop the z-index.

ﬂ This method supports Circular Strings and Curves.

Examples

—-Nothing happens to an already 3D geometry

SELECT ST_ASEWKT (ST_Force4D (ST_GeomFromEWKT ('CIRCULARSTRING(1 1 2, 2 3 2, 452, 67 2, 5 6 ¢
2)")));

st_asewkt

CIRCULARSTRING(1 1 2 0,2 32 0,452 0,67 2 0,56 2 0)

SELECT ST_ASEWKT (ST_Force4D ('MULTILINESTRINGM((0O 0 1,0 5 2,5 0 3,0 0 4),(1 11,3 11,1 3 <
1,1.1.1))"));

st_asewkt

MULTILINESTRING((O O O 1,0 50 2,500 3,000 4),¢(2101,3101,1 301,110 1))

See Also

ST _ASEWKT, ST Force2D, ST Force3DM, ST Force3D

7.5.12 ST_ForceCollection

ST_ForceCollection — Convert the geometry into a GEOMETRYCOLLECTION.

Synopsis

geometry ST _ForceCollection(geometry geomA);

PostGIS 3.6.0rc2 Manual 155/918

Description

Converts the geometry into a GEOMETRYCOLLECTION. This is useful for simplifying the WKB representation.
Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.

Awailability: 1.2.2, prior to 1.3.4 this function will crash with Curves. This is fixed in 1.3.4+

Changed: 2.1.0. Up to 2.0.x this was called ST_Force_Collection.

ﬂ This function supports Polyhedral surfaces.
ﬂ This function supports 3d and will not drop the z-index.

ﬂ This method supports Circular Strings and Curves.

Examples

SELECT ST_ASEWKT (ST_ForceCollection('POLYGON((O O 1,0 51,50 1,0 0 1),(1 1 1,3 1 1,1 3 <«
1,11 1))"));

st_asewkt

GEOMETRYCOLLECTION (POLYGON((O O 1,0 51,50 1,00 1),(2 11,3 11,13 1,1 11)))

SELECT ST_AsText (ST_ForceCollection ('"CIRCULARSTRING (220227 150406,2220227 150407,220227 <
150406) ")) ;
st_astext

GEOMETRYCOLLECTION (CIRCULARSTRING (220227 150406,2220227 150407,220227 150406))
(1 row)

—— POLYHEDRAL example ——
SELECT ST_ASEWKT (ST_ForceCollection ('POLYHEDRALSURFACE(((O O 0,0 O 1,0 1 1,0 1 0,0 0 0)),

(¢0 00,01 0,110,200,000)),
(¢0 00,1 00,101,0 1,0 0 0)),
(¢ »r0,211,12 01,1 00,11 0)),
(¢012 0,011,172 11,210,010)),
(¢0 01,12 01,11 1,01 1,0 0 1)))"))
st_asewkt
GEOMETRYCOLLECTION (
POLYGON((O O 0,0 O 1,0 1 1,0 1 0,0 0 0)),
POLYGON((O O 0,0 1 0,12 1 0,1 0 0,0 0 0)),
POLYGON((O O 0,1 0 0,1 O 1,0 0 1,0 0 0)),
POLYGON((1 1 0,1 1 1,1 0 1,1 0 0,1 1 0)),
POLYGON((O 1 0,0 1 1,1 1 1,1 1 0,0 1 0)),
POLYGON((O O 1,1 O 1,12 1 1,0 1 1,0 0 1))
)
See Also

ST_AsEWKT, ST_Force2D, ST_Force3DM, ST_Force3D, ST_GeomFromEWKT

PostGIS 3.6.0rc2 Manual 156/918

7.5.13 ST ForceCurve

ST_ForceCurve — Upcast a geometry into its curved type, if applicable.

Synopsis

geometry ST_ForceCurve(geometry g);

Description
Turns a geometry into its curved representation, if applicable: lines become compoundcurves, multilines become multicurves

polygons become curvepolygons multipolygons become multisurfaces. If the geometry input is already a curved representation
returns back same as input.

Availability: 2.2.0
This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves.

Examples

SELECT ST_AsText (
ST_ForceCurve (
'POLYGON((O O 2, 50 2, 052, 002),(2 12, 132, 312, 112))"::geometry

st_astext

CURVEPOLYGON Z ((O0 0 2,50 2,0 52,002),(112,132,312,112))
(1 row)

See Also

ST_LineToCurve

7.5.14 ST_ForcePolygonCCW

ST_ForcePolygonCCW — Orients all exterior rings counter-clockwise and all interior rings clockwise.

Synopsis

geometry ST_ForcePolygonCCW (geometry geom);

Description

Forces (Multi)Polygons to use a counter-clockwise orientation for their exterior ring, and a clockwise orientation for their interior
rings. Non-polygonal geometries are returned unchanged.

Availability: 2.4.0
This function supports 3d and will not drop the z-index.

This function supports M coordinates.

PostGIS 3.6.0rc2 Manual 157 /918

See Also

ST_ForcePolygonCW , ST_IsPolygonCCW , ST_IsPolygonCW

7.5.15 ST_ForcePolygonCW

ST_ForcePolygonCW — Orients all exterior rings clockwise and all interior rings counter-clockwise.

Synopsis

geometry ST_ForcePolygonCW (geometry geom);

Description

Forces (Multi)Polygons to use a clockwise orientation for their exterior ring, and a counter-clockwise orientation for their interior
rings. Non-polygonal geometries are returned unchanged.

Availability: 2.4.0
ﬂ This function supports 3d and will not drop the z-index.

ﬂ This function supports M coordinates.

See Also

ST_ForcePolygonCCW , ST_IsPolygonCCW , ST_IsPolygonCW

7.5.16 ST ForceSFS

ST_ForceSFS — Force the geometries to use SFS 1.1 geometry types only.

Synopsis

geometry ST_ForceSFS(geometry geomA);
geometry ST_ForceSFS(geometry geomA, text version);

Description

ﬂ This function supports Polyhedral surfaces.
ﬂ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
ﬂ This method supports Circular Strings and Curves.

ﬂ This function supports 3d and will not drop the z-index.

7.5.17 ST_ForceRHR

ST_ForceRHR — Force the orientation of the vertices in a polygon to follow the Right-Hand-Rule.

PostGIS 3.6.0rc2 Manual 158/918

Synopsis

geometry ST_ForceRHR(geometry g);

Description

Forces the orientation of the vertices in a polygon to follow a Right-Hand-Rule, in which the area that is bounded by the polygon
is to the right of the boundary. In particular, the exterior ring is orientated in a clockwise direction and the interior rings in a
counter-clockwise direction. This function is a synonym for ST_ForcePolygonCW

ot¢} Note
N The above definition of the Right-Hand-Rule conflicts with definitions used in other contexts. To avoid confusion, it is
recommended to use ST_ForcePolygonCW.

Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

Examples

SELECT ST_AsSEWKT (
ST_ForceRHR (
'POLYGON((O O 2, 502, 052, 002),(212, 132, 312, 112))"

st_asewkt

POLYGON((O O 2,0 5 2,50 2,0 0 2),(112,312,132,11 2))
(1 row)

See Also

ST_ForcePolygonCCW , ST_ForcePolygonCW , ST_IsPolygonCCW , ST_IsPolygonCW , ST_BuildArea, ST_Polygonize,
ST Reverse

7.5.18 ST_LineExtend

ST_LineExtend — Returns a line extended forwards and backwards by specified distances.

Synopsis

geometry ST_LineExtend(geometry line, float distance_forward, float distance_backward=0.0);

Description

Returns a line extended forwards and backwards by adding new start (and end) points at the given distance(s). A distance of zero
does not add a point. Only non-negative distances are allowed. The direction(s) of the added point(s) is determined by the first
(and last) two distinct points of the line. Duplicate points are ignored.

Auvailability: 3.4.0

PostGIS 3.6.0rc2 Manual 159/918

Example: Extends a line 5 units forward and 6 units backward

SELECT ST_AsText (ST_LineExtend('LINESTRING(0O 0, O 10)'::geometry, 5, 6));

LINESTRING(0 -6,0 0,0 10,0 15)

See Also

ST_LineSubstring, ST_LocateAlong, ST_Project

7.5.19 ST LineToCurve

ST_LineToCurve — Converts a linear geometry to a curved geometry.

Synopsis

geometry ST_LineToCurve(geometry geomANoncircular);

Description

Converts plain LINESTRING/POLYGON to CIRCULAR STRINGs and Curved Polygons. Note much fewer points are needed
to describe the curved equivalent.

1 Note
Note!
If the input LINESTRING/POLYGON is not curved enough to clearly represent a curve, the function will return the same
input geometry.

Availability: 1.3.0
This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves.

Examples

—— 2D Example

SELECT ST_AsText (ST_LineToCurve (foo.geom)) As curvedastext,ST_AsText (foo.geom) As <+
non_curvedastext
FROM (SELECT ST_Buffer ('POINT(1 3)'::geometry, 3) As geom) As foo;

curvedatext non_curvedastext

CURVEPOLYGON (CIRCULARSTRING (4 3,3.12132034355964 0.878679656440359, | POLYGON((4 <
3,3.94235584120969 2.41472903395162,3.77163859753386 1.85194970290473,
1 0,-1.12132034355965 5.12132034355963,4 3)) | 3.49440883690764 <
1.33328930094119,3.12132034355964 0.878679656440359,
| 2.66671069905881 <«
0.505591163092366,2.14805029
0.228361402466141,

PostGIS 3.6.0rc2 Manual 160/918

| 1.58527096604839 <
0.0576441587903094,1
OI
| 0.414729033951621 <
0.0576441587903077,-0.148050:
0.228361402466137,
| -0.666710699058802 <=
0.505591163092361,-1.1213203:
0.878679656440353,
| -1.49440883690763 <
1.33328930094119,-1.77163859’
1.85194970290472
| --ETC-—- <
,3.94235584120969 <=
3.58527096604839,4 ¢
3))

——3D example
SELECT ST_AsText (ST_LineToCurve (geom)) As curved, ST_AsText (geom) AS not_curved
FROM (SELECT ST_Translate (ST_Force3D (ST_Boundary (ST _Buffer (ST_Point (1,3), 2,2))),0,0,3) AS <+
geom) AS foo;
curved | not_curved
CIRCULARSTRING Z (3 3 3,-1 2.99999999999999 3,3 3 3) | LINESTRING Z (3 3 3,2.4142135623731 ¢
1.58578643762691 3,1 1 3,
| =0.414213562373092 1.5857864376269 <+
3,-1 2.99999999999999 3,
| =0.414213562373101 4.41421356237309 <«
3
| 0.999999999999991 5 <«
3,2.41421356237309 4.4142135623731

3,3 3 3)
(1 row)

See Also

ST _CurveToLine

7.5.20 ST_Multi

ST_Multi — Return the geometry as a MULTI* geometry.

Synopsis

geometry ST_Multi(geometry geom);

Description

Returns the geometry as a MULTI* geometry collection. If the geometry is already a collection, it is returned unchanged.

Examples

PostGIS 3.6.0rc2 Manual 161/918

SELECT ST_AsText (ST_Multi ('POLYGON ((10 30, 30 30, 30 10, 10 10, 10 30))"));
st_astext

MULTIPOLYGON (((10 30,30 30,30 10,10 10,10 30)))

See Also

ST_AsText

7.5.21 ST_Normalize

ST_Normalize — Return the geometry in its canonical form.

Synopsis

geometry ST_Normalize(geometry geom);

Description

Returns the geometry in its normalized/canonical form. May reorder vertices in polygon rings, rings in a polygon, elements in a
multi-geometry complex.

Mostly only useful for testing purposes (comparing expected and obtained results).

Availability: 2.3.0

Examples

SELECT ST_AsText (ST_Normalize (ST_GeomFromText (
'GEOMETRYCOLLECTION (
POINT (2 3),
MULTILINESTRING((O O, 1 1),(2 2, 3 3)),

POLYGON (
(0 10,0 0,10 0,10 10,0 10),
(4 2,2 2,2 4,4 4,4 2),
(6 8,8 8,8 6,6 6,6 8)

st_astext

GEOMETRYCOLLECTION (POLYGON((O O,0 10,10 10,10 0,0 O0), (6 6,8 6,8 8,6 8,6 6),(2 2,4 2,4 4,2 <
4,2 2)),MULTILINESTRING((2 2,3 3), (0 0,1 1)),POINT(2 3))
(1 row)

See Also

ST_Equals,

7.5.22 ST_Project

ST_Project — Returns a point projected from a start point by a distance and bearing (azimuth).

PostGIS 3.6.0rc2 Manual 162 /918

Synopsis

geometry ST_Project(geometry g1, float distance, float azimuth);
geometry ST_Project(geometry g1, geometry g2, float distance);
geography ST_Project(geography gl, float distance, float azimuth);
geography ST_Project(geography g1, geography g2, float distance);

Description

Returns a point projected from a point along a geodesic using a given distance and azimuth (bearing). This is known as the direct
geodesic problem.

The two-point version uses the path from the first to the second point to implicitly define the azimuth and uses the distance as
before.

The distance is given in meters. Negative values are supported.

The azimuth (also known as heading or bearing) is given in radians. It is measured clockwise from true north.

* North is azimuth zero (0 degrees)
* East is azimuth /2 (90 degrees)
* South is azimuth 7 (180 degrees)

* West is azimuth 37/2 (270 degrees)

Negative azimuth values and values greater than 27 (360 degrees) are supported.
Availability: 2.0.0

Enhanced: 2.4.0 Allow negative distance and non-normalized azimuth.

Enhanced: 3.4.0 Allow geometry arguments and two-point form omitting azimuth.

Example: Projected point at 100,000 meters and bearing 45 degrees

SELECT ST_AsText (ST_Project ('"POINT (0 0) '::geography, 100000, radians(45.0)));

POINT (0.635231029125537 0.639472334729198)

See Also

ST_Azimuth, ST_Distance, PostgreSQL function radians()

7.5.23 ST_QuantizeCoordinates

ST_QuantizeCoordinates — Sets least significant bits of coordinates to zero

Synopsis

geometry ST_QuantizeCoordinates (geometry g , int prec_x , int prec_y , int prec_z , int prec_m);

http://www.postgresql.org/docs/current/interactive/functions-math.html

PostGIS 3.6.0rc2 Manual 163/918

Description

ST_QuantizeCoordinates determines the number of bits (N) required to represent a coordinate value with a specified
number of digits after the decimal point, and then sets all but the N most significant bits to zero. The resulting coordinate value
will still round to the original value, but will have improved compressiblity. This can result in a significant disk usage reduction
provided that the geometry column is using a compressible storage type. The function allows specification of a different number
of digits after the decimal point in each dimension; unspecified dimensions are assumed to have the precision of the x dimension.
Negative digits are interpreted to refer digits to the left of the decimal point, (i.e., prec_x=-2 will preserve coordinate values
to the nearest 100.

The coordinates produced by ST_QuantizeCoordinates are independent of the geometry that contains those coordinates
and the relative position of those coordinates within the geometry. As a result, existing topological relationships between geome-
tries are unaffected by use of this function. The function may produce invalid geometry when it is called with a number of digits
lower than the intrinsic precision of the geometry.

Auvailability: 2.5.0

Technical Background

PostGIS stores all coordinate values as double-precision floating point integers, which can reliably represent 15 significant digits.
However, PostGIS may be used to manage data that intrinsically has fewer than 15 significant digits. An example is TIGER
data, which is provided as geographic coordinates with six digits of precision after the decimal point (thus requiring only nine
significant digits of longitude and eight significant digits of latitude.)

When 15 significant digits are available, there are many possible representations of a number with 9 significant digits. A double
precision floating point number uses 52 explicit bits to represent the significand (mantissa) of the coordinate. Only 30 bits are
needed to represent a mantissa with 9 significant digits, leaving 22 insignificant bits; we can set their value to anything we
like and still end up with a number that rounds to our input value. For example, the value 100.123456 can be represented by
the floating point numbers closest to 100.123456000000, 100.123456000001, and 100.123456432199. All are equally valid,
in that ST_AsText (geom, 6) will return the same result with any of these inputs. As we can set these bits to any value,
ST_QuantizeCoordinates sets the 22 insignificant bits to zero. For a long coordinate sequence this creates a pattern of
blocks of consecutive zeros that is compressed by PostgreSQL more efficiently.

s Note
Nﬂ‘l"! Only the on-disk size of the geometry is potentially affected by ST_QuantizeCoordinates. ST_MemSize, which
reports the in-memory usage of the geometry, will return the the same value regardless of the disk space used by a
geometry.

Examples

SELECT ST_AsText (ST_QuantizeCoordinates ('POINT (100.123456 0)'::geometry, 4));
st_astext

POINT (100.123455047607 0)

WITH test AS (SELECT 'POINT (123.456789123456 123.456789123456) '::geometry AS geom)
SELECT

digits,

encode (ST_QuantizeCoordinates (geom, digits), 'hex'),

ST_AsText (ST_QuantizeCoordinates (geom, digits))
FROM test, generate_series (15, -15, -1) AS digits;

digits | encode | st_astext

15 | 01010000005£9a72083cdd5e405£9a72083cdd5e40 | POINT (123.456789123456 <«
123.456789123456)

https://www.postgresql.org/docs/current/static/storage-toast.html#STORAGE-TOAST-ONDISK

PostGIS 3.6.0rc2 Manual 164 /918

14 | 01010000005£9a72083cdd5e405£9a72083cdd5e40 | POINT (123.456789123456 <
123.456789123456)

13 | 01010000005£9a72083cdd5e405£9a72083cdd5e40 | POINT (123.456789123456 <«
123.456789123456)

12 | 01010000005c9a72083cdd5e405¢c9a72083cdd5e40 | POINT (123.456789123456 <«
123.456789123456)

11 | 0101000000409a72083cdd5e40409a72083cdd5e40 | POINT (123.456789123456 <«
123.456789123456)

10 | 0101000000009a72083cdd5e40009a72083cdd5e40 | POINT (123.456789123455 <«
123.456789123455)

9 | 0101000000009072083cdd5e40009072083cdd5e40 | POINT (123.456789123418 <=
123.456789123418)

8 | 0101000000008072083cdd5e40008072083cdd5e40 | POINT (123.45678912336 <
123.45678912336)

7 | 0101000000000070083cdd5e40000070083cdd5e40 | POINT (123.456789121032 <«
123.456789121032)

6 | 0101000000000040083cdd5e40000040083cdd5e40 | POINT (123.456789076328 <
123.456789076328)

5 | 0101000000000000083cdd5e40000000083cdd5e40 | POINT (123.456789016724 <«
123.456789016724)

4 | 0101000000000000003cdd5e40000000003cdd5e40 | POINT (123.456787109375 <«
123.456787109375)

3 | 0101000000000000003cdd5e40000000003cdd5e40 | POINT (123.456787109375 <«
123.456787109375)

2 | 01010000000000000038dd5e400000000038dd5e40 | POINT (123.45654296875 <

123.45654296875)

1 | 01010000000000000000dd5e400000000000dd5e40 | POINT (123.453125 123.453125)
0 | 01010000000000000000dc5e400000000000dc5e40 | POINT (123.4375 123.4375)
-1 | 01010000000000000000c05e400000000000c05e40 | POINT (123 123)

-2 | 01010000000000000000005€400000000000005e40 | POINT (120 120)

-3 | 010100000000000000000058400000000000005840 | POINT (96 96)

-4 | 010100000000000000000058400000000000005840 | POINT (96 96)

-5 | 010100000000000000000058400000000000005840 | POINT (96 96)

-6 | 010100000000000000000058400000000000005840 | POINT (96 96)

-7 | 010100000000000000000058400000000000005840 | POINT (96 96)

-8 | 010100000000000000000058400000000000005840 | POINT (96 96)

-9 | 010100000000000000000058400000000000005840 | POINT (96 96)

-10 | 010100000000000000000058400000000000005840 | POINT (96 96)

-11 | 010100000000000000000058400000000000005840 | POINT (96 96)

-12 | 010100000000000000000058400000000000005840 | POINT (96 96)

-13 | 010100000000000000000058400000000000005840 | POINT (96 96)

-14 | 010100000000000000000058400000000000005840 | POINT (96 96)

-15 | 010100000000000000000058400000000000005840 | POINT (96 96)

See Also

ST_SnapToGrid

7.5.24 ST_RemovePoint

ST_RemovePoint — Remove a point from a linestring.

Synopsis

geometry ST_RemovePoint(geometry linestring, integer offset);

PostGIS 3.6.0rc2 Manual 165/918

Description

Removes a point from a LineString, given its index (0-based). Useful for turning a closed line (ring) into an open linestring.
Enhanced: 3.2.0
Awailability: 1.1.0

This function supports 3d and will not drop the z-index.

Examples

Guarantees no lines are closed by removing the end point of closed lines (rings). Assumes geom is of type LINESTRING

UPDATE sometable
SET geom = ST_RemovePoint (geom, ST_NPoints (geom) - 1)
FROM sometable
WHERE ST_IsClosed (geom) ;

See Also

ST _AddPoint, ST_NPoints, ST _NumPoints

7.5.25 ST_RemoveRepeatedPoints

ST_RemoveRepeatedPoints — Returns a version of a geometry with duplicate points removed.

Synopsis

geometry ST_RemoveRepeatedPoints(geometry geom, float8 tolerance = 0.0);

Description

Returns a version of the given geometry with duplicate consecutive points removed. The function processes only (Multi)LineStrings,
(Multi)Polygons and MultiPoints but it can be called with any kind of geometry. Elements of GeometryCollections are processed
individually. The endpoints of LineStrings are preserved.

If a non-zero tolerance parameter is provided, vertices within the tolerance distance of one another are considered to be
duplicates. The distance is computed in 2D (XY plane).

Enhanced: 3.2.0
Availability: 2.2.0

This function supports Polyhedral surfaces.

This function supports 3d and will not drop the z-index.

Examples

SELECT ST_AsText (ST_RemoveRepeatedPoints('MULTIPOINT ((1 1), (2 2), (3 3), (2 2))"'"));

MULTIPOINT (1 1,2 2,3 3)

PostGIS 3.6.0rc2 Manual 166/918

SELECT ST_AsText (ST_RemoveRepeatedPoints('LINESTRING (O O, O0 O, 1 1, 00, 1 1, 2 2)"));

LINESTRING(0 0,1 1,0 0,1 1,2 2)

Example: Collection elements are processed individually.

SELECT ST_AsText (ST_RemoveRepeatedPoints('GEOMETRYCOLLECTION (LINESTRING (1 1, 2 2, 2 2, <>
3 3), POINT (4 4), POINT (4 4), POINT (5 5))"));

GEOMETRYCOLLECTION (LINESTRING(1 1,2 2,3 3),POINT(4 4),POINT (4 4),POINT(5 5))

Example: Repeated point removal with a distance tolerance.

SELECT ST_AsText (ST_RemoveRepeatedPoints('LINESTRING (O O, O O, 1 1, 55, 1.1, 2 2)', 2)) ¢

LINESTRING(0 0,5 5,2 2)

See Also

ST_Simplify

7.5.26 ST_RemovelrrelevantPointsForView

ST_RemovelrrelevantPointsForView — Removes points that are irrelevant for rendering a specific rectangular view of a geome-
try.

Synopsis

geometry ST_RemovelrrelevantPointsFor View(geometry geom, box2d bounds, boolean cartesian_hint = false);

Description

Returns a geometry without points being irrelevant for rendering the geometry within a given rectangular view.
This function can be used to quickly preprocess geometries that should be rendered only within certain bounds.
Only geometries of type (MULTI)POLYGON and (MULTI)LINESTRING are evaluated. Other geometries keep unchanged.

In contrast to ST_C1ipByBox2D () this function

* sorts out points without computing new intersection points which avoids rounding errors and usually increases performance,
* returns a geometry with equal or similar point number,
* leads to the same rendering result within the specified view, and

¢ may introduce self-intersections which would make the resulting geometry invalid (see example below).

If cartesian_hint is setto t rue, the algorithm applies additional optimizations involving cartesian math to further reduce
the resulting point number. Please note that using this option might introduce rendering artifacts if the resulting coordinates are
projected into another (non-cartesian) coordinate system before rendering.

Warning
For polygons, this function does currently not ensure that the result is valid. This situation can be checked with
ST_IsValid and repaired with ST_MakeValid.

PostGIS 3.6.0rc2 Manual 167 /918

original ST_RemovelmelevantPointsForView(geom, bbox) ST_ClipByBox2D{(geom, bbox)
15 points 15 points

\j Ej

Example: ST_RemovelrrelevantPointsForView() applied to a polygon. Blue points remain, the rendering result (light-blue area)
within the grey view box remains as well.

original ST_RemovelmelevantPointsForView(geom, bbox)
5 points

"\.\\‘/ .

Example: Due to the fact that points are just sorted out and no new points are computed, the result of
ST_RemovelrrelevantPointsFor View() may contain self-intersections.

Availability: 3.5.0

Examples

SELECT ST_AsText (

ST_RemovelrrelevantPointsForView (

ST_GeomFromText ('MULTIPOLYGON(((10 10, 20 10, 30 10, 40 10, 20 20, 10 20, 10 10)) <
, ((10 10, 20 10, 20 20, 10 20, 10 10)))»"),

ST_MakeEnvelope (12,12,18,18), true));

st_astext

MULTIPOLYGON(((10 10,40 10,20 20,10 20,10 10)), ((10 10,20 10,20 20,10 20,10 10)))

SELECT ST_AsText (

ST_RemovelrrelevantPointsForView (

ST_GeomFromText ('MULTILINESTRING((0 0, 10 0,20 0,30 0), (0 15, 5 15, 10 15, 15 15, 20 <«
15, 25 15, 30 15, 40 15), (13 13,15 15,17 17))"),

PostGIS 3.6.0rc2 Manual 168/918

ST_MakeEnvelope (12,12,18,18), true));

st_astext

MULTILINESTRING ((10 15,15 15,20 15), (13 13,15 15,17 17))

SELECT ST_AsText (

ST_RemovelrrelevantPointsForView (

ST_GeomFromText ('LINESTRING(O 0, 10 0,20 0,30 0)"),
ST_MakeEnvelope (12,12,18,18), true));

st_astext

LINESTRING EMPTY

SELECT ST_AsText (

ST_RemovelrrelevantPointsForView (

ST_GeomFromText ('POLYGON((O 30, 15 30, 30 30, 30 0, O O, O 30))"),
ST_MakeEnvelope (12,12,18,18), true));

st_astext

POLYGON ((15 30,30 0,0 0,15 30))

SELECT ST_AsText (

ST_RemovelrrelevantPointsForView (

ST_GeomFromText ('POLYGON ((0O 30, 15 30, 30 30, 30 0, 0 O, 0 30))"),
ST_MakeEnvelope (12,12,18,18)));

st_astext

POLYGON ((O 30,30 30,30 0,0 0,0 30))

See Also

ST_ClipByBox2D, ST_Intersection

7.5.27 ST_RemoveSmallParts

ST_RemoveSmallParts — Removes small parts (polygon rings or linestrings) of a geometry.

Synopsis

geometry ST_RemoveSmallParts(geometry geom, double precision minSizeX, double precision minSizeY);

Description

Returns a geometry without small parts (exterior or interior polygon rings, or linestrings).

This function can be used as preprocessing step for creating simplified maps, e. g. to remove small islands or holes.

It evaluates only geometries of type (MULTT)POLYGON and (MULTI)LINESTRING. Other geometries remain unchanged.
If minSizex is greater than 0, parts are sorted out if their width is smaller than minSizeXx.

If minSizey is greater than O, parts are sorted out if their height is smaller than minSizey.

Both minsizex and minSizey are measured in coordinate system units of the geometry.

For polygon types, evaluation is done separately for each ring which can lead to one of the following results:

PostGIS 3.6.0rc2 Manual 169/918

* the original geometry,

* a POLYGON with all rings with less vertices,

* a POLYGON with a reduced number of interior rings (having possibly less vertices),

* a POLYGON EMPTY, or

* a MULTIPOLYGON with a reduced number of polygons (having possibly less interior rings or vertices), or
* a MULTIPOLYGON EMPTY.

For linestring types, evaluation is done for each linestring which can lead to one of the following results:

* the original geometry,

¢ a LINESTRING with a reduced number of vertices,

* a LINESTRING EMPTY,

* a MULTILINESTRING with a reduced number of linestrings (having possibly less vertices), or
* a MULTILINESTRING EMPTY.

oniginal ST_RemoveSmallParts(geom, 30,30) ST_RemoveSmallParts{geom, 50,50)
15 points, 3 parts 10 points, 2 parts

Example: ST_RemoveSmallParts() applied to a multi-polygon. Blue parts remain.

Availability: 3.5.0

Examples

SELECT ST_AsText (
ST _RemoveSmallParts (
ST_GeomFromText ("MULTIPOLYGON (
((60 160, 120 160, 120 220, 60 220, 60 160), (70 170, 70 210, 110 210, 110 170, 70 <
170)),
((85 75, 155 75, 155 145, 85 145, 85 75)),
((50 110, 70 110, 70 130, 50 130, 50 110)))"),
50, 50));

st_astext

MULTIPOLYGON (((60 160,120 160,120 220,60 220,60 160)), ((85 75,155 75,155 145,85 <
145,85 75)))

PostGIS 3.6.0rc2 Manual 170/918

SELECT ST_AsText (

ST_RemoveSmallParts(

ST_GeomFromText ('LINESTRING (10 10, 20 20)"),
50, 50));

st_astext

LINESTRING EMPTY

7.5.28 ST_Reverse

ST_Reverse — Return the geometry with vertex order reversed.

Synopsis

geometry ST_Reverse(geometry gl);

Description

Can be used on any geometry and reverses the order of the vertices.

Enhanced: 2.4.0 support for curves was introduced.
This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

Examples

SELECT ST_AsText (geom) as line, ST_AsText (ST_Reverse (geom)) As reverseline
FROM
(SELECT ST_MakeLine (ST_Point (1,2),

ST_Point (1,10)) As geom) as foo;

—--result

line | reverseline
_____________________ +______________________
LINESTRING(1 2,1 10) | LINESTRING(1 10,1 2)

7.5.29 ST_Segmentize

ST_Segmentize — Returns a modified geometry/geography having no segment longer than a given distance.

Synopsis

geometry ST_Segmentize(geometry geom, float max_segment_length);
geography ST_Segmentize(geography geog, float max_segment_length);

PostGIS 3.6.0rc2 Manual 171/918

Description

Returns a modified geometry/geography having no segment longer than max_segment_length. Length is computed in 2D.
Segments are always split into equal-length subsegments.

* For geometry, the maximum length is in the units of the spatial reference system.

* For geography, the maximum length is in meters. Distances are computed on the sphere. Added vertices are created along the
spherical great-circle arcs defined by segment endpoints.

N;ﬂ"! Note

This only shortens long segments. It does not lengthen segments shorter than the maximum length.

Warning

0 For inputs containing long segments, specifying a relatively short max_segment_length can cause a very large
number of vertices to be added. This can happen unintentionally if the argument is specified accidentally as a number
of segments, rather than a maximum length.

Availability: 1.2.2

Enhanced: 3.0.0 Segmentize geometry now produces equal-length subsegments
Enhanced: 2.3.0 Segmentize geography now produces equal-length subsegments
Enhanced: 2.1.0 support for geography was introduced.

Changed: 2.1.0 As a result of the introduction of geography support, the usage ST_Segmentize (' LINESTRING (1 2,
3 4)’, 0.5) causes an ambiguous function error. The input needs to be properly typed as a geometry or geography. Use
ST_GeomFromText, ST_GeogFromText or a cast to the required type (e.g. ST_Segmentize (' LINESTRING(1 2, 3
4)'" ::geometry, 0.5))

Examples

Segmentizing a line. Long segments are split evenly, and short segments are not split.

SELECT ST_AsText (ST_Segmentize (
'MULTILINESTRING((O O, O 1, 0 9), (1 10, 1 18))"'::geometry,
5))i

MULTILINESTRING((O 0,0 1,0 5,0 9), (1 10,1 14,1 18))

Segmentizing a polygon:

SELECT ST_AsText (
ST_Segmentize (('POLYGON((O O, O 8, 30 0, 0 0))"'::geometry), 10));

POLYGON((O 0,0 8,7.5 6,15 4,22.5 2,30 0,20 0,10 0,0 0))

Segmentizing a geographic line, using a maximum segment length of 2000 kilometers. Vertices are added along the great-circle
arc connecting the endpoints.

SELECT ST_AsText (
ST_Segmentize (('LINESTRING (0 0, 60 60)'::geography), 2000000));
LINESTRING (0 0,4.252632294621186 8.43596525986862,8.69579947419404 <
16.824093489701564,13.550465473227048 25.107950473646188,19.1066053508691
33.21091076089908,25.779290201459894 41.01711439406505,34.188839517966954 <+
48.337222885886,45.238153936612264 54.84733442373889,60 60)

PostGIS 3.6.0rc2 Manual 172 /918

A geographic line segmentized along a great circle arc

See Also

ST_LineSubstring

7.5.30 ST_SetPoint

ST_SetPoint — Replace point of a linestring with a given point.

Synopsis

geometry ST_SetPoint(geometry linestring, integer zerobasedposition, geometry point);

Description

Replace point N of linestring with given point. Index is 0-based.Negative index are counted backwards, so that -1 is last point.
This is especially useful in triggers when trying to maintain relationship of joints when one vertex moves.
Availability: 1.1.0

Updated 2.3.0 : negative indexing

ﬂ This function supports 3d and will not drop the z-index.

Examples

——Change first point in line string from -1 3 to -1 1
SELECT ST_AsText (ST_SetPoint ('LINESTRING (-1 2,-1 3)', 0, 'POINT(-1 1)'));
st_astext

LINESTRING(-1 1,-1 3)

———Change last point in a line string (lets play with 3d linestring this time)

SELECT ST_ASEWKT (ST_SetPoint (foo.geom, ST_NumPoints (foo.geom) - 1, ST_GeomFromEWKT ('POINT <
(=1.1.3)")))
FROM (SELECT ST_GeomFromEWKT ('LINESTRING(-1 2 3,-1 3 4, 5 6 7)') As geom) As foo;

st_asewkt

PostGIS 3.6.0rc2 Manual 173/918

LINESTRING(-1 2 3,-1 3 4,-1 1 3)

SELECT ST_AsText (ST_SetPoint (g, -3, p))
FROM ST_GEomFromText ('LINESTRING(O O, 1 1, 2 2, 3 3, 4 4)') AS g
, ST_PointN(g,1l) as p;
st_astext

LINESTRING(O 0,1 1,0 0,3 3,4 4)

See Also

ST _AddPoint, ST _NPoints, ST NumPoints, ST PointN, ST_RemovePoint

7.5.31 ST_ShiftLongitude

ST_ShiftLongitude — Shifts the longitude coordinates of a geometry between -180..180 and 0..360.

Synopsis

geometry ST_ShiftLongitude(geometry geom);

Description

Reads every point/vertex in a geometry, and shifts its longitude coordinate from -180..0 to 180..360 and vice versa if between
these ranges. This function is symmetrical so the result is a 0..360 representation of a -180..180 data and a -180..180 representa-
tion of a 0..360 data.

Net Note
This is only useful for data with coordinates in longitude/latitude; e.g. SRID 4326 (WGS 84 geographic)

0 Warning

Pre-1.3.4 bug prevented this from working for MULTIPOINT. 1.3.4+ works with MULTIPOINT as well.

This function supports 3d and will not drop the z-index.
Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
NOTE: this function was renamed from "ST_Shift_Longitude" in 2.2.0

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

PostGIS 3.6.0rc2 Manual 174 /918

Examples

—--single point forward transformation
SELECT ST_AsText (ST_ShiftLongitude ('SRID=4326;POINT (270 0)'::geometry))

st_astext

POINT (=90 0)

—-—-single point reverse transformation
SELECT ST_AsText (ST_ShiftLongitude ('SRID=4326;POINT (=90 0)'::geometry))

st_astext

POINT (270 0)

——for linestrings the functions affects only to the sufficient coordinates
SELECT ST_AsText (ST_ShiftLongitude ('SRID=4326; LINESTRING (174 12, 182 13)'::geometry))

st_astext

LINESTRING (174 12,-178 13)

See Also

ST_WrapX

7.5.32 ST_WrapX

ST_WrapX — Wrap a geometry around an X value.

Synopsis

geometry ST_WrapX(geometry geom, float8 wrap, float8 move);

Description

This function splits the input geometries and then moves every resulting component falling on the right (for negative 'move’) or
on the left (for positive 'move’) of given *wrap’ line in the direction specified by the 'move’ parameter, finally re-unioning the
pieces together.

N;ﬂ"’! Note

This is useful to "recenter" long-lat input to have features of interest not spawned from one side to the other.

Availability: 2.3.0 requires GEOS

This function supports 3d and will not drop the z-index.

PostGIS 3.6.0rc2 Manual 175/918

Examples

—— Move all components of the given geometries whose bounding box
—-— falls completely on the left of x=0 to +360
select ST _WrapX(geom, 0, 360);

—-— Move all components of the given geometries whose bounding box

—— falls completely on the left of x=-30 to +360
select ST_WrapX(geom, -30, 360);

See Also

ST_ShiftLongitude

7.5.33 ST_SnapToGrid

ST_SnapToGrid — Snap all points of the input geometry to a regular grid.

Synopsis

geometry ST_SnapToGrid(geometry geomA, float originX, float originY, float sizeX, float sizeY);

geometry ST_SnapToGrid(geometry geomA, float sizeX, float sizeY);

geometry ST_SnapToGrid(geometry geomA, float size);

geometry ST_SnapToGrid(geometry geomA, geometry pointOrigin, float sizeX, float sizeY, float sizeZ, float sizeM);

Description

Variant 1,2,3: Snap all points of the input geometry to the grid defined by its origin and cell size. Remove consecutive points
falling on the same cell, eventually returning NULL if output points are not enough to define a geometry of the given type.
Collapsed geometries in a collection are stripped from it. Useful for reducing precision.

Variant 4: Introduced 1.1.0 - Snap all points of the input geometry to the grid defined by its origin (the second argument, must
be a point) and cell sizes. Specify 0 as size for any dimension you don’t want to snap to a grid.

N;"H’! Note

The returned geometry might lose its simplicity (see ST_IsSimple).

. Note
NO‘R’! Before release 1.1.0 this function always returned a 2d geometry. Starting at 1.1.0 the returned geometry will have same
dimensionality as the input one with higher dimension values untouched. Use the version taking a second geometry
argument to define all grid dimensions.

Auvailability: 1.0.0RC1
Awailability: 1.1.0 - Z and M support

This function supports 3d and will not drop the z-index.

PostGIS 3.6.0rc2 Manual 176 /918

Examples

—-—Snap your geometries to a precision grid of 107-3
UPDATE mytable
SET geom = ST_SnapToGrid(geom, 0.001);

SELECT ST_AsText (ST_SnapToGrid (
ST_GeomFromText ('LINESTRING(1.1115678 2.123, 4.111111 3.2374897, 4.11112 3.23748667) <«

')I
0.001)

st_astext

LINESTRING(1.112 2.123,4.111 3.237)

——Snap a 4d geometry
SELECT ST_ASEWKT (ST_SnapToGrid (

ST_GeomFromEWKT ('LINESTRING(-1.1115678 2.123 2.3456 1.11111,

4.111111 3.2374897 3.1234 1.1111, -1.11111112 2.123 2.3456 1.1111112)"),

ST_GeomFromEWKT ('POINT (1.12 2.22 3.2 4.4444)"),

0.1, 0.1, 0.1, 0.01));

st_asewkt

LINESTRING(-1.08 2.12 2.3 1.1144,4.12 3.22 3.1 1.1144,-1.08 2.12 2.3 1.1144)

——With a 4d geometry - the ST_SnapToGrid(geom,size) only touches x and y coords but keeps m ¢
and z the same
SELECT ST_ASEWKT (ST_SnapToGrid (ST_GeomFromEWKT ('LINESTRING(-1.1115678 2.123 3 2.3456,
4.111111 3.2374897 3.1234 1.1111)"),
0.01)) i
st_asewkt

LINESTRING(-1.11 2.12 3 2.3456,4.11 3.24 3.1234 1.1111)

See Also

ST_Snap, ST_ASEWKT, ST_AsText, ST_GeomFromText, ST_GeomFromEWKT, ST_Simplify

7.5.34 ST_Snap

ST_Snap — Snap segments and vertices of input geometry to vertices of a reference geometry.

Synopsis

geometry ST_Snap(geometry input, geometry reference, float tolerance);

Description

Snaps the vertices and segments of a geometry to another Geometry’s vertices. A snap distance tolerance is used to control where
snapping is performed. The result geometry is the input geometry with the vertices snapped. If no snapping occurs then the input
geometry is returned unchanged.

Snapping one geometry to another can improve robustness for overlay operations by eliminating nearly-coincident edges (which
cause problems during noding and intersection calculation).

Too much snapping can result in invalid topology being created, so the number and location of snapped vertices is decided using
heuristics to determine when it is safe to snap. This can result in some potential snaps being omitted, however.

PostGIS 3.6.0rc2 Manual

177 /918

Not? Note

The returned geometry might lose its simplicity (see ST_IsSimple) and validity (see ST_IsValid).

Performed by the GEOS module.

Availability: 2.0.0

Examples

A multipolygon shown with a linestring (before any snapping)

PostGIS 3.6.0rc2 Manual

AN
~—_/

A multipolygon snapped to linestring to tolerance: 1.01 of

distance. The new multipolygon is shown with reference
linestring

SELECT ST_AsText (ST_Snap (poly,line,

(_)
ST_Distance (poly,line)*1.01))

P
AS polysnapped line)=x1.25)
FROM (SELECT) AS polysnapped
ST_GeomFromText ('"MULTIPOLYGON (FROM (SELECT
((26 125, 26 200, 126 200, 126 125, +— ST_GeomFromText ('"MULTIPOLYGON (
26 125), ((26 125, 26 200, 126 200, 126 125, <
(51 150, 101 150, 76 175, 51 150) <« 26 125),
), (51 150, 101 150, 76 175, 51 150) <«
((151 100, 151 200, 176 175, 151 <),
100))) ') As poly, ((151 100, 151 200, 176 175, 151 <
ST_GeomFromText ('LINESTRING (5 < 100))) ') As poly,
107, 54 84, 101 100)') As line ST_GeomFromText ('LINESTRING (5 <
) As foo; 107, 54 84, 101 100)') As line
) As foo;
polysnapped
777 &~ polysnapped
MULTIPOLYGON(((26 125,26 200,126 200,126 <
125,101 100,26 125), MULTIPOLYGON (((5 107,26 200,126 200,126 <=
(51 150,101 150,76 175,51 150)), ((151 <«

100,151 200,176 175,151 100)))

linestring

SELECT ST_AsText (
ST_Snap (poly, line,

125,101 100,54 84,5 107),

(51 150,101 150,76 175,51 150)), ((151

100,151 200,176 175,151 100)))

ST_Distance (poly,

<

178/918

A multipolygon snapped to linestring to tolerance: 1.25 of
distance. The new multipolygon is shown with reference

PostGIS 3.6.0rc2 Manual

179/918

The linestring snapped to the original multipolygon at
tolerance 1.01 of distance. The new linestring is shown
with reference multipolygon

SELECT ST_AsText (

ST_Snap(line, poly, ST_Distance (poly, <«
line)*=1.01)
) AS linesnapped
FROM (SELECT
ST_GeomFromText ("MULTIPOLYGON (
((26 125, 26 200, 126 200, 126 125, <
26 125),
(51 150, 101 150, 76 175, 51 150)) <«
14
((151 100, 151 200, 176 175, 151 <=
100))) ") As poly,
ST_GeomFromText ('LINESTRING (5 <
107, 54 84, 101 100)') As line
) As foo;
linesnapped

LINESTRING(5 107,26 125,54 84,101 100)

The linestring snapped to the original multipolygon at
tolerance 1.25 of distance. The new linestring is shown
with reference multipolygon

SELECT ST_AsText (
ST_Snap(line, poly,
line) *x1.25)

) AS linesnapped
FROM (SELECT
ST_GeomFromText ("MULTIPOLYGON (
((26 125, 26 200, 126 200,
26 125),
(51 150,

ST_Distance (poly, <

126 125, <«

101 150, 76 175, 51 150)) <

((151 100, 151 200,
100))) ') As poly,
ST_GeomFromText ('LINESTRING (5 <>
107, 54 84, 101 100)') As line
) As foo;
linesnapped

176 175, 151 <=

LINESTRING (26 125,54 84,101 100)

See Also

ST_SnapToGrid

7.5.35 ST_SwapOrdinates

ST_SwapOrdinates — Returns a version of the given geometry with given ordinate values swapped.

Synopsis

geometry ST_SwapOrdinates(geometry geom, cstring ords);

PostGIS 3.6.0rc2 Manual 180/918

Description

Returns a version of the given geometry with given ordinates swapped.
The ords parameter is a 2-characters string naming the ordinates to swap. Valid names are: x,y,z and m.

Auvailability: 2.2.0

ﬂ This method supports Circular Strings and Curves.

ﬂ This function supports 3d and will not drop the z-index.
ﬂ This function supports M coordinates.

ﬂ This function supports Polyhedral surfaces.

ﬂ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Example

—-— Scale M value by 2
SELECT ST_AsText (
ST_SwapOrdinates (

ST_Scale (
ST_SwapOrdinates (g, 'xm'),
2, 1
)I
'xm')
) FROM (SELECT 'POINT ZM (0 O O 2)'::geometry g) foo;

st_astext

POINT zZM (0 O O 4)

See Also

ST_FlipCoordinates

7.6 Geometry Validation

7.6.1 ST_lsValid

ST_IsValid — Tests if a geometry is well-formed in 2D.

Synopsis

boolean ST _IsValid(geometry g);
boolean ST_IsValid(geometry g, integer flags);

PostGIS 3.6.0rc2 Manual 181/918

Description

Tests if an ST_Geometry value is well-formed and valid in 2D according to the OGC rules. For geometries with 3 and 4
dimensions, the validity is still only tested in 2 dimensions. For geometries that are invalid, a PostgreSQL NOTICE is emitted
providing details of why it is not valid.

For the version with the £1ags parameter, supported values are documented in ST_IsValidDetail This version does not print a
NOTICE explaining invalidity.

For more information on the definition of geometry validity, refer to Section 4.4

Net? Note
SQL-MM defines the result of ST_IsValid(NULL) to be 0, while PostGIS returns NULL.

Performed by the GEOS module.

The version accepting flags is available starting with 2.0.0.
%" This method implements the OGC Simple Features Implementation Specification for SQL 1.1.

i

%" This method implements the SQL/MM specification. SQL-MM 3: 5.1.9

Not Note
Neither OGC-SFS nor SQL-MM specifications include a flag argument for ST_IsValid. The flag is a PostGIS extension.

Examples
SELECT ST_IsValid(ST_GeomFromText ('LINESTRING(O 0, 1 1)')) As good_line,
ST_IsValid(ST_GeomFromText ('POLYGON((O O, 1 1, 1 2, 1 1, 0 0))'")) As bad_poly

—-—results

NOTICE: Self-intersection at or near point 0 0
good_line | bad_poly

___________ o

t | £

See Also

ST_IsSimple, ST_IsValidReason, ST_IsValidDetail,

7.6.2 ST_IsValidDetail

ST_IsValidDetail — Returns a valid_detail row stating if a geometry is valid or if not a reason and a location.

Synopsis

valid_detail ST_IsValidDetail(geometry geom, integer flags);

http://www.opengeospatial.org/standards/sfs

PostGIS 3.6.0rc2 Manual 182/918

Description

Returns a valid_detail row, containing a boolean (valid) stating if a geometry is valid, a varchar (reason) stating a
reason why it is invalid and a geometry (Locat ion) pointing out where it is invalid.

Useful to improve on the combination of ST_IsValid and ST_IsValidReason to generate a detailed report of invalid geometries.

The optional £1lags parameter is a bitfield. It can have the following values:

* 0: Use usual OGC SFS validity semantics.

* 1: Consider certain kinds of self-touching rings (inverted shells and exverted holes) as valid. This is also known as "the ESRI
flag", since this is the validity model used by those tools. Note that this is invalid under the OGC model.

Performed by the GEOS module.
Availability: 2.0.0

Examples

——First 3 Rejects from a successful quintuplet experiment
SELECT gid, reason(ST_IsValidDetail (geom)), ST_AsText (location(ST_IsValidDetail (geom))) as <>
location
FROM
(SELECT ST_MakePolygon (ST_ExteriorRing(e.buff), array_agg(f.line)) As geom, gid
FROM (SELECT ST_Buffer (ST_Point (x1%10,yl), zl) As buff, x1x10 + y1%100 + z1%x1000 As gid
FROM generate_series(-4,6) x1
CROSS JOIN generate_series (2,5) vyl
CROSS JOIN generate_series(1,8) =zl
WHERE x1 > y1%x0.5 AND zl < xlxyl) As e
INNER JOIN (SELECT ST_Translate(ST_ExteriorRing(ST_Buffer (ST_Point (x1x10,y1l), zl1l)),ylxl, <~
z1%x2) As line
FROM generate_series(-3,6) x1
CROSS JOIN generate_series (2,5) vyl
CROSS JOIN generate_series(1,10) =zl
WHERE x1 > y1x0.75 AND zl < xlxyl) As f
ON (ST_Area(e.buff) > 78 AND ST_Contains (e.buff, f.line))
GROUP BY gid, e.buff) As quintuplet_experiment
WHERE ST_IsValid(geom) = false
ORDER BY gid

LIMIT 3;

gid | reason | location
______ S
5330 | Self-intersection | POINT (32 5)
5340 | Self-intersection | POINT (42 5)
5350 | Self-intersection | POINT (52 5)

——-simple example
SELECT % FROM ST_IsValidDetail ('LINESTRING (220227 150406,2220227 150407,222020 150410)");

valid | reason | location

See Also

ST _IsValid, ST_IsValidReason

PostGIS 3.6.0rc2 Manual

183/918

7.6.3 ST_lIsValidReason

ST_IsValidReason — Returns text stating if a geometry is valid, or a reason for invalidity.

Synopsis

text ST_IsValidReason(geometry geomA);
text ST_IsValidReason(geometry geomA, integer flags);

Description

Returns text stating if a geometry is valid, or if invalid a reason why.

Useful in combination with ST_IsValid to generate a detailed report of invalid geometries and reasons.
Allowed f1ags are documented in ST_IsValidDetail.

Performed by the GEOS module.

Availability: 1.4

Auvailability: 2.0 version taking flags.

Examples

—-— invalid bow-tie polygon
SELECT ST_IsValidReason (

'"POLYGON ((100 200, 100 100, 200 200,

200 100, 100 200)) '::geometry) as validity_info;
validity_info

Self-intersection[150 150]

——First 3 Rejects from a successful quintuplet experiment
SELECT gid, ST_IsValidReason (geom) as validity_info
FROM
(SELECT ST_MakePolygon (ST_ExteriorRing(e.buff), array_agg(f.line)) As geom, gid
FROM (SELECT ST _Buffer (ST _Point (x1%x10,yl), zl) As buff, x1+x10 + y1%x100 + z1x1000 As gid
FROM generate_series(-4,6) x1
CROSS JOIN generate_series (2,5) vyl
CROSS JOIN generate_series(1,8) =zl
WHERE x1 > y1%x0.5 AND zl < xlxyl) As e

INNER JOIN (SELECT ST_Translate(ST_ExteriorRing(ST_Buffer (ST _Point (x1x10,yl), z1l)),ylxl, <

z1x2) As line

FROM generate_series(-3,6) x1

CROSS JOIN generate_series (2,5) vyl

CROSS JOIN generate_series(1,10) =zl

WHERE x1 > y1%x0.75 AND zl1l < xlxyl) As f
ON (ST_Area(e.buff) > 78 AND ST_Contains (e.buff, f.line))
GROUP BY gid, e.buff) As quintuplet_experiment
WHERE ST_IsValid(geom) = false
ORDER BY gid
LIMIT 3;

Self-intersection [32 5]
Self-intersection [42 5]
Self-intersection [52 5]

PostGIS 3.6.0rc2 Manual 184 /918

——simple example
SELECT ST_IsValidReason ('LINESTRING (220227 150406,2220227 150407,222020 150410) ") ;

st_isvalidreason

Valid Geometry

See Also

ST_IsValid, ST_Summary

7.6.4 ST_MakeValid

ST_MakeValid — Attempts to make an invalid geometry valid without losing vertices.

Synopsis

geometry ST_MakeValid(geometry input);
geometry ST_MakeValid(geometry input, text params);

Description

The function attempts to create a valid representation of a given invalid geometry without losing any of the input vertices. Valid
geometries are returned unchanged.

Supported inputs are: POINTS, MULTIPOINTS, LINESTRINGS, MULTILINESTRINGS, POLYGONS, MULTIPOLY GONS
and GEOMETRYCOLLECTIONS containing any mix of them.

In case of full or partial dimensional collapses, the output geometry may be a collection of lower-to-equal dimension geometries,
or a geometry of lower dimension.

Single polygons may become multi-geometries in case of self-intersections.

The params argument can be used to supply an options string to select the method to use for building valid geometry. The
options string is in the format "method=lineworklstructure keepcollapsed=truelfalse". If no "params" argument is provided, the
"linework" algorithm will be used as the default.

The "method" key has two values.

* "linework" is the original algorithm, and builds valid geometries by first extracting all lines, noding that linework together, then
building a value output from the linework.

 "structure" is an algorithm that distinguishes between interior and exterior rings, building new geometry by unioning exterior
rings, and then differencing all interior rings.

The "keepcollapsed" key is only valid for the "structure" algorithm, and takes a value of "true" or "false". When set to "false",
geometry components that collapse to a lower dimensionality, for example a one-point linestring would be dropped.

Performed by the GEOS module.

Availability: 2.0.0

Enhanced: 2.0.1, speed improvements

Enhanced: 2.1.0, added support for GEOMETRYCOLLECTION and MULTIPOINT.

Enhanced: 3.1.0, added removal of Coordinates with NaN values.

Enhanced: 3.2.0, added algorithm options, ’linework’ and ’structure’ which requires GEOS >= 3.10.0.

This function supports 3d and will not drop the z-index.

PostGIS 3.6.0rc2 Manual 185/918

Examples

PostGIS 3.6.0rc2 Manual

186/918

before_geom: MULTIPOLYGON of 2 overlapping polygons

after_geom: MULTIPOLYGON of 4 non-overlapping polygons

after_geom_structure: MULTIPOLYGON of 1 non-overlapping polygon

SELECT f.geom AS before_geom, ST_MakeValid(f.geom) AS after_geom, ST_MakeValid(f.geom,
'method=structure') AS after_geom_structure
FROM (SELECT 'MULTIPOLYGON (((186 194,187 194,188 195,189 195,190 195,

1 01 10 109 10 102 10449 104 104 104 102 10 102 10 1017

<

PostGIS 3.6.0rc2 Manual 187/918

PostGIS 3.6.0rc2 Manual 188/918

before_geom: MULTIPOLYGON of 6 overlapping polygons

after_geom: MULTIPOLYGON of 14 Non-overlapping polygons

after_geom_structure: MULTIPOLYGON of 1 Non-overlapping polygon

SELECT c.geom AS before_geom,
ST_MakeValid(c.geom) AS after_geom,
ST_MakeValid(c.geom, 'method=structure') AS after_geom_structure
FROM (SELECT 'MULTIPOLYGON(((91 50,79 22,51 10,23 22,11 50,23 78,51 90,79 78,91 <«

PostGIS 3.6.0rc2 Manual 189/918

Examples

SELECT ST_AsText (ST_MakeValid/(
'LINESTRING (O 0, 0 0)',
'method=structure keepcollapsed=true'’

)) i

st_astext

POINT (0 0)

SELECT ST_AsText (ST_MakeValid(
'LINESTRING(O O, 0 0)"',
'method=structure keepcollapsed=false'
)) i

st_astext

LINESTRING EMPTY

See Also

ST IsValid, ST_Collect, ST_CollectionExtract

7.7 Spatial Reference System Functions

7.7.1 ST_InverseTransformPipeline

ST_InverseTransformPipeline — Return a new geometry with coordinates transformed to a different spatial reference system
using the inverse of a defined coordinate transformation pipeline.

Synopsis

geometry ST_InverseTransformPipeline(geometry geom, text pipeline, integer to_srid);

Description

Return a new geometry with coordinates transformed to a different spatial reference system using a defined coordinate transfor-
mation pipeline to go in the inverse direction.

Refer to ST_TransformPipeline for details on writing a transformation pipeline.

Auvailability: 3.4.0

The SRID of the input geometry is ignored, and the SRID of the output geometry will be set to zero unless a value is provided
via the optional to_srid parameter. When using ST_TransformPipeline the pipeline is executed in a forward direction. Using
“ST_InverseTransformPipeline()" the pipeline is executed in the inverse direction.

Transforms using pipelines are a specialised version of ST_Transform. In most cases “ST_Transform™ will choose the correct
operations to convert between coordinate systems, and should be preferred.

PostGIS 3.6.0rc2 Manual 190/918

Examples

Change WGS 84 long lat to UTM 31N using the EPSG:16031 conversion

—— Inverse direction

SELECT ST_AsText (ST_InverseTransformPipeline ('POINT (426857.9877165967 5427937.523342293)"'::
geometry,
'urn:ogc:def:coordinateOperation:EPSG::16031"')) AS wgs_geom;
wgs_geom

POINT (2 48.99999999999999)
(1 row)

GDA2020 example.

—— using ST_Transform with automatic selection of a conversion pipeline.
SELECT ST_AsText (ST_Transform('SRID=4939;POINT (143.0 -37.0)'::geometry, 7844)) AS <
gda2020_auto;

gda2020_auto

POINT (143.00000635638918 —-36.999986706128176)
(1 row)

See Also

ST_Transform, ST_TransformPipeline

7.7.2 ST_SetSRID

ST_SetSRID — Set the SRID on a geometry.

Synopsis

geometry ST_SetSRID(geometry geom, integer srid);

Description

Sets the SRID on a geometry to a particular integer value. Useful in constructing bounding boxes for queries.

B Note
N'ﬁ"! This function does not transform the geometry coordinates in any way - it simply sets the meta data defining the spatial
reference system the geometry is assumed to be in. Use ST_Transform if you want to transform the geometry into a
new projection.

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1.

ﬂ This method supports Circular Strings and Curves.

http://www.opengeospatial.org/standards/sfs

PostGIS 3.6.0rc2 Manual 191/918

Examples

-- Mark a point as WGS 84 long lat --

SELECT ST_SetSRID(ST_Point (-123.365556, 48.428611),4326) As wgs84long_lat;
—-— the ewkt representation (wrap with ST_ASEWKT) -
SRID=4326; POINT (-123.365556 48.428611)

-- Mark a point as WGS 84 long lat and then transform to web mercator (Spherical Mercator) --

SELECT ST_Transform(ST_SetSRID(ST_Point (-123.365556, 48.428611),4326),3785) As spere_merc;
—— the ewkt representation (wrap with ST_ASEWKT) -
SRID=3785;POINT (-13732990.8753491 6178458.96425423)

See Also

Section 4.5, ST_SRID, ST_Transform, UpdateGeometrySRID

7.7.3 ST_SRID

ST_SRID — Returns the spatial reference identifier for a geometry.

Synopsis

integer ST_SRID(geometry gl);

Description

Returns the spatial reference identifier for the ST_Geometry as defined in spatial_ref_sys table. Section 4.5

& Note
Nﬂ'l"! spatial_ref_sys table is a table that catalogs all spatial reference systems known to PostGIS and is used for transforma-
tions from one spatial reference system to another. So verifying you have the right spatial reference system identifier is
important if you plan to ever transform your geometries.

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s2.1.1.1
ﬂ This method implements the SQL/MM specification. SQL-MM 3: 5.1.5

ﬂ This method supports Circular Strings and Curves.

Examples

SELECT ST_SRID(ST_GeomFromText ('POINT (-71.1043 42.315)"',4326));
—-—result
4326

See Also

Section 4.5, ST_SetSRID, ST_Transform, ST_SRID, ST_SRID

http://www.opengeospatial.org/standards/sfs

PostGIS 3.6.0rc2 Manual 192/918

7.7.4 ST_Transform

ST_Transform — Return a new geometry with coordinates transformed to a different spatial reference system.

Synopsis

geometry ST_Transform(geometry gl, integer srid);

geometry ST_Transform(geometry geom, text to_proj);

geometry ST_Transform(geometry geom, text from_proj, text to_proj);
geometry ST_Transform(geometry geom, text from_proj, integer to_srid);

Description

Returns a new geometry with its coordinates transformed to a different spatial reference system. The destination spatial reference
to_srid may be identified by a valid SRID integer parameter (i.e. it must exist in the spatial_ref_sys table). Alterna-
tively, a spatial reference defined as a PROJ.4 string can be used for to_proj and/or from_pro j, however these methods are
not optimized. If the destination spatial reference system is expressed with a PROJ.4 string instead of an SRID, the SRID of the
output geometry will be set to zero. With the exception of functions with from_proj, input geometries must have a defined
SRID.

ST_Transform is often confused with ST_SetSRID. ST_Transform actually changes the coordinates of a geometry from one
spatial reference system to another, while ST_SetSRID() simply changes the SRID identifier of the geometry.

ST_Transform automatically selects a suitable conversion pipeline given the source and target spatial reference systems. To use
a specific conversion method, use ST_TransformPipeline.

st¢} Note
N Requires PostGIS be compiled with PROJ support. Use PostGIS_Full_Version to confirm you have PROJ support
compiled in.
N:ﬂ"! Note

If using more than one transformation, it is useful to have a functional index on the commonly used transformations to
take advantage of index usage.

Not? Note

Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.

Enhanced: 2.3.0 support for direct PROJ.4 text was introduced.
This method implements the SQL/MM specification. SQL-MM 3: 5.1.6
This method supports Circular Strings and Curves.

This function supports Polyhedral surfaces.

PostGIS 3.6.0rc2 Manual 193/918

Examples

Change Massachusetts state plane US feet geometry to WGS 84 long lat

SELECT ST_AsText (ST_Transform(ST_GeomFromText ('"POLYGON ((743238 2967416,743238 2967450,
743265 2967450, 743265.625 2967416,743238 2967416))',2249),4326)) As wgs_geom;

wgs_geom

POLYGON ((=71.1776848522251 42.3902896512902,-71.1776843766326 42.3903829478009,
—-71.1775844305465 42.3903826677917,-71.1775825927231 42.3902893647987,-71.177684
8522251 42.3902896512902)) ;

(1 row)

—-3D Circular String example
SELECT ST_ASEWKT (ST_Transform(ST_GeomFromEWKT ('SRID=2249; CIRCULARSTRING (743238 2967416 <
1,743238 2967450 2,743265 2967450 3,743265.625 2967416 3,743238 2967416 4)"'),4326));

st_asewkt
SRID=4326; CIRCULARSTRING (-71.1776848522251 42.3902896512902 1,-71.1776843766326 <+
42.3903829478009 2,
-71.1775844305465 42.3903826677917 3,
-71.1775825927231 42.3902893647987 3,-71.1776848522251 42.3902896512902 4)

Example of creating a partial functional index. For tables where you are not sure all the geometries will be filled in, its best to use
a partial index that leaves out null geometries which will both conserve space and make your index smaller and more efficient.

CREATE INDEX idx_geom_26986_parcels
ON parcels
USING gist
(ST_Transform(geom, 26986))
WHERE geom IS NOT NULL;

Examples of using PROJ.4 text to transform with custom spatial references.

—-— Find intersection of two polygons near the North pole, using a custom Gnomic projection
—— See http://boundlessgeo.com/2012/02/flattening-the-peel/
WITH data AS (
SELECT
ST_GeomFromText ('POLYGON((170 50,170 72,-130 72,-130 50,170 50))"', 4326) AS pl,
ST_GeomFromText ('POLYGON ((-170 68,-170 90,-141 90,-141 68,-170 68))', 4326) AS p2,
'+proj=gnom +ellps=WGS84 +lat_0=70 +lon_0=-160 +no_defs'::text AS gnom
)
SELECT ST_AsText (
ST_Transform(
ST_Intersection(ST_Transform(pl, gnom), ST _Transform(p2, gnom)),
gnom, 4326))
FROM data;
st_astext
POLYGON ((=170 74.053793645338,-141 73.4268621378904,-141 68,-170 68,-170 74.053793645338) <
)

Configuring transformation behavior

Sometimes coordinate transformation involving a grid-shift can fail, for example if PROJ.4 has not been built with grid-shift files
or the coordinate does not lie within the range for which the grid shift is defined. By default, PostGIS will throw an error if a

PostGIS 3.6.0rc2 Manual 194 /918

grid shift file is not present, but this behavior can be configured on a per-SRID basis either by testing different t o_proj values
of PROJ.4 text, or altering the proj4text value within the spatial_ref_sys table.

For example, the proj4text parameter +datum=NADS7 is a shorthand form for the following +nadgrids parameter:

+nadgrids=@conus, @alaska, @ntv2_0.gsb, @ntvl_can.dat

The @ prefix means no error is reported if the files are not present, but if the end of the list is reached with no file having been
appropriate (ie. found and overlapping) then an error is issued.

If, conversely, you wanted to ensure that at least the standard files were present, but that if all files were scanned without a hit a
null transformation is applied you could use:

+nadgrids=@conus, @alaska, @ntv2_0.gsb,@ntvl_can.dat,null

The null grid shift file is a valid grid shift file covering the whole world and applying no shift. So for a complete example, if you
wanted to alter PostGIS so that transformations to SRID 4267 that didn’t lie within the correct range did not throw an ERROR,
you would use the following:

UPDATE spatial_ref_ sys SET projdtext = '+proj=longlat +ellps=clrk66 +nadgrids=@conus, <
@alaska,@ntv2_0.gsb,@ntvl_can.dat,null +no_defs' WHERE srid = 4267;

See Also

Section 4.5, ST_SetSRID, ST_SRID, UpdateGeometrySRID, ST_TransformPipeline

7.7.5 ST_TransformPipeline

ST_TransformPipeline — Return a new geometry with coordinates transformed to a different spatial reference system using a
defined coordinate transformation pipeline.

Synopsis

geometry ST _TransformPipeline(geometry gl, text pipeline, integer to_srid);

Description

Return a new geometry with coordinates transformed to a different spatial reference system using a defined coordinate transfor-
mation pipeline.

Transformation pipelines are defined using any of the following string formats:

* urn:ogc:def:coordinateOperation:AUTHORITY : : CODE. Note that a simple EP SG : CODE string does not uniquely
identify a coordinate operation: the same EPSG code can be used for a CRS definition.

* A PROJ pipeline string of the form: +proj=pipeline Automatic axis normalisation will not be applied, and if
necessary the caller will need to add an additional pipeline step, or remove axisswap steps.

* Concatenated operations of the form: urn:ogc:def:coordinateOperation, coordinateOperation:EPSG: :3895,

Availability: 3.4.0

The SRID of the input geometry is ignored, and the SRID of the output geometry will be set to zero unless a value is provided via
the optional to_srid parameter. When using *ST_TransformPipeline()" the pipeline is executed in a forward direction. Using
ST_InverseTransformPipeline the pipeline is executed in the inverse direction.

Transforms using pipelines are a specialised version of ST_Transform. In most cases “ST_Transform™ will choose the correct
operations to convert between coordinate systems, and should be preferred.

PostGIS 3.6.0rc2 Manual 195/918

Examples

Change WGS 84 long lat to UTM 31N using the EPSG:16031 conversion

—-— Forward direction

SELECT ST_AsText (ST_TransformPipeline ('SRID=4326;POINT (2 49)'::geometry,
'urn:ogc:def:coordinateOperation:EPSG::16031")) AS utm_geom;
utm_geom

POINT (426857.9877165967 5427937.523342293)
(1 row)

—— Inverse direction

SELECT ST_AsText (ST_InverseTransformPipeline ('POINT (426857.9877165967 5427937.523342293)"':: &
geometry,
'urn:ogc:def:coordinateOperation:EPSG::16031"')) AS wgs_geom;
wgs_geom

POINT (2 48.99999999999999)
(1 row)

GDA2020 example.

—— using ST_Transform with automatic selection of a conversion pipeline.
SELECT ST_AsText (ST_Transform('SRID=4939;POINT (143.0 -37.0)'::geometry, 7844)) AS <
gda2020_auto;

gda2020_auto
POINT (143.00000635638918 —-36.999986706128176)
(1 row)

—-— using a defined conversion (EPSG:8447)
SELECT ST_AsText (ST_TransformPipeline ('SRID=4939;POINT (143.0 -37.0)"'::geometry,
'urn:ogc:def:coordinateOperation:EPSG::8447"')) AS gda2020_code;

gda2020_code
POINT (143.0000063280214 -36.999986718287545)
(1 row)

—— using a PROJ pipeline definition matching EPSG:8447, as returned from

—-— 'projinfo -s EPSG:4939 -t EPSG:7844"'.

—-— NOTE: any 'axisswap' steps must be removed.

SELECT ST_AsText (ST_TransformPipeline ('SRID=4939;POINT (143.0 -37.0)'::geometry,
'+proj=pipeline
+step +proj=unitconvert +xy_in=deg +xy_out=rad
+step +proj=hgridshift +grids=au_icsm_GDA94_GDA2020_conformal_and distortion.tif
+step t+proj=unitconvert +xy_in=rad +xy_out=deg')) AS gda2020_pipeline;

gda2020_pipeline

POINT (143.0000063280214 -36.999986718287545)
(1 row)

See Also

ST_Transform, ST_InverseTransformPipeline

PostGIS 3.6.0rc2 Manual 196/918

7.7.6 postgis_srs_codes

postgis_srs_codes — Return the list of SRS codes associated with the given authority.

Synopsis

setof text postgis_srs_codes(text auth_name);

Description

Returns a set of all auth_srid for the given auth_name.
Availability: 3.4.0

Proj version 6+

Examples

List the first ten codes associated with the EPSG authority.

SELECT » FROM postgis_srs_codes ('EPSG') LIMIT 10;

postgis_srs_codes

2000

20004
20005
20006
20007
20008
20009
2001

20010
20011

See Also

postgis_srs, postgis_srs_all, postgis_srs_search

7.7.7 postgis_srs

postgis_srs — Return a metadata record for the requested authority and srid.

Synopsis

setof record postgis_srs(text auth_name, text auth_srid);

Description

Returns a metadata record for the requested auth_srid for the given auth_name. The record will have the auth_name,
auth_srid, srname, srtext, proj4text, and the corners of the area of usage, point_sw and point_ne.
Auvailability: 3.4.0

Proj version 6+

PostGIS 3.6.0rc2 Manual 197 /918
Examples

Get the metadata for EPSG:3005.

SELECT x FROM postgis_srs ('EPSG', '3005'");

auth_name | EPSG

auth_srid | 3005

srname | NAD83 / BC Albers

srtext | PROJCS["NAD83 / BC Albers", 11

projdtext | +proj=aea +lat_0=45 +lon_0=-126 +lat_1=50 +lat_2=58.5 +x_0=1000000 +y_0=0 + <«

datum=NAD83 +units=m +no_defs +type=crs
0101000020E6100000E17A14AE476161C00000000000204840
0101000020E610000085EB51B81E855CCOE17A14AE47014E40

point_sw |
point_ne |

See Also

postgis_srs_codes, postgis_srs_all, postgis_srs_search

7.7.8 postgis_srs_all

postgis_srs_all — Return metadata records for every spatial reference system in the underlying Proj database.

Synopsis

setof record postgis_srs_all(void);

Description

Returns a set of all metadata records in the underlying Proj database. The records will have the auth_name, auth_srid,

srname, srtext, proj4text, and the corners of the area of usage, point_sw and point_ne.

Availability: 3.4.0

Proj version 6+

Examples

Get the first 10 metadata records from the Proj database.

SELECT auth_name,

auth_srid,

|
+
|
|
|
|
|
|
|
|
|
|

srname

srname FROM postgis_srs_all()

LIMIT 10;

Anguilla 1957 / British West Indies Grid

Pulkovo
Pulkovo
Pulkovo
Pulkovo
Pulkovo
Pulkovo
Antigua
Pulkovo
Pulkovo

1995
1995
1995
1995
1995
1995
1943
1995
1995

NN N N N N N N .

Gauss—-Kruger
Gauss—Kruger
Gauss—-Kruger
Gauss—-Kruger
Gauss—Kruger
Gauss—-Kruger
British West
Gauss—Kruger
Gauss—-Kruger

zone
zone
zone
zone
zone
zone

4

0 J o U

9

Indies Grid
zone 10
zone 11

PostGIS 3.6.0rc2 Manual 198/918

See Also

postgis_srs_codes, postgis_srs, postgis_srs_search

7.7.9 postgis_srs_search

postgis_srs_search — Return metadata records for projected coordinate systems that have areas of usage that fully contain the
bounds parameter.

Synopsis

setof record postgis_srs_search(geometry bounds, text auth_name=EPSG);

Description

Return a set of metadata records for projected coordinate systems that have areas of usage that fully contain the bounds parameter.
Each record will have the auth_name, auth_srid, srname, srtext, proj4text, and the corners of the area of usage,
point_swand point_ne.

The search only looks for projected coordinate systems, and is intended for users to explore the possible systems that work for
the extent of their data.

Auvailability: 3.4.0

Proj version 6+

Examples

Search for projected coordinate systems in Louisiana.

SELECT auth_name, auth_srid, srname,
ST_AsText (point_sw) AS point_sw,
ST_AsText (point_ne) AS point_ne
FROM postgis_srs_search('SRID=4326; LINESTRING(-90 30, -91 31)"'")

LIMIT 3;

auth_name | auth_srid | srname | point_sw | <~
point_ne

——————————— B R et

EPSG | 2801 | NAD83 (HARN) / Louisiana South | POINT(-93.94 28.85) | POINT <
(-88.75 31.07)

EPSG | 3452 | NAD83 / Louisiana South (£ftUS) | POINT (-93.94 28.85) | POINT <
(-88.75 31.07)

EPSG | 3457 | NAD83 (HARN) / Louisiana South (ftUS) | POINT (-93.94 28.85) | POINT ¢«
(-88.75 31.07)

Scan a table for max extent and find projected coordinate systems that might suit.

WITH ext AS (
SELECT ST_Extent (geom) AS geom, Max (ST_SRID (geom)) AS srid
FROM foo
)
SELECT auth_name, auth_srid, srname,
ST_AsText (point_sw) AS point_sw,
ST_AsText (point_ne) AS point_ne
FROM ext
CROSS JOIN postgis_srs_search (ST_SetSRID (ext.geom, ext.srid))
LIMIT 3;

PostGIS 3.6.0rc2 Manual 199/918

See Also

postgis_srs_codes, postgis_srs_all, postgis_srs

7.8 Geometry Input

7.8.1 Well-Known Text (WKT)

7.8.1.1 ST_BdPolyFromText

ST_BdPolyFromText — Construct a Polygon given an arbitrary collection of closed linestrings as a MultiLineString Well-Known
text representation.

Synopsis

geometry ST_BdPolyFromText(text WKT, integer srid);

Description

Construct a Polygon given an arbitrary collection of closed linestrings as a MultiLineString Well-Known text representation.

et Note
N Throws an error if WKT is not a MULTILINESTRING. Throws an error if output is a MULTIPOLYGON; use

ST_BdMPolyFromText in that case, or see ST_BuildArea() for a postgis-specific approach.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.6.2
Performed by the GEOS module.
Availability: 1.1.0

See Also

ST_BuildArea, ST_BdMPolyFromText

7.8.1.2 ST_BdMPolyFromText

ST_BdMPolyFromText — Construct a MultiPolygon given an arbitrary collection of closed linestrings as a MultiLineString text
representation Well-Known text representation.

Synopsis

geometry ST_BdMPolyFromText(text WKT, integer srid);

http://www.opengeospatial.org/standards/sfs

PostGIS 3.6.0rc2 Manual 200/918

Description

Construct a Polygon given an arbitrary collection of closed linestrings, polygons, MultiLineStrings as Well-Known text repre-
sentation.

- Note
NG‘H’! Throws an error if WKT is not a MULTILINESTRING. Forces MULTIPOLYGON output even when result is really only
composed by a single POLYGON; use ST_BdPolyFromText if you're sure a single POLYGON will result from operation,
or see ST_BuildArea() for a postgis-specific approach.

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.6.2
Performed by the GEOS module.
Auvailability: 1.1.0

See Also

ST_BuildArea, ST_BdPolyFromText

7.8.1.3 ST_GeogFromText

ST_GeogFromText — Return a specified geography value from Well-Known Text representation or extended (WKT).

Synopsis

geography ST_GeogFromText(text EWKT);

Description

Returns a geography object from the well-known text or extended well-known representation. SRID 4326 is assumed if unspec-
ified. This is an alias for ST_GeographyFromText. Points are always expressed in long lat form.

Examples

—-—— converting lon lat coords to geography

ALTER TABLE sometable ADD COLUMN geog geography (POINT, 4326) ;
UPDATE sometable SET geog = ST_GeogFromText ('SRID=4326;POINT(' || lon || " " || lat || ")') ¢«

’

—-—— specify a geography point using EPSG:4267, NAD27
SELECT ST_ASEWKT (ST_GeogFromText ('SRID=4267;POINT (-77.0092 38.889588)"'));

See Also
ST_AsText, ST_GeographyFromText

7.8.1.4 ST_GeographyFromText

ST_GeographyFromText — Return a specified geography value from Well-Known Text representation or extended (WKT).

http://www.opengeospatial.org/standards/sfs

PostGIS 3.6.0rc2 Manual 201/918

Synopsis

geography ST_GeographyFromText(text EWKT);

Description

Returns a geography object from the well-known text representation. SRID 4326 is assumed if unspecified.

See Also

ST_GeogFromText, ST_AsText

7.8.1.5 ST_GeomCollFromText

ST_GeomCollFromText — Makes a collection Geometry from collection WKT with the given SRID. If SRID is not given, it
defaults to 0.

Synopsis
geometry ST_GeomCollFromText(text WKT, integer srid);
geometry ST_GeomCollFromText(text WKT);

Description

Makes a collection Geometry from the Well-Known-Text (WKT) representation with the given SRID. If SRID is not given, it
defaults to 0.

OGC SPEC 3.2.6.2 - option SRID is from the conformance suite
Returns null if the WKT is not a GEOMETRYCOLLECTION

st¢} Note
N If you are absolutely sure all your WKT geometries are collections, don't use this function. It is slower than
ST_GeomFromText since it adds an additional validation step.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.6.2

This method implements the SQL/MM specification.

Examples

SELECT ST_GeomCollFromText ('GEOMETRYCOLLECTION (POINT (1 2),LINESTRING(1 2, 3 4))');

See Also

ST_GeomFromText, ST_SRID

7.8.1.6 ST_GeomFromEWKT

ST_GeomFromEWKT — Return a specified ST_Geometry value from Extended Well-Known Text representation (EWKT).

http://www.opengeospatial.org/standards/sfs

PostGIS 3.6.0rc2 Manual 202/918

Synopsis

geometry ST_GeomFromEWKT(text EWKT);

Description

Constructs a PostGIS ST_Geometry object from the OGC Extended Well-Known text (EWKT) representation.

;—M Note
N The EWKT format is not an OGC standard, but an PostGIS specific format that includes the spatial reference system
(SRID) identifier

Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
ﬂ This function supports 3d and will not drop the z-index.

ﬂ This method supports Circular Strings and Curves.

ﬂ This function supports Polyhedral surfaces.

ﬂ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

SELECT ST_GeomFromEWKT ('SRID=4269; LINESTRING(-71.160281 42.258729,-71.160837 <+
42.259113,-71.161144 42.25932)");

SELECT ST_GeomFromEWKT ('SRID=4269; MULTILINESTRING((-71.160281 42.258729,-71.160837 <>
42.259113,-71.161144 42.25932))");

SELECT ST_GeomFromEWKT ('SRID=4269;POINT (-71.064544 42.28787)");

SELECT ST_GeomFromEWKT ('SRID=4269;POLYGON ((-71.1776585052917 <=
42.3902909739571,-71.1776820268866 42.3903701743239,

-71.1776063012595 42.3903825660754,-71.1775826583081 42.3903033653531,-71.1776585052917 <
42.3902909739571)) ") ;

SELECT ST_GeomFromEWKT ('SRID=4269; MULTIPOLYGON (((=71.1031880899493 42.3152774590236,
—-71.1031627617667 42.3152960829043,-71.102923838298 42.3149156848307,
—-71.1023097974109 42.3151969047397,-71.1019285062273 42.3147384934248,
—71.102505233663 42.3144722937587,-71.10277487471 42.3141658254797,
—71.103113945163 42.3142739188902,-71.10324876416 42.31402489987,
—-71.1033002961013 42.3140393340215,-71.1033488797549 42.3139495090772,
-71.103396240451 42.3138632439557,-71.1041521907712 42.3141153348029,
—71.1041411411543 42.3141545014533,-71.1041287795912 42.3142114839058,
—71.1041188134329 42.3142693656241,-71.1041112482575 42.3143272556118,
-71.1041072845732 42.3143851580048,-71.1041057218871 42.3144430686681,
—-71.1041065602059 42.3145009876017,-71.1041097995362 42.3145589148055,
—-71.1041166403905 42.3146168544148,-71.1041258822717 42.3146748022936,
—-71.1041375307579 42.3147318674446,-71.1041492906949 42.3147711126569,
—-71.1041598612795 42.314808571739,-71.1042515013869 42.3151287620809,
-71.1041173835118 42.3150739481917,-71.1040809891419 42.3151344119048,
—-71.1040438678912 42.3151191367447,-71.1040194562988 42.3151832057859,
—-71.1038734225584 42.3151140942995,-71.1038446938243 42.3151006300338,
—71.1038315271889 42.315094347535,-71.1037393329282 42.315054824985,
—71.1035447555574 42.3152608696313,-71.1033436658644 42.3151648370544,
—71.1032580383161 42.3152269126061,-71.103223066939 42.3152517403219,

PostGIS 3.6.0rc2 Manual 203/918

—-71.1031880899493 42.315277459023¢6)),

((=71.1043632495873 42.315113108546,-71.1043583974082 42.3151211109857,

—71.1043443253471 42.3150676015829,-71.1043850704575 42.3150793250568,-71.1043632495873 <«
42.315113108546))) ") ;

—--3d circular string
SELECT ST_GeomFromEWKT ('CIRCULARSTRING (220268 150415 1,220227 150505 2,220227 150406 3)'");

——Polyhedral Surface example
SELECT ST_GeomFromEWKT ('POLYHEDRALSURFACE (
((O 6, 001, 011, 010, OO0O0)),

14 14 14 ’

4 4 ’ ’

’ ’ ’ ’

14 14

~

14

A
o

oOr P o oo
oo oo
R O RFE O
O P O

R R e oo
e e
=2 o o
N e =
~

O KPR O
B2 o oo
o or o
o or oo
o r oo

4 4 ’

See Also

ST _ASEWKT, ST GeomFromText

7.8.1.7 ST_GeomFromMARC21

ST_GeomFromMARC21 — Takes MARC21/XML geographic data as input and returns a PostGIS geometry object.

Synopsis

geometry ST_GeomFromMARC21 (text marcxml);

Description

This function creates a PostGIS geometry from a MARC21/XML record, which can contain a POINT or a POLYGON. In case of
multiple geographic data entries in the same MARC21/XML record, a MULTIPOINT or MULTIPOLYGON will be returned. If
the record contains mixed geometry types, a GEOMETRYCOLLECTION will be returned. It returns NULL if the MARC21/XML
record does not contain any geographic data (datafield:034).

LOC MARC21/XML versions supported:
e MARC21/XML 1.1

Availability: 3.3.0, requires libxml2 2.6+

et Note
N The MARC21/XML Coded Cartographic Mathematical Data currently does not provide any means to describe the
Spatial Reference System of the encoded coordinates, so this function will always return a geometry with SRID 0.

N-ﬂ'l"! Note

Returned POLYGON geometries will always be clockwise oriented.

https://www.loc.gov/standards/marcxml/

PostGIS 3.6.0rc2 Manual 204 /918

Examples

Converting MARC21/XML geographic data containing a single POINT encoded as hddd .dddddd

SELECT
ST_AsText (
ST_GeomFromMARC21 ('
<record xmlns="http://www.loc.gov/MARC21/slim">
<leader>00000nz a2200000nc 4500</leader>
<controlfield tag="001">040277569</controlfield>
<datafield tag="034" indl=" " ind2=" ">
<subfield code="d">W004.500000</subfield>
<subfield code="e">W004.500000</subfield>
<subfield code="f">N054.250000</subfield>
<subfield code="g">N054.250000</subfield>
</datafield>
</record>"));

st_astext
POINT (-4.5 54.25)
(1 row)

Converting MARC21/XML geographic data containing a single POLYGON encoded as hdddmms s

SELECT
ST_AsText (
ST_GeomFromMARC21 ('
<record xmlns="http://www.loc.gov/MARC21/slim">
<leader>01062cem a2200241 a 4500</leader>
<controlfield tag="001"> 84696781 </controlfield>
<datafield tag="034" indl="1" ind2=" ">
<subfield code="a">a</subfield>
<subfield code="b">50000</subfield>
<subfield code="d">E0130600</subfield>
<subfield code="e">E0133100</subfield>
<subfield code="f">N0523900</subfield>
<subfield code="g">N0522300</subfield>
</datafield>
</record>"));

st_astext

POLYGON ((13.1 52.65,13.516666666666667 52.65,13.516666666666667 <
52.38333333333333,13.1 52.38333333333333,13.1 52.65))
(1 row)

Converting MARC21/XML geographic data containing a POLYGON and a POINT:

SELECT

ST_AsText (
ST_GeomFromMARC21 ('

<record xmlns="http://www.loc.gov/MARC21/slim">
<datafield tag="034" indl="1" ind2=" ">

PostGIS 3.6.0rc2 Manual 205/918

<subfield code="a">a</subfield>
<subfield code="b">50000</subfield>
<subfield code="d">E0130600</subfield>
<subfield code="e">E0133100</subfield>
<subfield code="f">N0523900</subfield>
<subfield code="g">N0522300</subfield>

</datafield>

<datafield tag="034" indl=" " ind2=" ">
<subfield code="d">W004.500000</subfield>
<subfield code="e">W004.500000</subfield>
<subfield code="f">N054.250000</subfield>
<subfield code="g">N054.250000</subfield>

</datafield>

</record>"));
st_astext <

GEOMETRYCOLLECTION (POLYGON ((13.1 52.65,13.516666666666667 <
52.65,13.516666666666667 52.38333333333333,13.1 52.38333333333333,13.1 <«
52.65)),POINT (-4.5 54.25))

(1 row)

See Also

ST_AsMARC21

7.8.1.8 ST_GeometryFromText

ST_GeometryFromText — Return a specified ST_Geometry value from Well-Known Text representation (WKT). This is an alias
name for ST_GeomFromText

Synopsis

geometry ST_GeometryFromText(text WKT);
geometry ST_GeometryFromText(text WKT, integer srid);

Description

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1.

ﬂ This method implements the SQL/MM specification. SQL-MM 3: 5.1.40

See Also

ST_GeomFromText

7.8.1.9 ST_GeomFromText

ST_GeomFromText — Return a specified ST_Geometry value from Well-Known Text representation (WKT).

Synopsis

geometry ST_GeomFromText(text WKT);
geometry ST_GeomFromText(text WKT, integer srid);

http://www.opengeospatial.org/standards/sfs

PostGIS 3.6.0rc2 Manual 206 /918

Description

Constructs a PostGIS ST_Geometry object from the OGC Well-Known text representation.

Note!

Note
There are two variants of ST_GeomFromText function. The first takes no SRID and returns a geometry with no defined

spatial reference system (SRID=0). The second takes a SRID as the second argument and returns a geometry that
includes this SRID as part of its metadata.

This

method implements the OGC Simple Features Implementation Specification for SQL 1.1. $3.2.6.2 - option SRID is

from the conformance suite.

This

This

method implements the SQL/MM specification. SQL-MM 3: 5.1.40

method supports Circular Strings and Curves.

=

Note!

Note
While not OGC-compliant, ST_MakePoint is faster than ST_GeomFromText and ST_PointFromText. It is also easier to

use for numeric coordinate values. ST_Point is another option similar in speed to ST_MakePoint and is OGC-compliant,
but doesn’t support anything but 2D points.

O

Warning

Changed: 2.0.0 In prior versions of PostGIS ST_GeomFromText(GEOMETRYCOLLECTION(EMPTY)’) was allowed.
This is now illegal in PostGIS 2.0.0 to better conform with SQL/MM standards. This should now be written as
ST_GeomFromText(GEOMETRYCOLLECTION EMPTY’)

Examples

SELECT
42.

SELECT
42.

SELECT
42.

SELECT

SELECT
42.

ST_GeomFromText ('LINESTRING (-71.160281 42.258729,-71.160837 42.259113,-71.161144 <«

25932) ') ;
ST_GeomFromText ('LINESTRING(-71.160281 42.258729,-71.160837 42.259113,-71.161144 <+

25932)',4269);

ST_GeomFromText ('MULTILINESTRING ((-71.160281 42.258729,-71.160837 <=
259113,-71.161144 42.25932))");

ST_GeomFromText ('POINT (-71.064544 42.28787)");

ST_GeomFromText ('POLYGON ((=71.1776585052917 42.3902909739571,-71.1776820268866 <
3903701743239,

-71.1776063012595 42.3903825660754,-71.1775826583081 42.3903033653531,-71.1776585052917 <«

42.

SELECT

3902909739571)) ") ;

ST_GeomFromText ("MULTIPOLYGON (((-71.1031880899493 42.3152774590236,

-71.1031627617667 42.3152960829043,-71.102923838298 42.3149156848307,
-71.1023097974109 42.3151969047397,-71.1019285062273 42.3147384934248,
—71.102505233663 42.3144722937587,-71.10277487471 42.3141658254797,
—71.103113945163 42.3142739188902,-71.10324876416 42.31402489987,
-71.1033002961013 42.3140393340215,-71.1033488797549 42.3139495090772,
-71.103396240451 42.3138632439557,-71.1041521907712 42.3141153348029,
—-71.1041411411543 42.3141545014533,-71.1041287795912 42.3142114839058,
—71.1041188134329 42.3142693656241,-71.1041112482575 42.3143272556118,
-71.1041072845732 42.3143851580048,-71.1041057218871 42.3144430686681,

http://www.opengeospatial.org/standards/sfs

PostGIS 3.6.0rc2 Manual 207 /918

-71.1041065602059 42.3145009876017,-71.1041097995362 42.3145589148055,
-71.1041166403905 42.3146168544148,-71.1041258822717 42.3146748022936,
—71.1041375307579 42.3147318674446,-71.1041492906949 42.3147711126569,
—-71.1041598612795 42.314808571739,-71.1042515013869 42.3151287620809,
-71.1041173835118 42.3150739481917,-71.1040809891419 42.3151344119048,
—71.1040438678912 42.3151191367447,-71.1040194562988 42.3151832057859,
—-71.1038734225584 42.3151140942995,-71.1038446938243 42.3151006300338,
—71.1038315271889 42.315094347535,-71.1037393329282 42.315054824985,
—71.1035447555574 42.3152608696313,-71.1033436658644 42.3151648370544,
—-71.1032580383161 42.3152269126061,-71.103223066939 42.3152517403219,
—71.1031880899493 42.3152774590236)),
((=71.1043632495873 42.315113108546,-71.1043583974082 42.3151211109857,
—71.1043443253471 42.3150676015829,-71.1043850704575 42.3150793250568,-71.1043632495873 <«
42.315113108546))) ',4326);

SELECT ST_GeomFromText ('CIRCULARSTRING (220268 150415,220227 150505,220227 150406) ") ;

See Also

ST _GeomFromEWKT, ST _GeomFromWKB, ST _SRID

7.8.1.10 ST_LineFromText

ST_LineFromText — Makes a Geometry from WKT representation with the given SRID. If SRID is not given, it defaults to 0.

Synopsis

geometry ST_LineFromText(text WKT);

geometry ST_LineFromText(text WKT, integer srid);
Description

Makes a Geometry from WKT with the given SRID. If SRID is not given, it defaults to 0. If WKT passed in is not a
LINESTRING, then null is returned.

Not Note
OGC SPEC 3.2.6.2 - option SRID is from the conformance suite.

o4 Note
N If you know all your geometries are LINESTRINGS, its more efficient to just use ST_GeomFromText. This just calls
ST_GeomFromText and adds additional validation that it returns a linestring.

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.6.2

ﬂ This method implements the SQL/MM specification. SQL-MM 3: 7.2.8

http://www.opengeospatial.org/standards/sfs

PostGIS 3.6.0rc2 Manual 208 /918

Examples

SELECT ST_LineFromText ('LINESTRING(1 2, 3 4)') AS aline, ST_LineFromText ('POINT (1 2)') AS <+
null_return;

aline | null_return

010200000002000000000000000000F ... | t

See Also

ST _GeomFromText

7.8.1.11 ST_MLineFromText

ST_MLineFromText — Return a specified ST_MultiLineString value from WKT representation.

Synopsis

geometry ST_MLineFromText(text WKT, integer srid);
geometry ST_MLineFromText(text WKT);
Description

Makes a Geometry from Well-Known-Text (WKT) with the given SRID. If SRID is not given, it defaults to 0.
OGC SPEC 3.2.6.2 - option SRID is from the conformance suite
Returns null if the WKT is not a MULTILINESTRING

N;l"! Note
If you are absolutely sure all your WKT geometries are points, don’t use this function. It is slower than
ST_GeomFromText since it adds an additional validation step.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.6.2

This method implements the SQL/MM specification. SQL-MM 3: 9.4.4

Examples

SELECT ST_MLineFromText ('"MULTILINESTRING((1 2, 3 4), (4 5, 6 7))"');

See Also

ST_GeomFromText

7.8.1.12 ST_MPointFromText

ST_MPointFromText — Makes a Geometry from WKT with the given SRID. If SRID is not given, it defaults to 0.

http://www.opengeospatial.org/standards/sfs

PostGIS 3.6.0rc2 Manual 209/918

Synopsis

geometry ST_MPointFromText(text WKT, integer srid);
geometry ST_MPointFromText(text WKT);

Description

Makes a Geometry from WKT with the given SRID. If SRID is not given, it defaults to 0.
OGC SPEC 3.2.6.2 - option SRID is from the conformance suite
Returns null if the WKT is not a MULTIPOINT

N:ﬂ"! Note
If you are absolutely sure all your WKT geometries are points, don’t use this function. It is slower than
ST_GeomFromText since it adds an additional validation step.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. 3.2.6.2

This method implements the SQL/MM specification. SQL-MM 3: 9.2.4

Examples

SELECT ST_MPointFromText ('"MULTIPOINT ((1 2), (3 4))"');
SELECT ST _MPointFromText ('MULTIPOINT ((-70.9590 42.1180), (-70.9611 42.1223))"', 4326);

See Also

ST GeomFromText

7.8.1.13 ST_MPolyFromText

ST_MPolyFromText — Makes a MultiPolygon Geometry from WKT with the given SRID. If SRID is not given, it defaults to 0.

Synopsis

geometry ST_MPolyFromText(text WKT, integer srid);
geometry ST_MPolyFromText(text WKT);

Description

Makes a MultiPolygon from WKT with the given SRID. If SRID is not given, it defaults to 0.
OGC SPEC 3.2.6.2 - option SRID is from the conformance suite
Throws an error if the WKT is not a MULTIPOLY GON

N:ﬂ"! Note

If you are absolutely sure all your WKT geometries are multipolygons, don’t use this function. It is slower than
ST_GeomFromText since it adds an additional validation step.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.6.2

This method implements the SQL/MM specification. SQL-MM 3: 9.6.4

http://www.opengeospatial.org/standards/sfs
http://www.opengeospatial.org/standards/sfs

PostGIS 3.6.0rc2 Manual 210/918

Examples

SELECT ST_MPolyFromText ('MULTIPOLYGON(((0 0 1,20 0 1,20 20 1,0 20 1,0 0 1),(5 5 3,5 7 3,7 7 «
3,7 53,55 3)))");

SELECt ST _MPolyFromText ("MULTIPOLYGON (((-70.916 42.1002,-70.9468 42.0946,-70.9765 <
42.0872,-70.9754 42.0875,-70.9749 42.0879,-70.9752 42.0881,-70.9754 42.0891,-70.9758
42.0894,-70.9759 42.0897,-70.9759 42.0899,-70.9754 42.0902,-70.9756 42.0906,-70.9753
42.0907,-70.9753 42.0917,-70.9757 42.0924,-70.9755 42.0928,-70.9755 42.0942,-70.9751
42.0948,-70.9755 42.0953,-70.9751 42.0958,-70.9751 42.0962,-70.9759 42.0983,-70.9767
42.0987,-70.9768 42.0991,-70.9771 42.0997,-70.9771 42.1003,-70.9768 42.1005,-70.977
42.1011,-70.9766 42.1019,-70.9768 42.1026,-70.9769 42.1033,-70.9775 42.1042,-70.9773
42.1043,-70.9776 42.1043,-70.9778 42.1048,-70.9773 42.1058,-70.9774 42.1061,-70.9779
42.1065,-70.9782 42.1078,-70.9788 42.1085,-70.9798 42.1087,-70.9806 42.109,-70.9807
42.1093,-70.9806 42.1099,-70.9809 42.1109,-70.9808 42.1112,-70.9798 42.1116,-70.9792
42.1127,-70.979 42.1129,-70.9787 42.1134,-70.979 42.1139,-70.9791 42.1141,-70.9987 <+
42.1116,-71.0022 42.1273,

-70.9408 42.1513,-70.9315 42.1165,-70.916 42.1002)))"',4326);

1Tt te111

See Also

ST_GeomFromText, ST_SRID

7.8.1.14 ST_PointFromText

ST_PointFromText — Makes a point Geometry from WKT with the given SRID. If SRID is not given, it defaults to unknown.

Synopsis

geometry ST_PointFromText(text WKT);

geometry ST_PointFromText(text WKT, integer srid);
Description

Constructs a PostGIS ST_Geometry point object from the OGC Well-Known text representation. If SRID is not given, it defaults
to unknown (currently 0). If geometry is not a WKT point representation, returns null. If completely invalid WKT, then throws
an error.

s Note
Nﬂ‘l"! There are 2 variants of ST_PointFromText function, the first takes no SRID and returns a geometry with no defined
spatial reference system. The second takes a spatial reference id as the second argument and returns an ST_Geometry
that includes this srid as part of its meta-data. The srid must be defined in the spatial_ref_sys table.

Note

Noﬂ’! If you are absolutely sure all your WKT geometries are points, don’t use this function. It is slower than
ST_GeomFromText since it adds an additional validation step. If you are building points from long lat coordinates
and care more about performance and accuracy than OGC compliance, use ST_MakePoint or OGC compliant alias
ST _Point.

This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.6.2 - option SRID is
from the conformance suite.

This method implements the SQL/MM specification. SQL-MM 3: 6.1.8

http://www.opengeospatial.org/standards/sfs

PostGIS 3.6.0rc2 Manual 211/918

Examples

SELECT ST_PointFromText ('POINT (-71.064544 42.28787)");
SELECT ST_PointFromText ('POINT (-71.064544 42.28787)"', 4326);

See Also

ST_GeomFromText, ST_MakePoint, ST_Point, ST_SRID

7.8.1.15 ST_PolygonFromText

ST_PolygonFromText — Makes a Geometry from WKT with the given SRID. If SRID is not given, it defaults to 0.

Synopsis

geometry ST_PolygonFromText(text WKT);

geometry ST_PolygonFromText(text WKT, integer srid);
Description

Makes a Geometry from WKT with the given SRID. If SRID is not given, it defaults to 0. Returns null if WKT is not a polygon.
OGC SPEC 3.2.6.2 - option SRID is from the conformance suite

N;'R’! Note

If you are absolutely sure all your WKT geometries are polygons, don’t use this function. It is slower than
ST_GeomFromText since it adds an additional validation step.

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.6.2

ﬂ This method implements the SQL/MM specification. SQL-MM 3: 8.3.6

Examples

SELECT ST_PolygonFromText ('POLYGON ((=71.1776585052917 42.3902909739571,-71.1776820268866 <+
42.3903701743239,

-71.1776063012595 42.3903825660754,-71.1775826583081 42.3903033653531,-71.1776585052917 <
42.3902909739571)) ") ;

st_polygonfromtext

010300000001000000050000006. . .

SELECT ST_PolygonFromText ('"POINT (1 2)') IS NULL as point_is_notpoly;

point_is_not_poly

See Also

ST GeomFromText

http://www.opengeospatial.org/standards/sfs

PostGIS 3.6.0rc2 Manual 212/918

7.8.1.16 ST_WKTToSQL

ST_WKTToSQL — Return a specified ST_Geometry value from Well-Known Text representation (WKT). This is an alias name
for ST_GeomFromText
Synopsis

geometry ST_WKTToSQL(text WKT);

Description

This method implements the SQL/MM specification. SQL-MM 3: 5.1.34

See Also

ST_GeomFromText

7.8.2 Well-Known Binary (WKB)

7.8.2.1 ST_GeogFromWKB

ST_GeogFromWKB — Creates a geography instance from a Well-Known Binary geometry representation (WKB) or extended
Well Known Binary (EWKB).

Synopsis

geography ST_GeogFromWKB(bytea wkb);

Description

The ST_GeogFromWKB function, takes a well-known binary representation (WKB) of a geometry or PostGIS Extended WKB
and creates an instance of the appropriate geography type. This function plays the role of the Geometry Factory in SQL.

If SRID is not specified, it defaults to 4326 (WGS 84 long lat).

This method supports Circular Strings and Curves.

Examples

—-—-Although bytea rep contains single \, these need to be escaped when inserting into a <+
table

SELECT ST_AsText (

ST_GeogFromWKB (E'\\001\\002\\000\\000\\000\\002\\000\\000\\000\\037\\205\\353Q
AN\270~N\N\N\N300\\323Mb\\020X\\231C@\\020X9\\264 \\310~\\\\\\300) \\\\\\217\\302\\365\\230 <>
cer")

st_astext

LINESTRING(-113.98 39.198,-113.981 39.195)
(1 row)

PostGIS 3.6.0rc2 Manual 213/918

See Also

ST_GeogFromText, ST_AsBinary

7.8.2.2 ST_GeomFromEWKB

ST_GeomFromEWKB — Return a specified ST_Geometry value from Extended Well-Known Binary representation (EWKB).

Synopsis

geometry ST_GeomFromEWKB(bytea EWKB);

Description

Constructs a PostGIS ST_Geometry object from the OGC Extended Well-Known binary (EWKT) representation.

) Note
Note!
The EWKB format is not an OGC standard, but a PostGIS specific format that includes the spatial reference system
(SRID) identifier

Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves.
This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

line string binary rep Of LINESTRING(-71.160281 42.258729,-71.160837 42.259113,-71.161144 42.25932) in NAD 83 long lat
(4269).

otet Note
N NOTE: Even though byte arrays are delimited with \ and may have ’, we need to escape both out with \ and ” if
standard_conforming_strings is off. So it does not look exactly like its ASEWKB representation.

SELECT ST_GeomFromEWKB (E'\\001\\002\\000\\000 \\255\\020\\000\\000\\003\\000\\000\\000\\344 <«
J:

\\013B\\3120\\300n\\303 (\\010\\036!E@"' '\\277E"' 'K

\\3120\\300\\366{b\\235x!EQ\\225|\\354.P\\3120Q

\\300p\\231\\323e1!E@");

. Note
Nf"""! In PostgreSQL 9.1+ - standard_conforming_strings is set to on by default, where as in past versions it was set to off.
You can change defaults as needed for a single query or at the database or server level. Below is how you would do it
with standard_conforming_strings = on. In this case we escape the ’ with standard ansi’, but slashes are not escaped

PostGIS 3.6.0rc2 Manual 214/918

set standard_conforming_strings = on;
SELECT ST_GeomFromEWKB ('\001\002\000\000 \255\020\000\000\003\000\000\000\344J=\012\013B
\3120\300n\303 (\010\036!E@"'"'\277E"' 'K\012\3120Q0\300\366{b\235+x!E@\225|\354.P\3120\012\300 ¢
p\231\323el")

See Also

ST_AsBinary, ST_ASsEWKB, ST_GeomFromWKB

7.8.2.3 ST_GeomFromWKB

ST_GeomFromWKB — Creates a geometry instance from a Well-Known Binary geometry representation (WKB) and optional
SRID.

Synopsis

geometry ST_GeomFromWKB(bytea geom);
geometry ST_GeomFromWKB(bytea geom, integer srid);

Description

The ST_GeomFromWKB function, takes a well-known binary representation of a geometry and a Spatial Reference System ID
(SRID) and creates an instance of the appropriate geometry type. This function plays the role of the Geometry Factory in SQL.
This is an alternate name for ST_WKBToSQL.

If SRID is not specified, it defaults to O (Unknown).

ﬂ This method implements the OGC Simple Features Implementation Specification for SQL 1.1. s3.2.7.2 - the optional SRID
is from the conformance suite

ﬂ This method implements the SQL/MM specification. SQL-MM 3: 5.1.41

ﬂ This method supports Circular Strings and Curves.

Examples

—-—-Although bytea rep contains single \, these need to be escaped when inserting into a <
table
—— unless standard_conforming_strings is set to on.

SELECT ST_ASEWKT (

ST_GeomFromWKB (E'\\001\\002\\000\\000\\000\\002\\000\\000\\000\\037\\205\\3530Q «
N\270~N\\N\N300\\323Mb\\020X\\231C@\\020X9\\264 \\310~\\\\\\300) \\\\\\217\\302\\365\\230 <
ce',4326)

st_asewkt
SRID=4326; LINESTRING (-113.98 39.198,-113.981 39.195)
(1 row)

SELECT
ST_AsText (
ST_GeomFromWKB (
ST_ASEWKB ('POINT (2 5)'::geometry)
)
) i

http://www.opengeospatial.org/standards/sfs

PostGIS 3.6.0rc2 Manual 215/918

st_astext

POINT (2 5)
(1 row)

See Also

ST_WKBToSQL, ST_AsBinary, ST_GeomFromEWKB

7.8.2.4 ST_LineFromWKB

ST_LineFromWKB — Makes a LINESTRING from WKB with the given SRID

Synopsis

geometry ST_LineFromWKB(bytea WKB);
geometry ST_LineFromWKB(bytea WKB, integer srid);

Description

The ST_LineFromWKB function, takes a well-known binary representation of geometry and a Spatial Reference System ID
(SRID) and creates an instance of the appropriate geometry type - in this case, a LINESTRING geometry. This function plays
the role of the Geometry Factory in SQL.

If an SRID is not specified, it defaults to 0. NULL is returned if the input bytea does not represent a LINESTRING.

Not Note
OGC SPEC 3.2.6.2 - option SRID